
Streaming Bayesian Inference for Crowdsourced
Classification (Appendices)

Edoardo Manino
University of Southampton
E.Manino@soton.ac.uk

Long Tran-Thanh
University of Southampton

l.tran-thanh@soton.ac.uk

Nicholas R. Jennings
Imperial College, London

n.jennings@imperial.ac.uk

Appendix A - proofs

This appendix contains the proofs of Theorems 1 and 2 (see Section 4 in the main paper).

Proof of Theorem 1.

In the following discussion, we omit the index t for simplicity. By definition, the probability of an
error on task i is:

P(ŷi 6= yi|q) = qP(ŷi = −1|yi = +1) + (1− q)P(ŷi = +1|yi = −1) (16)

Now, assume that we know both the workers’ accuracy p and the estimates p̄. Also, define the
halved log-odds on task i as hi ≡ 1

2wq +
∑

j∈Ni
xij

1
2wj , where wq = log(q/(1 − q)) and wj =

log(p̄j/(1− p̄j)). Then, the conditional probability of a classification error is the following:

P(ŷi = −1|yi = +1,p, p̄) =
∑
Xi

(
I{hi < 0}+

1

2
I{hi = 0}

)
P(Xi|yi = +1,p) (17)

P(ŷi = +1|yi = −1,p, p̄) =
∑
Xi

(
I{hi > 0}+

1

2
I{hi = 0}

)
P(Xi|yi = −1,p) (18)

where Xi is the subset of labels cast on task i. Let us write the conditional probability of observing
Xi explicitly:

P(Xi|yi = +1,p) =
∏
j∈Ni

P(xij |yi = +1, pj)

=
∏
j∈Ni

P(xij |yi = +1, pj)f(xij) exp(−xij 1
2wj)

√
p̄j(1− p̄j)

f(xij)
√
p̄j(1− p̄j) exp(−xij 1

2wj)

= exp(hi −
1

2
wq)

∏
j∈Ni

P(xij |yi = +1, pj)

f(xij)

√
p̄j(1− p̄j)

(19)

where f(+1) ≡ p̄j and f(−1) ≡ 1− p̄j . Similarly:

P(Xi|yi = −1,p) = exp(−hi +
1

2
wq)

∏
j∈Ni

P(xij |yi = −1, pj)

f(−xij)

√
p̄j(1− p̄j) (20)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

By substituting Equation 19 in Equation 17 we get:

P(ŷi = −1|yi = +1,p, p̄) ≤ exp(−1

2
wq)

∑
Xi

∏
j∈Ni

P(xij |yi = +1, pj)

f(xij)

√
p̄j(1− p̄j)

= exp(−1

2
wq)

∏
j∈Ni

(pj
p̄j

+
1− pj
1− p̄j

)√
p̄j(1− p̄j)

(21)

since exp(hi) ≤ 1 for all hi ≤ 0. Similarly, substituting Equation 20 in Equation 18 yields:

P(ŷi = +1|yi = −1,p, p̄) ≤ exp(
1

2
wq)

∏
j∈Ni

(pj
p̄j

+
1− pj
1− p̄j

)√
p̄j(1− p̄j) (22)

By combining, Equations 21 and 22 according to Equation 16 we get the following:

P(ŷi 6= yi|q,p, p̄) ≤ 2
√
q(1− q)

∏
j∈Ni

(pj
p̄j

+
1− pj
1− p̄j

)√
p̄j(1− p̄j) (23)

which is valid for any prior on the task class q ∈ (0, 1), any worker accuracy pj ∈ [0, 1], and any
estimate p̄j ∈ (0, 1).

Note that under the assumptions in Definition 1 (see main paper), the accuracy estimate p̄j depends
on the number of worker’s j correct answers. With this knowledge, we can compute the expected
zero-one loss across all instances of the crowd p and the estimates p̄. Specifically, the expectation of
Equation 23 yields the following:

P(ŷi 6= yi|q) = Ep,p̄

{
P(ŷi 6= yi|q,p, p̄)

}
= Ep,X

{
P(ŷi 6= yi|q,p, p̄)

}
≤ 2
√
q(1− q)

∏
j∈Ni

EXj

{(
Epj |Xj

{pj}
p̄j

+
1−Epj |Xj

{pj}
1− p̄j

)√
p̄j(1− p̄j)

}
= 2
√
q(1− q)

∏
j∈Ni

EXj

{
2
√
p̄j(1− p̄j)

} (24)

where Xj is the subset of labels provided by worker j except for xij , and Epj |Xj
{pj} = p̄j by

definition because p̄j is the exact mean of the posterior of a beta-distributed Bernoulli variable with
|Xj | observations.

Finally, we can compute the value of the remaining expectation over Xj by considering how the
output of each worker is used in our algorithms. In Sorted SBIC, each worker provides L̄ = L− 1
labels on tasks other than i, before casting their final vote on task i. As a consequence we have:

Fsorted(L,α, β) ≡ EXj

{
2
√
p̄j(1− p̄j)

}
= 2

L̄∑
k=0

P

(∑
i′∈Mj\i

I{xi′j = yi′} = k
)√(k + α

L̄+ α+ β

)(
L̄− k + β

L̄+ α+ β

) (25)

where the probability of observing k correct answers out of L̄ can be computed according to the prior
pj ∼ Beta(α, β), and leads to the result in the theorem.

In contrast, the Fast SBIC algorithm computes the estimates p̄j on a number of labels across the range
[0, L− 1] in equal proportions. We can compute the expectation over Xj for each of these values
separately according to Equation 25, and then take the average. The result of this operation yields the
formula for Ffast(L,α, β) shown in the theorem.

Proof of Theorem 2.

From the perspective of a single task i, the US policy operates in short bursts of activity, as i keeps
receiving new labels until it is no longer the most uncertain one. We define zT ≡ maxt{mini{|zi|}}
as the largest threshold that all tasks have crossed at some point of the collection process. In this
respect, we can model the evolution of the log-odds zti as a bounded random walk, which starts

2

from the prior value z0
i = wq where wq = log(q/(1 − q)), and ends when zti leaves the interval

(−zT ,+zT).

Given this, let us assume that we can fix the threshold zT > |wq| and then collect as many labels
as needed in order to cross it. We denote the log-odds after crossing the threshold as zri , where
zri 6∈ (−zT ,+zT), and the log-odds at the step before as zr−1

i . According to this definition, r is a
stopping time since it is uniquely defined by the information collected before step r. Thus, we can
use Wald’s equation to link the expected value of zri and the stopping time r:

E{zri } = E{r}E{xijwj}+ wq (26)

where wj = log(p̄j/(1− p̄j)) is the weight associated to each worker.

Recall, however, that zri is the sum of r i.i.d random variables, and that zr−1
i ∈ (−zT ,+zT) by

definition. As a consequence, we can further bound the expected value of zri (conditioned on the
ground-truth yi) as follows:

E{zri |yi = +1} = E{zr−1
i |yi = +1}+E{xijwj |yi = +1} < +zT +E{xijwj |yi = +1} (27)

E{zri |yi = −1} = E{zr−1
i |yi = −1}+E{xijwj |yi = −1} > −zT +E{xijwj |yi = −1} (28)

By plugging Equations 27 and 28 into Equation 26, we can derive the following bounds on the
expected number of steps r we need to reach the threshold zT :

E{r|yi = +1} < zT +E{xijwj |yi = +1} − wq

E{xijwj |yi = +1}
(29)

E{r|yi = −1} < zT +E{xijwj |yi = +1} − wq

E{xijwj |yi = +1}
(30)

where we used the fact that E{xijwj |yi = −1} = −E{xijwj |yi = +1}. And finally:

E{r} = qE{r|yi = +1}+(1−q)E{r|yi = −1} < zT +E{xijwj |yi = +1}+ (1− 2q)wq

E{xijwj |yi = +1}
(31)

At the same time, we also know that the random walks on the |M | tasks are independent, and that the
variance of r for a bounded random walk with i.i.d. steps is finite. Therefore, as |M | → ∞ the total
number of steps required to cross the threshold on all the tasks will converge to its expected value, i.e.
T → |M |E{r}. This property allows us to substitute E{r} = T/|M | = R and get a bound on the
value of the threshold zT given the average number of labels per task R:

zT > (2q − 1)wq + (R− 1)E{xijwj |yi = +1} (32)

Having a value for the threshold zT is crucial because it relates to the probability of a classification
error. In fact, under the assumption that pj ∼ Beta(α, β) and µi(yi) → 1, our estimates of the
workers’ accuracy satisfy the condition Epj |Xj

{pj} = p̄j . Thus, we can establish the following
equality:

P(ŷi 6= yi|q) = E
{

sig
(
− |zi|

)}
(33)

and now, since we know that |zi| > zT , we can use Equation 32 to bound the probability of an error
as follows:

P(ŷi 6= yi|q) < sig(−zT)

≤ exp
(
− (2q − 1)wq − (R− 1)E{xijwj |yi = +1}

) (34)

Finally, we can compute the expected value of xijwj over the true and estimated accuracy pj , p̄j of
each worker. The results depends on how the individual variant of SBIC computes the estimates p̄.
In Sorted SBIC, each worker provides L̄ = L− 1 labels on tasks other than i, before casting their
final vote on task i. As a consequence we have:

Gsorted(L,α, β) ≡ Epj ,p̄j
{xijwj |yi = +1}

=

L̄∑
k=0

P

(∑
i′∈Mj\i

I{xi′j = yi′} = k
)

log

(
k + α

L̄− k + β

)
(k + α)− (L̄− k + β)

L̄+ α+ β

(35)

3

where the last term takes into account the value of xij , the logarithm the value of wj , and the
probability of observing k correct answers out of L̄ can be computed according to the prior pj ∼
Beta(α, β), and leads to the result in the theorem.

As in the proof of Theorem 1, the value Gfast(L,α, β) for the Fast SBIC algorithm can be derived
from Equation 35 as shown in the statement of the present theorem.

Appendix B - experimental setup

In this appendix we list the implementation choices and parameter values we used in our experimental
setup. We begin with a description of the data we use in Section 5.

Synthetic data. Given the values of |M |, L andR, we generate a crowd of |N | = |M |R/Lworkers
by extracting them from the distribution pj ∼ Beta(α, β). Then, for each worker j we extract L
answers according to their true accuracy pj and the ground-truth y which we set by convention to
yi = +1,∀i. The assignment of the labels to the task is chosen at runtime according to the policy π
selected for the experiment. For each tuple (R,L, π, algorithm) we run multiple experiments until
we have 1000 runs that produced at least one classification error and we average the result. In this
way, we can have low-variance estimates of the probability of an error even for large R. The error
bars reported in Figure 1 (main paper) are computed with the Agresti-Coull method [Brown et al.,
2001] set at 99% confidence, and their value is as small as 10−5 (which makes them barely visible in
our plots).

Time complexity. This set of experiments uses the same parameters of the synthetic data ones
under the US policy. The only exception is that we average the execution time of the algorithms over
10 runs, and we report the empirical mean and standard deviation. The EM and AMF algorithms
share the same implementation (albeit different parameters, as we explain below), and thus take the
same time to execute.

Real-world data. We run the algorithms on the full datasets. Since Fast SBIC and Sorted SBIC are
affected by the order in which they process the data, we shuffle the datasets and repeat the inference
100 times. Similarly, since MC is a stochastic algorithm, we repeat the sampling 100 times with
different seeds. The results reported in Table 2 of the main paper are the average of these runs.

Next, we list the details of the inference algorithms.

MAJ. We use a straightforward implementation of majority voting. Under the US policy, we use
the partial sum of votes

∑
j∈Ni

xij as an indication of uncertainty.

AMF. For experiments on fully-observed data or in conjunction with the UNI policy, we initialise
the worker estimates to their mean prior value p̄ = α/(α+ β) and run 50 iterations of the algorithm
to ensure convergence. For adaptive settings in conjunction with the US policy, we run 4 iterations
after collecting each new label xij to update the current estimates. At the end of the collection process
we run 50 iterations from scratch. As for MC and SBIC, we use a matching prior α = 4, β = 3 for
synthetic data, a generic prior α = 2, β = 1 for real-world data, and q = 1

2 for all experiments.

EM. This algorithm shares the same implementation of AMF. The only difference is that we use
ᾱ = α− 1 and β̄ = β − 1 for the workers’ prior. As explained in [Liu et al., 2012], this forces the
algorithm to compute the mode rather than the mean of the posterior worker accuracy.

KOS. We implement the algorithm as a power law iteration with alternating steps w = Xz and
z = Xw, where w = (w1, . . . , w|N |) are the worker weights and z are the task log-odds. This is
the setup recommended by Karger et al. [2014] to achieve maximum performance, as opposed to the
more theoretical-sound belief propagation algorithm. We initialise z to its majority voting value, and
normalise the result at every iteration to prevent numerical explosion. For synthetic data (both under
the UNI and US policies), we run only 5 power law iterations before producing the final estimates, as
we found this yields better accuracy. For real-data we let the algorithm run for 100 iterations to reach
convergence instead.

4

MC. We use two different implementation of this algorithm. For experiments on fully-observed
data or in conjunction with the UNI policy, we use Gibbs Sampling [Murphy, 2012]. We initialise the
chain according to the prior, and then update the variables p,y for 500 steps and take the average
across all of the samples. For experiments under the US policy, this setup is too slow. Thus, we
implement a particle filter [Chopin, 2002] with 50 particles extracted according to the prior on y.
We marginalise over the workers’ accuracy p to reduce the state space. After each new label xij
is received, we update the weights of the particles according to importance sampling. Every 10
labels we perform a full Gibbs step over all the particles and reinitialise the weights to 1. Across all
experiments on synthetic data, we use a matching prior with α = 4 and β = 3. For real-world data
the prior is unknown, thus we use a generic setup with α = 2 and β = 1 as suggested for Bayesian
methods in [Liu et al., 2012]. Finally, we use q = 1

2 for all experiments.

SBIC. We use a straightforward implementation of the algorithms presented in Sections 3.1 and
3.2 of the main paper. As for MC and AMF, we use a matching prior α = 4, β = 3 for synthetic data,
a generic prior α = 2, β = 1 for real-world data, and q = 1

2 for all experiments.

TE. We use a straightforward implementation of the algorithm in [Bonald and Combes, 2017]. No
parameters are required to run this algorithm.

References
Thomas Bonald and Richard Combes. A Minimax Optimal Algorithm for Crowdsourcing. In

Proceedings of the Thirtieth International Conference on Neural Information Processing Systems,
pages 4355–4363, 2017.

Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. Interval Estimation for a Binomial
Proportion. Statistical Science, 16(2):101–133, 2001.

Nicolas Chopin. A Sequential Particle Filter Method for Static Models. Biometrika, 89(3):539–552,
2002.

David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-Optimal Task Allocation for Reliable
Crowdsourcing Systems. Operations Research, 62(1):1–24, 2014.

Qiang Liu, Jian Peng, and Alexander Ihler. Variational Inference for Crowdsourcing. In Proceedings
of the Twenty-Fifth International Conference on Neural Information Processing Systems, pages
692–700, 2012.

Kevin P Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

5

