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Abstract

Motivated by the many real-world applications of reinforcement learning (RL) that
require safe-policy iterations, we consider the problem of off-policy evaluation
(OPE) — the problem of evaluating a new policy using the historical data ob-
tained by different behavior policies — under the model of nonstationary episodic
Markov Decision Processes (MDP) with a long horizon and a large action space.
Existing importance sampling (IS) methods often suffer from large variance that
depends exponentially on the RL horizon H . To solve this problem, we consider
a marginalized importance sampling (MIS) estimator that recursively estimates
the state marginal distribution for the target policy at every step. MIS achieves a
mean-squared error of
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where µ and π are the logging and target policies, dµt (st) and dπt (st) are the
marginal distribution of the state at tth step, H is the horizon, n is the sample
size and V πt+1 is the value function of the MDP under π. The result matches the
Cramer-Rao lower bound in Jiang and Li [2016] up to a multiplicative factor of H .
To the best of our knowledge, this is the first OPE estimation error bound with a
polynomial dependence onH . Besides theory, we show empirical superiority of our
method in time-varying, partially observable, and long-horizon RL environments.

1 Introduction

The problem of off-policy evaluation (OPE), which predicts the performance of a policy with data only
sampled by a behavior policy [Sutton and Barto, 1998], is crucial for using reinforcement learning
(RL) algorithms responsibly in many real-world applications. In many settings where RL algorithms
have already been deployed, e.g., targeted advertising and marketing [Bottou et al., 2013; Tang et al.,
2013; Chapelle et al., 2015; Theocharous et al., 2015; Thomas et al., 2017] or medical treatments
[Murphy et al., 2001; Ernst et al., 2006; Raghu et al., 2017], online policy evaluation is usually
expensive, risky, or even unethical. Also, using a bad policy in these applications is dangerous and
could lead to severe consequences. Solving OPE is often the starting point in many RL applications.

To tackle the problem of OPE, the idea of importance sampling (IS) corrects the mismatch in the
distributions under the behavior policy and target policy. It also provides typically unbiased or
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strongly consistent estimators [Precup et al., 2000]. IS-based off-policy evaluation methods have
also seen lots of interest recently especially for short-horizon problems, including contextual bandits
[Murphy et al., 2001; Hirano et al., 2003; Dudík et al., 2011; Wang et al., 2017]. However, the
variance of IS-based approaches [Precup et al., 2000; Thomas et al., 2015; Jiang and Li, 2016;
Thomas and Brunskill, 2016; Guo et al., 2017; Farajtabar et al., 2018] tends to be too high to provide
informative results, for long-horizon problems [Mandel et al., 2014], since the variance of the product
of importance weights may grow exponentially as the horizon goes long. There are also model-based
approaches for solving OPE problems [Liu et al., 2018b; Gottesman et al., 2019], where the value of
the target policy is estimated directly using the approximated MDP.

Given this high-variance issue, it is necessary to find an IS-based approach without relying heavily
on the cumulative product of importance weights from the whole trajectories. While the benefit of
cumulative products is to allow unbiased estimation even without any state observability assumptions,
reweighing the entire trajectories may not be necessary if some intermediate states are directly
observable. For the latter, based on Markov independence assumptions, we can aggregate all
trajectories that share the same state transition patterns to directly estimate the state distribution shifts
after the change of policies from the behavioral to the target. We call this approach marginalized
importance sampling (MIS), because it computes the marginal state distribution shifts at every single
step, instead of the product of policy weights.

Related work [Liu et al., 2018a] tackles the high variance issue due to the cumulative product of
importance weights. They apply importance sampling on the average visitation distribution of state-
action pairs, based on an estimation of the mixed state distribution. Hallak and Mannor [2017] and
Gelada and Bellemare [2019] also leverage the same fact in time-invariant MDPs, where they use the
stationary ratio of state-action pairs to replace the trajectory weights. However, these methods may
not directly work in finite-horizon MDPs, where the state distributions may not mix.

In contrast to the prior work, the first goal of our paper is to study the sample complexity and
optimality of the marginalized approach. Specifically, we provide the first finite sample error bound
on the mean-square error for our MIS off-policy evaluation estimator under the episodic tabular MDP
setting (with potentially continuous action space). Our MSE bound is the exact calculation up to low
order terms. Comparing to the Cramer-Rao lower bound established in [Jiang and Li, 2016, Theorem
3] for DAG-MDP, our bound is larger by at most a factor of H and we have good reasons to believe
that this additional factor is required for any OPE estimators in this setting.

In addition to the theoretical results, we empirically evaluate our estimator against a number of strong
baselines from prior work in a number of time-invariant/time-varying, fully observable/partially
observable, and long-horizon environments. Our approach can also be used in most of OPE estimators
that leverage IS-based estimators, such as doubly robust [Jiang and Li, 2016], MAGIC [Thomas and
Brunskill, 2016], MRDR [Farajtabar et al., 2018] under mild assumptions (Markov assumption).

Here is a road map for the rest of the paper. Section 2 provides the preliminaries of the problem of
off-policy evaluation. In Section 3, we offer the design of our marginalized estimator, and we study
its information-theoretical optimality in Section 4. We present the empirical results in a number of
RL tasks in Section 5. At last, Section 6 concludes the paper.

2 Problem formulation

Symbols and notations. We consider the problem of off-policy evaluation for a finite horizon,
nonstationary, episodic MDP, which is a tuple defined by M = (S,A, T, r,H), where S is the state
space,A is the action space, Tt : S×A×S → [0, 1] is the transition function with Tt(s′|s, a) defined
by probability of achieving state s′ after taking action a in state s at time t, and rt : S ×A× S → R
is the expected reward function with rt(s, a, s′) defined by the mean of immediate received reward
after taking action a in state s and transitioning into s′, and H denotes the finite horizon. We use P[E]
to denote the probability of an event E and p(x) the p.m.f. (or pdf) of the random variable X taking
value x. E[·] and E[·|E] denotes the expectation and conditional expectation given E, respectively.

Let µ, π : S → PA be policies which output a distribution of actions given an observed state. We
call µ the behavioral policy and π the target policy. For notation convenience we denote µ(at|st)
and π(at|st) the p.m.f of actions given state at time t. The expectation operators in this paper will
either be indexed with π or µ, which denotes that all random variables coming from roll-outs from
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the specified policy. Moreover, we denote dµt (st) and dπt (st) the induced state distribution at time t.
When t = 1, the initial distributions are identical dµ1 = dπ1 = d1. For t > 1, dµt (st) and dπt (st) are
functions of not just the policies themselves but also the unknown underlying transition dynamics,
i.e., for π (and similarly µ), recursively define

dπt (st) =
∑
st−1

Pπt (st|st−1)dπt−1(st−1),

where Pπt (st|st−1) =
∑
at−1

Tt(st|st−1, at−1)π(at−1|st−1).
(2.1)

We denote Pπi,j ∈ RS×S ∀j < i as the state-transition probability from step j to step i un-
der a sequence of actions taken by π. Note that Pπt+1,t(s

′|s) =
∑
a Pt+1,t(s

′|s, a)πt(a|s) =
Tt+1(s′|s, πt(s)).

Behavior policy µ is used to collect data in the form of (s
(i)
t , a

(i)
t , r

(i)
t ) ∈ S ×A× R for time index

t = 1, . . . ,H and episode index i = 1, ..., n. Target policy π is what we are interested to evaluate.
Also, let D to denote the historical data, which contains n episode trajectories in total. We also define
Dh = {(s(i)t , a

(i)
t , r

(i)
t ) : i ∈ [n], t ≤ h} to be roll-in realization of n trajectories up to step h.

Throughout the paper, probability distributions are often used in their vector or matrix form. For
instance, dπt without an input is interpreted as a vector in a S-dimensional probability simplex and
Pπi,j is then a stochastic transition matrix. This allows us to write (2.1) concisely as dπt+1 = Pπt+1,td

π
t .

Also note that while st, at, rt are usually used to denote fixed elements in set S,A and R, in
some cases we also overload them to denote generic random variables s(1)t , a

(1)
t , r

(1)
t . For exam-

ple, Eπ[rt] = Eπ[r
(1)
t ] =

∑
st,at,st+1

dπ(st, at, st+1)rt(st, at, st+1) and Varπ[rt(st, at, st+1)] =

Varπ[rt(s
(1)
t , a

(1)
t , s

(1)
t+1)]. The distinctions will be clear in each context.

Problem setup. The problem of off-policy evaluation is about finding an estimator v̂π : (S ×A×
R)H×n → R that makes use of the data collected by running µ to estimate

vπ =

H∑
t=1

∑
st

dπt (st)
∑
at

π(at|st)
∑
st+1

Tt(st+1|st, at)rt(st, at, st+1), (2.2)

where we assume knowledge about µ(a|s) and π(a|s) for all (s, a) ∈ S × A, but do not observe
rt(st, at, st+1) for any actions other than a noisy version of it the evaluated actions. Nor do we
observe the state distributions dπt (st)∀t > 1 implied by the change of policies. Nonetheless, our goal
is to find an estimator to minimize the mean-square error (MSE): MSE(π, µ,M) = Eµ[(v̂π − vπ)2],
using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other
words, this is a setting where we do not have enough data points to estimate the state-action-state
transition dynamics, but we do observe the states and can estimate the distribution of the states after
the change of policies, which is our main strategy.

Assumptions: We list the technical assumptions we need and provide necessary justification.

A1. ∃Rmax, σ < +∞ such that 0 ≤ E[rt|st, at, st+1] ≤ Rmax,Var[rt|st, at, st+1] ≤ σ2 for
all t, st, at.

A2. Behavior policy µ obeys that dm := mint,st d
µ
t (st) > 0 ∀t, st such that dπt (st) > 0.

A3. Bounded weights: τs := maxt,st
dπt (st)
dµt (st)

< +∞ and τa := maxt,st,at
π(at|st)
µ(at|st) < +∞.

Assumption A1 is assumed without loss of generality. The σ bound is required even for on-policy
evaluation and the assumption on the non-negativity andRmax can always be obtained by shifting and
rescaling the problem. Assumption A2 is necessary for any consistent off-policy evaluation estimator.
Assumption A3 is also necessary for discrete state and actions, as otherwise the second moments of
the importance weight would be unbounded. For continuous actions, τa < +∞ is stronger than we
need and should be considered a simplifying assumption for the clarity of our presentation. Finally,
we comment that the dependence in the parameter dm, τs, τa do not occur in the leading O(1/n)
term of our MSE bound, but only in simplified results after relaxation.
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3 Marginalized Importance Sampling Estimators for OPE

In this section, we present the design of marginalized IS estimators for OPE. For small action spaces,
we may directly build models by the estimated transition function Tt(st|st−1, at−1) and the reward
function rt(st, at, st+1) from empirical data. However, the models may be inaccurate in large action
spaces, where not all actions are frequently visited. Function approximation in the models may cause
additional biases from covariate shifts due to the change of policies. Standard importance sampling
estimators (including the doubly robust versions)[Dudík et al., 2011; Jiang and Li, 2016] avoid the
need to estimate the model’s dynamics but rather directly approximating the expected reward:

v̂πIS =
1

n

n∑
i=1

H∑
h=1

[
h∏
t=1

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

]
r
(i)
h .

To adjust for the differences in the policy, importance weights are used and it can be shown that this
is an unbiased estimator of vπ (See more detailed discussion of IS and the doubly robust version
in Appendix C). The main issue of this approach, when applying to the episodic MDP with large
action space is that the variance of the importance weights grows exponentially in H [Liu et al.,
2018a], which makes the sample complexity exponentially worse than the model-based approaches,
when they are applicable. We address this problem by proposing an alternative way of estimating
the importance weights which achieves the same sample complexity as the model-based approaches
while allowing us to achieve the same flexibility and interpretability as the IS estimator that does not
explicitly require estimating the state-action dynamics Tt. We propose the Marginalized Importance
Sampling (MIS) estimator:

v̂πMIS =
1

n

n∑
i=1

H∑
t=1

d̂πt (s
(i)
t )

d̂µt (s
(i)
t )

r̂πt (s
(i)
t ). (3.1)

Clearly, if d̂π → dπt , d̂µ → dµt , r̂πt → Eπ[Rt(st, at)|st], then v̂πMIS → vπ .

It turns out that if we take d̂µt (st) := 1
n

∑
i 1(s

(i)
t = st) — the empirical mean — and define

d̂πt (st)/d̂
µ
t (st) = 0 whenever nst = 0, then (3.1) is equivalent to

∑H
t=1

∑
st
d̂πt (st)r̂

π(st) – the
direct plug-in estimator of (2.2). It remains to specify d̂πt (st) and r̂π(st). d̂πt (st) is estimated
recursively using

d̂πt = P̂πt d̂
π
t−1, where P̂πt (st|st−1) =

1

nst−1

n∑
i=1

π(a
(i)
t−1|st−1)

µ(a
(i)
t−1|st−1)

1((s
(i)
t−1, s

(i)
t ) = (st−1, st));

and r̂πt (st) =
1

nst

n∑
i=1

π(a
(i)
t |st)

µ(a
(i)
t |st)

r
(i)
t 1(s

(i)
t = st), (3.2)

where nsτ is the empirical visitation frequency to state sτ at time τ . Note that our estimator of rπt (st)
is the standard IS estimators we use in bandits [Li et al., 2015], which are shown to be optimal (up to
a universal constant) when A is large [Wang et al., 2017].

The advantage of MIS over the naive IS estimator is that the variance of the importance weight need
not depend exponentially in H . A major theoretical contribution of this paper is to formalize this
argument by characterizing the dependence on π, µ as well as parameters of the MDP M . Note that
MIS estimator does not dominate the IS estimator. In the more general setting when the state is given
by the entire history of observations, Jiang and Li [2016] establishes that no estimators can achieve
polynomial dependence in H . We give a concrete example later (Example 1) about how IS estimator
suffers from the “curse of horizon” [Liu et al., 2018a]. MIS estimator can be thought of as one that
exploits the state-observability while retaining properties of the IS estimators to tackle the problem of
large action space. As we illustrate in the experiments, MIS estimator can be modified to naturally
handle partially observed states, e.g., when s is only observed every other step.

Finally, when available, model-based approaches can be combined into importance-weighted methods
[Jiang and Li, 2016; Thomas and Brunskill, 2016]. We defer discussions about these extensions in
Appendix C to stay focused on the scenarios where model-based approaches are not applicable.
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4 Theoretical Analysis of the MIS Estimator

Motivated by the challenge of curse of horizon with naive IS estimators, similar to [Liu et al., 2018a],
we show that the sample complexity of our MIS estimator reduces to O(H3). To the best of our
knowledge, this is first sample complexity guarantee under this setting, which also matches the
Cramer-Rao lower bound for DAG-MDP [Jiang and Li, 2016] as n→∞ up to a factor of H .
Example 1 (Curse of horizon). Assume a MDP with i.i.d. state transition models over time and
assume that πt

µt
is bounded from both sides for all t. Suppose the reward is a constant 1 only

shown at the last step, such that naive IS becomes v̂πIS = 1
n

∑n
i=1

[∏H
t=1

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

]
. For every

trajectory,
∏H
t=1

πt
µt

= exp
[∑H

t=1 log πt
µt

]
; let Elog = E[log πt

µt
] and Vlog = Var[log πt

µt
]. By

Central Limit Theorem,
∑H
t=1 log πt

µt
asymptotically follows a normal distribution with parameters(

−HElog, HVlog
)
. In other words,

∏H
t=1

πt
µt

asymptotically follows LogNormal
(
−HElog, HVlog

)
,

whose variance is exponential in horizon:
(
exp (HVlog)− 1

)
. On the other hand, MIS estimates the

state distributions recursively, yielding variance that is polynomial in horizon and small OPE errors.

We now formalize the sample complexity bound in Theorem 4.1.
Theorem 4.1. Let the value function under π be defined as follows:

V πh (sh) := Eπ

[
H∑
t=h

rt(s
(1)
t , a

(1)
t , s

(1)
t+1)

∣∣∣∣∣s(1)h = sh

]
∈ [0, Vmax], ∀h ∈ {1, 2, ...,H}.

For the simplicity of the statement, define boundary conditions: r0(s0) ≡ 0, σ0(s0, a0) ≡ 0,d
π
0 (s0)
dµ0 (s0)

≡

1, π(a0|s0)µ(a0|s0) ≡ 1 and V πH+1 ≡ 0. Moreover, let τa := maxt,st,at
π(at|st)
µ(at|st) and τs := maxt,st

dπt (st)
dµt (st)

. If
the number of episodes n obeys that

n > max

{
16 log n

mint,st d
µ
t (st)

,
4tτaτs

mint,st max{dπt (st), d
µ
t (st)}

}
for all t = 2, ...,H , then the our estimator v̂πMIS with an additional clipping step obeys that

E[(P v̂πMIS − vπ)2] ≤ 1

n

H∑
h=0

∑
sh

dπh(sh)2

dµh(sh)
Varµ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]

·

(
1 +

√
16 log n

nmint,st d
µ
t (st)

)
+

19τ2aτ
2
s SH

2(σ2 +R2
max + V 2

max)

n2
.

Corollary 1. In the familiar setting when Vmax = HRmax, then the same conditions in Theorem 4.1
implies that:

E[(P v̂πMIS − vπ)2] ≤ 4

n
τaτs(Hσ

2 +H3R2
max).

We make a few remarks about the results in Theorem 4.1.

Dependence on S,A and the weights. The leading term in the variance bound very precisely calcu-
lates the MSE of a clipped version of our estimator v̂MIS

1 modulo a (1 +O(n−1/2)) multiplicative
factor and an O(1/n2) additive factor. Specifically, our bound does not explicitly depend on S and A
but instead on how similar π and µ are. This allows the method to handle the case when the action
space is continuous. The dependence on τa, τs only appear in the low-order terms, while the leading
term depends only on the second moments of the importance weights.

Dependence on H . In general, our sample complexity upper bound is proportional to H3, as
Corollary 1 indicates. Our bound reveals that in several cases it is possible to achieve a smaller

1The clipping step to [0, HRmax] or [0, Vmax] should not be alarming. It is required only for technical
reasons, and the clipped estimator is a valid estimator to begin with. Since the true policy value must be within
the range, the clipping step is only going to improve the MSE.
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exponent on H for specific triplets of (M,π, µ). For instance, when π ≈ µ, such that τa, τs =
1 + O(1/H), the variance bound gives O((V 2

max + Hσ2)/n) or O((H2R2
max + Hσ2)/n), which

matches the MSE bound (up to a constant) of the simple-averaging estimator that knows π = µ
a-priori. (See Remark 3 in the Appendix for more details). If Vmax is a constant that does not depend
on H (this is often the case in games when there is a fixed reward at the end), then the sample
complexity is only O(H).

Optimality. Comparing to the Cramer-Rao lower bound of the Theorem 3 in [Jiang and Li, 2016],
which we paraphrase below

1

n

H∑
h=1

∑
sh

dπh(sh)2

dµh(sh)

∑
ah

πh(ah|sh)2

µh(ah|sh)
Var

[
V πh+1(s

(1)
h+1) + r

(1)
h

∣∣∣s(1)h = sh, a
(1)
h = ah

]
, (4.1)

the MSE of our estimator is asymptotically bigger by an additive factor of

1

n

H∑
h=1

∑
sh

dπh(sh)2

dµh(sh)
Varµ

[
πh(a

(1)
h |sh)

µh(a
(1)
h |sh)

Qπh(sh, a
(1)
h )

]
, (4.2)

where Qπh(sh, ah) := E
[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣s(1)h = sh, a

(1)
h = ah

]
is the standard Q-function

the MDP. The gap is significant as the CR lower bound (4.1) itself only has a worst-case bound of
H2τsτa/n

2, while (4.2) is proportional to H3τsτa/n. This implies that our estimator is optimal up
to a factor of H . See Remark 4 for more details in the appendix.

It is an intriguing open question whether this additional factor ofH can be removed. Our conjecture is
that the answer is negative and what we established in Theorem 4.1 matches the correct information-
theoretic limit for any methods in the cases when the action space A is continuous (or significantly
larger than n). This conjecture is consistent with an existing lower bound in the simpler contextual
bandits setting, where Wang et al. [2017] established that a variance of expectation term analogous to
the one above cannot be removed, and no estimators can asymptotically attain the CR lower bound
for all problems in the large state/action space setting.

4.1 Proof Sketch

In this section, we briefly describe the main technical components in the proof of Theorem 4.1. More
detailed arguments are deferred to the full proof in Appendix B.

Recall that (3.1) is equivalent to
∑H
t=1

∑
st
d̂πt (st)r̂

π(st), where r̂π(st) is estimated with importance
sampling and d̂πt (st) is recursively estimated using d̂πt−1(st−1) and the importance sampling estimator
of the transition matrix Pπt (st|st−1) under π. While the MIS estimator is easy to state, it is not
straightforward to analyze. We highlight three challenges below.

1. Dependent data and complex estimator: While the episodes are independent, the data within
each episode are not. Each time step of our MIS estimator uses the data from all episodes
up to that time step.

2. An annoying bias: There is a non-zero probability that some states st at time t is not visited
at all in all n episodes. This creates a bias in the estimator of d̂πh for all time h > t. While
the probability of this happening is extremely small, conditioning on the high probability
event breaks the natural conditional independences, which makes it hard to analyze.

3. Error propagation: The recursive estimator d̂πt is affected by all estimation errors in earlier
time steps. Naive calculation of the error with a constant slack in each step can lead to a
“snowball” effect that causes an exponential blow-up.

All these issues require delicate handling because otherwise the MSE calculation will not be tight.
Our solutions are as follows.

Defining the appropriate filtration. The first observation is that we need to have a convenient
representation of the data. Instead of considering the n episodes as independent trajectories, it is
more useful to think of them all together as a Markov chain of multi-dimensional observations

2This is somewhat surprising as each of the H summands in the expression can be as large as H2.

6



of n state, action, reward triplets. Specifically, we define the “cumulative” data up to time t by

Datat :=
{
s
(i)
1:t, a

(i)
1:t−1, r

(i)
1:t−1

}n
i=1

. Also, we observe that the state of the Markov chain at time t can
be summarized by nst — the number of times state st is visited.

Fictitious estimator technique. We address the bias issue by defining a fictitious estimator ṽπ . The
fictitious estimator is constructed by, instead of d̂πt and r̂πt , the fictitious version of these estimators
d̃πt and r̃πt , where d̃πt is constructed recursively using

d̃πt (st) =
∑
st−1

P̃π(st|st−1)d̃πt−1(st−1).

The key difference is that whenever nst < Eµnst(1 − δ) for some 0 < δ < 1, we assign
P̃π(st+1|st) = Pπ(st+1|st) and r̃π(st) = Eπ[rt|st] — the true values of interest. This ensures that
the fictitious estimator is always unbiased (see Lemma B.2). Note that this fictitious estimator cannot
be implemented in practice. It is used as a purely theoretical construct that simplifies the analysis of
the (biased) MIS estimator. In Lemma B.1, we show that the ṽπ and v̂π are exponentially close to
each other.

Disentangling the dependency by backwards peeling. The fictitious estimator technique reduces
the problem of calculating the MSE of the MIS estimator to a variance analysis of the fictitious
estimator. By recursively applying the law of total variance backwards that peels one item at a time
from Datat, we establish an exact linear decomposition of the variance of the fictitious estimator
(Lemma B.3):

Var[ṽπ] =

H∑
h=0

∑
sh

E

[
d̃πh(sh)

2

nsh
1

(
nsh ≥

ndµh(sh)

(1− δ)−1

)]
Varµ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]
.

Observe that the value function V πt shows up naturally. This novel decomposition can be thought of
as a generalization of the celebrated Bellman-equation of variance [Sobel, 1982] in the off-policy,
episodic MDP setting with a finite sample and can be of independent interest.

Characterizing the error propagation in d̃πh(sh). Lastly, we bound the error term in the state
distribution estimation as follows

E

[
d̃πh(sh)2

nsh
1

(
nsh ≥

ndµh(sh)

(1− δ)−1

)]
≤ (1− δ)−1

n

(
dπh(sh)2

dµh(sh)
+ Var

[
d̃πh(sh)

])
,

which reduces the problem to bounding Var[d̃πh(sh)]. We show (in Theorem B.1) that instead of an
exponential blow-up as will a concentration-inequality based argument imply, the variance increases
at most linearly in h: Var[d̃πh(sh)] ≤ 2(1−δ)−1hdπh(sh)

n . The proof uses a novel decomposition of
Cov(d̃πh) (Lemma B.5), which is derived using a similar backwards peeling argument as before.
Finally, Theorem 4.1 is established by appropriately choosing δ = O(

√
log n/nmint,st d

µ
t (st)).

Due to space limits, we can only highlight a few key elements of the proof. We invite the readers to
check out a more detailed exposition in Appendix B.

5 Experiments

Throughout this section, we present the empirical results to illustrate the comparison among different
estimators. We demonstrate the effectiveness of our proposed marginalized estimator by comparing it
with different classic estimators on several domains.

The methods we compare in this section are: direct method (DM), importance sampling (IS),
weighted importance sampling (WIS), importance sampling with stationary state distribution (SSD-
IS), and marginalized importance sampling (MIS). DM uses the model-based approach to estimate
Tt(st|st−1, at−1), rt(st, at) by enumerating all tuples of (st−1, at−1, st), IS is the step-wise impor-
tance sampling method, WIS uses the step-wise weighted (self-normalized) importance sampling
method, SSD-IS denotes the method of importance sampling with stationary state distribution pro-
posed by [Liu et al., 2018a]3, and MIS is our proposed marginalized method. Note that our MIS

3Our implementation of SSD-IS for the discrete state case is described in Appendix D.3.
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also uses the trick of self-normalization to obtain better performance, but the MIS normalization
is different: we normalize the estimate d̂πt to the probability simplex, whereas WIS normalizes the
importance weights. We provide further results by comparing doubly robust estimator, weighted
doubly robust estimator, and our estimators in Appendix D. We use logarithmic scales in all figures
and include 95% confidence intervals as error bars from 128 runs. Our metric is the relative root
mean squared error (Relative-RMSE), which is the ratio of RMSE and the true value vπ .

S1S2 S3

!1

!2

p 1-p

r=1 r=-1

r=1 r=-1

1-p p

(a) ModelWin

S1? ?

!1

!2

r=1 r=-1
p

1-p

1-p

p

(b) ModelFail

Figure 1: MDPs of OPE domains.

Time-invariant MDPs We first test our methods on the
standard ModelWin and ModelFail models with time-
invariant MDPs, first introduced by Thomas and Brunskill
[2016]. The ModelWin domain simulates a fully observ-
able MDP, depicted in Figure 1(a). On the other hand,
the ModelFail domain (Figure 1(b)) simulates a partially
observable MDP, where the agent can only tell the differ-
ence between s1 and the “other” unobservable states. A
detailed description of these two domains can be found in
Appendix D. For both problems, the target policy π is to
always select a1 and a2 with probabilities 0.2 and 0.8, respectively, and the behavior policy µ is a
uniform policy.

We provide two types of experiments to show the properties of our marginalized approach. The first
kind is with different numbers of episodes, where we use a fixed horizon H = 50. The second kind
is with different horizons, where we use a fixed number of episodes n = 1024. We use MIS only
with observable states and the partial trajectories between them. Details about applying MIS with
partial observability can be found in Appendix C. While this approach is general in more complex
applications, for ModelFail, the agent always visits s1 at every other step and we can simply replace
π(a

(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

with π(a
(i)
2τ |s

(i)
2τ=?)

µ(a
(i)
2τ |s

(i)
2τ=?)

π(a
(i)
2τ−1|s

(i)
2τ−1)

µ(a
(i)
2τ−1|s

(i)
2τ−1)

for t = 2τ − 1 in (3.2).
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(a) ModelWin with differ-
ent number of episodes n.

10
1

10
2

10
3

Horizon, H

10
2

10
1

10
0

R
el

at
iv

e 
R

M
S

E

(b) ModelWin with differ-
ent horizon H .
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(c) ModelFail with differ-
ent number of episodes n.
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(d) ModelFail with differ-
ent horizon H .

Figure 2: Results on Time-invariant MDPs. MIS matches DM on ModelWin and outperforms IS/WIS
on ModelFail, both of which are the best existing methods on their respective domains.

Figure 2 shows the results in the time-invariant ModelWin MDP and ModelFail MDP. The results
clearly demonstrate that MIS maintains a polynomial dependence on H and matches the best
alternatives such as DM in Figure 2(b) and IS at the beginning of Figure 2(d). Notably, the IS
in Figure 2(d) reflects a bias-variance trade-off, that its RMSE is smaller at short horizons due to
unbiasedness yet larger at long horizons due to high variance.

Time-varying, non-mixing MDPs with continuous actions. We also test our approach in simu-
lated MDP environments where the states are binary, the actions are continuous between [0,1] and
the state transition models are time-varying with a finite horizon H . The agent starts at State 1. At
every step, the environment samples a random parameter p ∈ [0.5/H, 0.5− 0.5/H]. Any agent in
State 1 will transition to State 0 if and only if it samples an action between [p− 0.5/H, p+ 0.5/H].
On the other hand, State 0 is a sinking state. The agent collects rewards at State 0 in the latter half of
the steps (t ≥ H/2). Thus, the agent wants to transition to State 0, but the transition probability is
inversely proportional to the horizon H for uniform action policies. We pick the behavior policy to
be uniform on [0, 1] and the target policy to be uniform on [0, 0.5] with 95% total probability and 5%
chance uniformly distributed on [0.5, 1].
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Figure 3: Time-varying MDPs

Figure 3(a) shows the asymptotic convergence
rates of RMSE with respect to the number of
episodes, given fixed horizon H = 64. MIS
converges at a O(1/

√
n) rate from the very be-

ginning. In comparison, neither IS or MIS has
entered their asymptotic n−1/2 regime yet with
n ≤ 4, 096. SSD-IS does not improve as n gets
larger, because the stationary state distribution (a
point mass on State 0) is not a good approxima-
tion of the average probability of visiting State
0 for t ∈ [H/2, H]. We exclude DM because it
requires additional model assumptions to apply to continuous action spaces.

Figure 3(b) shows the Relative RMSE dependency inH , fixing the number of episodes n = 1024. We
see that as H gets larger, the Relative RMSE scales as O(

√
H) for MIS and stays roughly constant

for SSD-IS. Since the true reward vπ ∝ H , the result matches the worst-case bound of a O(H3)
MSE in Corollary 1. SSD-IS saves a factor of H in variance, as it marginalizes over the H steps, but
introduces a large bias as we have seen in Figure 3(a). IS and WIS worked better for small H , but
quickly deteriorates as H increases. Together with Figure 3(a), we may conclude that In conclusion,
MIS is the only method, among the alternatives in this example, that produces a consistent estimator
with low variance.
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Figure 4: Mountain Car with differ-
ent number of episodes.

Mountain Car. Finally, we benchmark our estimator on the
Mountain Car domain [Singh and Sutton, 1996], where an
under-powered car drives up a steep valley by “swinging” on
both sides to gradually build up potential energy. To construct
the stochastic behavior policy µ and stochastic evaluated policy
π, we first compute the optimal Q-function using Q-learning
and use its softmax policy of the optimal Q-function as eval-
uated policy π (with the temperature of 1). For the behavior
policy µ, we also use the softmax policy of the optimal Q-
function but set the temperature to 1.25. Note that this is a
finite-horizon MDP with continuous state. We apply MIS by
discretizing the state space as in [Jiang and Li, 2016].

The results, shown in Figure 4, demonstrate the effectiveness of
our approach in a common benchmark control task, where the
ability to evaluate under long horizons is required for success.
Note that Mountain Car is an episodic environment with a absorbing state, so it is not a setting
that SSD-IS is designed for. We include the the detailed description on the experimental setup and
discussion on the results in Appendix D.

6 Conclusions

In this paper, we propose a marginalized importance sampling (MIS) method for the problem of
off-policy evaluation in reinforcement learning. Our approach gets rid of the burden of horizon
by using an estimated marginal state distribution of the target policy at every step instead of the
cumulative product of importance weights.

Comparing to the pioneering work of Liu et al. [2018a] that uses a similar philosophy, this paper
focuses on the finite state episodic setting with an potentially infinite action space. We proved the
first finite sample error bound for such estimators with polynomial dependence in all parameters. The
error bound is tight in that it matches the asymptotic variance of a fictitious estimator that has access
to oracle information up to a low-order additive factor. Moreover, it is within a factor of O(H) of the
Cramer-Rao lower bound of this problem in [Jiang and Li, 2016]. We conjecture that this additional
factor of H is required for any estimators in the infinite action setting.

Our experiments demonstrate that the MIS estimator is effective in practice as it achieves substantially
better performance than existing approaches in a number of benchmarks.
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Appendix

A Concentration inequalities

Lemma A.1 (Multiplicative Chernoff bound [Chernoff et al., 1952] ). Let X be a Binomial random
variable with parameter p, n. For any δ > 0, we have that

P[X > (1 + δ)pn] <

(
eδ

(1 + δ)1+δ

)np
and

P[X < (1− δ)pn] <

(
e−δ

(1− δ)1−δ

)np
.

A slightly weaker bound that suffices for our propose is the following:

P[X < (1− δ)pn] < e−
δ2pn

2

If we take δ =
√

20 log(n)
pn ,

P[X < (1− δ)pn] < n−10.

B Theoretical analysis of the marginalized IS estimator

Recall that the marginalized IS estimators are of the following form:

v̂π =

H∑
t=1

∑
st

d̂πt (st)r̂
π
t (st),

where we recursively estimate the state-marginal under the target policy π using

d̂πt (st) =
∑
st−1

P̂πt−1,t(st|st−1)d̂πt−1(st−1).

We focus on the setting where the number of actions is large and possibly unbounded, in which case,
we use importance sampling based estimators of P̂πt−1,t and r̂πt (st) instead to get bounds that are
independent to A. Specifically, we use:

P̂πt−1(st|st−1) =
1

nst−1

n∑
i=1

π(a
(i)
t−1|st−1)

µ(a
(i)
t−1|st−1)

1(s
(i)
t−1 = st−1, a

(i)
t−1, s

(i)
t = st).

and

r̂πt (st) =
1

nst

n∑
i=1

π(a
(i)
t |st)

µ(a
(i)
t |st)

r
(i)
t 1(s

(i)
t = st).

The main challenge in analyzing these involves finding a way to decompose the error in the face of
the complex recursive structure, as well as to deal with the bias of the estimator.

Constructing a fictitious estimator. Our proof makes novel use of a fictitious estimator ṽπ which
uses d̃πt = P̃πt+1,td̃

π
t−1 and r̃πt instead of d̂πt = P̂πt+1,t(·|st)d̂πt−1 and r̂πt in the original estimator v̂π .

To write it down more formally,

ṽπ :=

H∑
t=1

∑
st

d̃πt (st)r̃
π
t (st)

where d̃πt (st) is constructed recursively using

d̃πt = P̃πt,t−1d̃πt−1
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as in our regular estimator for t = 2, 3, 4, ...,H , and d̃π1 = d̂1. In particular,

r̃πt (st) =

{
r̂πt (st) if nst ≥ nd

µ
t (st)(1− δ)

rπt (st) otherwise;

and

P̃πt,t−1(·|st−1) =

{
P̂πt,t−1 if nst−1

≥ ndµt (st−1)(1− δ)
Pπt,t−1 otherwise.

In the above, 0 < δ < 1 is a parameter that we will choose later.

This estimator ṽπ is fictitious because it is not implementable using the data4, but it is somewhat
easier to work with and behaves essentially the same as our actual estimator v̂π . As a result, we can
analyze our estimator through analyzing ṽπ . The following lemma formalizes the idea.
Lemma B.1. Let v̂π be our MIS estimator and P be the projection operator to [0, HRmax] and
ṽπ be the unbiased fictitious estimator that we described above with parameter δ. The MSE of the
clipped version of our MIS estimator obeys

E[(P v̂π − vπ)2] ≤ E[(ṽπ − vπ)2] + 3H3SR2
maxe

−
δ2nmint,st

d
µ
t (st)

2

Proof of Lemma B.1. Let E denotes the event of {∃t, st, s.t. nst < ndµt (st)(1− δ)}. Let PE be the
conditional projection operator that clips the value to [0, HRmax] whenever E is true. Note that for
any x ∈ R, we have P(PEx) = Px. By the non-expansiveness of P ,

E[(P v̂π − vπ)2] ≤ E[(PE v̂π − vπ)2] = E[(PE v̂π − PE ṽπ + PE ṽπ − vπ)2]

=E[(PE v̂π − PE ṽπ)2] + 2E[(PE v̂π − PE ṽπ)(PE ṽπ − vπ)] + E[(PE ṽπ − vπ)2]

=P[E]E
[
(PE v̂π − PE ṽπ)2 + 2(PE v̂π − PE ṽπ)(PE ṽπ − vπ)

∣∣E]+ P[Ec] · 0 + E[(PE ṽπ − PEvπ)2]

≤3P[E]H2R2
max + E[(ṽπ − vπ)2].

The third line is by the law of total expectation and the fact that whenever E is not true, v̂π = ṽπ.
The last line uses the fact that PE v̂π,PE ṽπ, vπ are all within [0, HRmax] when conditioning on E
as well as the non-expansiveness of the projection operator which implies that

E[(PE(ṽπ − vπ))2] ≤ E[(ṽπ − vπ)2].

It remains to bound P[E]. By the multiplicative Chernoff bound (Lemma A.1 in the Appendix) we
get that

P [nst < ndµt (st)(1− δ)] ≤ e−
δ2nd

µ
t (st)

2

By a union bound over each t and st, we have

P[E] ≤
∑
t

∑
st

P[nst,t < ndµt (st)(1− δ)] ≤ HSe−
δ2nmint,st

d
µ
t (st)

2

as stated.

Lemma B.1 establishes that when n ≥ polylog(S,H,n)
mint,st d

µ
t (st)

, we can bound the MSE of a projected version
of our estimator using the MSE of the fictitious estimator. The projection to [0, HRmax] is a post-
processing that we needed in our proof for technical reasons, and we know that E[(P v̂π − vπ)2] ≤
E[(v̂π − vπ)2] so it only improves the performance.

Properties of the Fictitious Estimator. Now let us prove that ṽπ is unbiased and also analyze its
variance. Recall that the estimator is the following:

ṽπ =

H∑
t=1

∑
st

d̃πt (st)r̃
π
t (st) =

H∑
t=1

〈d̃πt , r̃πt 〉

where we denote quantities d̃πt , r̃
π
t in vector forms in RS .

In the remainder of this section, we will use Et as a short hand to denote the event such that
{nst ≥ nd

µ
t (st)(1− δ)}, and 1(Et) be the corresponding indicator function.

4It depends on unknown information such as dµt , Pπt,t−1, exact conditional expectation of the reward rπt and
so on.
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Lemma B.2 (Unbiasedness of ṽπ). E[ṽπ] = vπ for all δ < 1.

Proof of Lemma B.2. The idea of the proof is to recursively apply the Law of Total Expectation
backwards from the last round by taking conditional expectations. For simplicity of the proof we will
denote

Datat :=
{
s
(i)
1:t, a

(i)
1:t−1, r

(i)
1:t−1

}n
i=1

.

Also, in the base case, let’s denote Data1 :=
{
s
(i)
1

}n
i=1

and that rπt (st) := Eπ[r
(1)
t |s

(1)
t = st]

We first making a few observations that will be useful in the arguments that follow. Firstly, d̃πt and
r̃πt−1 are deterministic given Datat. Secondly,

E[P̃πt,t−1|Datat−1] = Pπt,t−1, and E[r̃πt |Datat] = rπt .

These observations are true for all t = 1, ...,H . To see the unbiasedness of the conditional expectation,
note that when nst ≥ nd

µ
t (st)(1− δ), the estimators are just empirical mean, which are unbiased and

when nst < ndµt (st)(1− δ), we also have an unbiased estimator by the construction of the fictitious
estimator. For all δ < 1, the case nst = 0 is ruled out.Thirdly, we write down the standard Bellman
equation for policy π

Vh(sh) = rπh(sh) +
∑
sh+1

Pπh+1,h(sh+1|sh)Vh+1(sh+1).

where Vh(sh) := Eπ
[∑H

t=h r
(1)
t

∣∣∣s(1)t = sh

]
or in a matrix form

Vh = rπh + [Pπh+1,h]TVh+1.

These observations together allow us to write the following recursion:

E

[
〈d̃πh, V πh 〉+

h−1∑
t=1

〈d̃πt , r̃πt 〉

∣∣∣∣∣Datah−1

]

=〈E[P̃πh,h−1|Datah−1]d̃πh−1, V
π
h 〉+ 〈d̃πh−1,E

[
r̃πh−1

∣∣Datah−1
]
〉+

h−2∑
t=1

〈d̃πt , r̃πt 〉

=〈d̃πh−1, [Pπh,h−1]TV πh + rπh−1〉+

h−2∑
t=1

〈d̃πt , r̃πt 〉

=
↑

Bellman equation

〈d̃πh−1, V πh−1〉+

h−2∑
t=1

〈d̃πt , r̃πt 〉.

Finally, by taking (full) expectation and chaining the above recursions together, we get

E

[
H∑
t=1

〈d̃πt , r̃πt 〉

]
= E

[
〈d̃πH , V πH〉+

H−1∑
t=1

〈d̃πt , r̃πt 〉

]

= E

[
〈d̃πH−1, V πH−1〉+

H−2∑
t=1

〈d̃πt , r̃πt 〉

]
= . . .

= E
[
〈d̃π1 , V π1 〉

]
= vπ,

which concludes the proof.

Now let’s tackle the variance of the fictitious estimator.
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Lemma B.3 (Variance decomposition).

Var[ṽπ] =
Var[V π1 (s

(1)
1 )]

n

+

H∑
h=1

∑
sh

E

[
d̃πh(sh)2

nsh
1(Eh)

]
Varµ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]
.

where V πt (st) denotes the value function under π which satisfies the Bellman equation

V πt (st) = rπt (st) +
∑
st+1

Pπt (st+1|st)V πt+1(st+1).

Remark 1. The decomposition of variance is very interpretable. The first part of the variance is
coming from estimating the initial state. The second part is coming from the conditional variance of
estimating Pπt+1,t(st) and rπt (st) using importance sampling over at.

Proof of Lemma B.3. The proof uses a peeling argument that recursively applies the law of total
variance from the last time point backwards.

The key of the argument relies upon the following identity that holds for all h = 1, ...,H − 1.

Var

[
〈d̃πh+1, V

π
h+1〉+

h∑
t=1

〈d̃πt , r̃πt 〉

]
=E

[
Var

[
〈d̃πh+1, V

π
h+1〉+ 〈d̃πh, r̃πh〉

∣∣∣Datah
]]

+ Var

[
〈d̃πh, V πh 〉+

h−1∑
t=1

〈d̃πt , r̃πt 〉

]
.

(B.1)

Note that in (B.1), when we condition on Datah, d̃πh is fixed. Also, P̃h+1,h(·, sh) and r̃πh(sh) for each
sh are conditionally independent given Datah, since Datah partitions the n episodes into S disjoint
sets according to the states s(i)h at time h. These observations imply that

E
[
Var

[
〈d̃πh+1, V

π
h+1〉+ 〈d̃πh, r̃πh〉

∣∣∣Datah
]]

=E

[∑
sh

Var
[
d̃πh(sh)〈P̃h+1,h(·, sh), V πh+1〉+ d̃πh(sh) · r̃πh(sh)

∣∣∣Datah
]]

=E

[∑
sh

1(Eh)Var
[
d̃πh(sh)〈P̃h+1,h(·, sh), V πh+1〉+ d̃πh(sh) · r̃πh(sh)

∣∣∣Datah
]]

=E

∑
sh

1(Eh)Var

〈 d̃πh(sh)

nsh

∑
i|s(i)h =sh

π(a
(i)
h |sh)

µ(a
(i)
h |sh)

e
s
(i)
h+1

, V πh+1

〉
+
d̃πh(sh)

nsh

∑
i|s(i)h =sh

π(a
(i)
h |sh)

µ(a
(i)
h |sh)

r
(i)
h

∣∣∣∣∣∣∣Datah




=E

∑
sh

d̃πh(sh)21(Eh)Var

 1

nsh

∑
i|s(i)h =sh

π(a
(i)
h |sh)

µ(a
(i)
h |sh)

(V πh+1(s
(i)
h+1) + r

(i)
h )

∣∣∣∣∣∣∣Datah




=
∑
sh

E

[
d̃πh(sh)2

nsh
1(Eh)

]
Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]
. (B.2)

The second line uses the conditional independence we mentioned above. The third line uses that
when nsh < ndµh(sh), the conditional variance is 0. The fourth and fifth line apply the definition of
the importance sampling estimators and finally the last line uses that the episodes are iid.
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Apply (B.1) recursively

Var[ṽπ] =EVar[ṽπ|DataH ] + Var[E[ṽπ|DataH ]]

=E
[
Var[〈d̃πH , r̃πH〉|DataH ]

]
+ Var[E[〈d̃πH , r̃πH〉|DataH ] +

H−1∑
t=1

〈d̃πt , r̃πt 〉]

=E
[
Var[〈d̃πH , r̃πH〉|DataH ]

]
+ Var[〈d̃πH , rπH〉+

H−1∑
t=1

〈d̃πt , r̃πt 〉]

=E
[
Var[〈d̃πH , r̃πH〉|DataH ]

]
+ Var[〈d̃πH , V πH〉+

H−1∑
t=1

〈d̃πt , r̃πt 〉]

=E
[
Var[〈d̃πH , r̃πH〉|DataH ]

]
+ E

[
Var

[
〈d̃πH , V πH〉+ 〈d̃πH−1, r̃πH−1〉

∣∣∣DataH−1
]]

+ Var

[
〈d̃πH−1, V πH−1〉+

H−2∑
t=1

〈d̃πt , r̃πt 〉

]

=E
[
Var[〈d̃πH , r̃πH〉|DataH ]

]
+

H∑
h=H−1

E
[
Var

[
〈d̃πh, V πh 〉+ 〈d̃πh−1, r̃πh−1〉

∣∣∣Datah−1
]]

+ Var

[
〈d̃πH−2, V πH−2〉+

H−3∑
t=1

〈d̃πt , r̃πt 〉

]

=E
[
Var[〈d̃πH , r̃πH〉|DataH ]

]
+

H∑
h=2

E
[
Var

[
〈d̃πh, V πh 〉+ 〈d̃πh−1, r̃πh−1〉

∣∣∣Datah−1
]]

+ Var
[
〈d̃π1 , V π1 〉

]

Use the boundary condition VH+1 ≡ 0 as stated in the theorem and apply (B.2), we get that

Var[ṽπ] =
Var[V π1 (s

(1)
1 )]

n

+

H∑
h=1

∑
sh

E

[
d̃πh(sh)2

nsh
1(Eh)

]
Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]
.

This completes the proof.

Bounding the importance weights It remains to show that for all h, sh,

E

[
d̃πh(sh)2

nsh
1(Eh)

]
≈ dπh(sh)2

ndµh(sh)
.

By the non-negativity of d̃πh(sh)2

E

[
d̃πh(sh)2

nsh
1(Eh)

]
≤ (1− δ)−1

ndµh(sh)
E
[
d̃πh(sh)2

]
=

(1− δ)−1

ndµh(sh)
(dπh(sh)2 + Var[d̃πh(sh)]). (B.3)

where the last identity is true because d̃πh is an unbiased estimator of dπh(sh) as the following lemma
establishes.
Lemma B.4 (Unbiasedness of d̃πh). For all h = 1, ...,H , the fictitious state marginal estimators are
unbiased, that is,

E[d̃πh] = dπh.

Proof of Lemma B.4. Recall the recursive relationship by construction

d̃πh = P̃πh,h−1d̃πh−1.
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We will prove by induction on h. First, take the base case h = 1: E[d̃π1 ] = E[d̂π1 ] = dπ1 . Now if
E[d̃πh−1] = dπh−1, then by the law of total expectation:

E[d̃πh] = E
[
E[P̃πh,h−1d̃πh−1|Datah−1]

]
= Pπh,h−1E

[
d̃πh−1

]
= Pπh,h−1dπh−1 = dπh.

This completes the proof for all h.

So the problem reduces to bounding Var[d̃πh(sh)]. We will prove something more useful by bounding
the covariance matrix of d̃πh(sh) in semidefinite ordering.

Lemma B.5 (Covariance of d̃πh).

Cov(d̃πh)

� (1− δ)−1

n

h∑
t=2

Pπh,tdiag

∑
st−1

dπt−1(st−1)2 + Var(d̃πt−1(st−1))

dµt−1(st−1)

∑
at−1

π(at−1|st−1)2

µ(ah−1|st−1)
Pt,t−1(·|st−1, at−1)

 [Pπh,t]T
+

1

n
Pπh,1diag [dπ1 ] [Pπh,1]T .

where Pπh,t = Pπh,h−1 · Pπh−1,h−2 · ... · Pπt+1,t — the transition matrices under policy π from time t to
h (define Pπh,h := I).

Before proving the result, let us connect it to what we need in (B.3).
Corollary 2. For h = 1, we have:

Var[d̃π1 (s1)] =
1

n
(dπh(s1)− dπh(s1)2).

For h = 2, 3, ...,H , we have:

Var[d̃πh(sh)] ≤ (1− δ)−1

n

h∑
t=2

∑
st

Pπh,t(sh|st)2%(st) +
1

n

∑
s1

Pπh,1(sh|s1)2d1(s1)

where %(st) :=
∑
st−1

(
dπt−1(st−1)

2+Var(d̃πt−1(st−1))

dµt−1(st−1)

∑
at−1

π(at−1|st−1)
2

µ(at−1|st−1)
Pt,t−1(st|st−1, at−1)

)
.

Note that we have Var[d̃πt−1(st−1)] on the RHS of the equation, which suggests that we in fact need
to recursively apply our bounds from h = 1 to obtain the overall bound.

Theorem B.1 (Error propagation). Let τa := maxt,st,at
π(at|st)
µ(at|st) and τs := maxt,st

dπt (st)
dµt (st)

5. If

n ≥ 2(1−δ)−1tτaτs
max{dπt (st),d

µ
t (st)}

for all t = 2, ...,H , then for all h = 1, 2, ...,H and sh, we have that:

Var[d̃πh(sh)] ≤ 2(1− δ)−1hτaτs
n

dπh(sh).

Proof of Theorem B.1. We prove by induction. The base case for h = 1 is trivially true because

Var[d̃π1 (s1)] =
1

n
(dπ1 (s1)− dπ1 (s1)2) ≤ 2(1− δ)−1τaτs

n
dπ1 (s1).

since τa ≥ 1 and τs ≥ 1 by construction.

Assume Var[d̃πt (st)] ≤ 2(1−δ)−1tτaτs
n dπt (st) is true for all t = 1, ..., h− 1, then by our assumption

on n and that h ≤ H , we obtain that

Var[d̃πt (st)] ≤ dπt (st) max{dπt (st), d
µ
t (st)}

5These are really not in more precise calculations but are assumed to simplify the statement of our results.
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for all t = 1, ..., h− 1. Plug this into Corollary 2, we get that

%(st) ≤
∑
st−1

dπt−1(st−1)
2 max{dπt−1(st−1), dµt−1(st−1)}

dµt−1(st−1)

∑
ah−1

π(at−1|st−1)2

µ(at−1|st−1)
Pt,t−1(st|st−1, at−1)


≤2τsτa

∑
st−1

dπt−1(st−1)
∑
ah−1

π(at−1|st−1)Pt,t−1(st|st−1, at−1)

=2τsτad
π
t (st),

and that

Var[d̃πh(sh)] ≤2(1− δ)−1τsτa
n

h∑
t=2

∑
st

Pπh,t(sh|st)2dπt (st) +
1

n

∑
s1

Pπh,1(sh|s1)2d1(s1)

≤2(1− δ)−1τsτa
n

h∑
t=1

∑
st

Pπh,t(sh|st)2dπt (st)

≤2(1− δ)−1τsτa
n

h∑
t=1

∑
st

Pπh,t(sh|st)dπt (st)

=
2(1− δ)−1hτsτa

n
dπh(sh)

The second inequality uses that τs, τa ≥ 1, the third inequality uses that 0 ≤ Pπh,t(sh|st) ≤ 1.

Note that the bound is tight and it implies that the error propagation is moderate. Instead of increasing
exponentially, the error increases only linearly in time horizon, as long as n is at least linear in h.

Proof of Lemma B.5. We start by applying the law of total variance to obtain the following recursive
equation

Cov[d̃πh] = E
[
Cov

[
P̃πh,h−1d̃πh−1

∣∣∣Datah−1
]]

+ Cov
[
E
[
P̃πh,h−1d̃πh−1

∣∣∣Datah−1
]]

= E

Cov

∑
sh−1

P̃πh,h−1(·|sh−1)d̃πh−1(sh−1)

∣∣∣∣∣∣Datah−1

+ Cov
[
E
[
P̃πh,h−1d̃πh−1

∣∣∣Datah−1
]]

= E

∑
sh−1

Cov
[
P̃πh,h−1(·|sh−1)

∣∣∣Datah−1
]
d̃πh−1(sh−1)2


︸ ︷︷ ︸

(∗∗∗)

+Pπh,h−1Cov[d̃πh−1][Pπh,h−1]T .

(B.4)

The decomposition of the covariance in the third line uses that Cov(X + Y ) = Cov(X) + Cov(Y )

when X and Y are statistically independent. Note that nsh−1
, d̃πh−1(sh−1) are fixed and the columns
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of P̃h,h−1 are independent when conditioning on Datah−1.

(∗ ∗ ∗) =E

∑
sh−1

Cov

[
1

nsh−1

n∑
i=1

π(a
(i)
h−1|s

(i)
h−1)

µ(a
(i)
h−1|s

(i)
h−1)

1(s
(i)
h−1 = sh−1)e

s
(i)
h

∣∣∣∣∣Datah−1

]
1(Eh−1)d̃πh−1(sh−1)2



=E

∑
sh−1

1

nsh−1

Cov

[
π(a

(1)
h−1|sh−1)

µ(a
(1)
h−1|sh−1)

e
s
(1)
h

∣∣∣∣∣s(1)h−1 = sh−1

]
1(Eh−1)d̃πh−1(sh−1)2


=
∑
sh−1

{
E
[

1

nsh−1

1(Eh−1)d̃πh−1(sh−1)2
]( ∑

ah−1

π(ah−1|sh−1)2

µ(ah−1|sh−1)
diag[Ph,h−1(·|sh−1, ah−1)]

− Pπh,h−1(·|sh−1)[Pπh,h−1(·|sh−1)]T
)}

≺
∑
sh−1

{dπh−1(sh−1)2 + Var[d̃πh−1(sh−1)]

ndµh−1(sh−1)(1− δ)
∑
ah−1

π(ah−1|sh−1)2

µ(ah−1|sh−1)
diag[Ph,h−1(·|sh−1, ah−1)]

}
(B.5)

The second line uses the fact that (s
(i)
h , a

(i)
h ) are i.i.d over i given s(i)h−1 = sh−1. The third line uses

law of total variance over a(1)h−1 as follows

Cov

[
π(a

(1)
h−1|sh−1)

µ(a
(1)
h−1|sh−1)

e
s
(1)
h

∣∣∣∣∣s(1)h−1 = sh−1

]

=E

(π(a
(1)
h−1|sh−1)

µ(a
(1)
h−1|sh−1)

)2

Cov
[
e
s
(1)
h

∣∣∣a(1)h−1, s(1)h−1 = sh−1

]∣∣∣∣∣∣s(1)h−1 = sh−1


+ Cov

[
π(a

(1)
h−1|sh−1)

µ(a
(1)
h−1|sh−1)

E
[
e
s
(1)
h

∣∣∣a(1)h−1, s(1)h−1 = sh−1

]∣∣∣∣∣s(1)h−1 = sh−1

]

=
∑
ah−1

π(ah−1|sh−1)2

µ(ah−1|sh−1)

[
diag(Ph,h−1(·|sh−1, ah−1))− Ph,h−1(·|sh−1, ah−1)P(·|sh−1, ah−1)T

]
+
∑
ah−1

π(ah−1|sh−1)2

µ(ah−1|sh−1)
Ph,h−1(·|sh−1, ah−1)Ph,h−1(·|sh−1, ah−1)T − Pπh,h−1(·|sh−1)[Pπh,h−1(·|sh−1)]T

=
∑
ah−1

π(ah−1|sh−1)2

µ(ah−1|sh−1)
diag(Ph,h−1(·|sh−1, ah−1))− Pπh,h−1(·|sh−1)[Pπh,h−1(·|sh−1)]T

The last line (B.5) follows from the fact that Pπh,h−1(·|sh−1)[Pπh,h−1(·|sh−1)]T is positive semidefinite
and that E[X2] = Var[X] + (E[X])2. Combining (B.4) and (B.5) and by recursively apply them, we
get the stated results.

Combine Lemma B.1, (B.3) and Theorem B.1 with an appropriately chosen δ, we get our final result:
Theorem 4.1 (Main Theorem, restated). Let the immediate expected reward, its variance and the
value function be defined as follows (for all h = 1, 2, 3, ...,H):

rh(sh, ah, sh+1) := Eπ
[
r
(1)
h

∣∣∣s(1)h = sh, a
(1)
h = ah, s

(1)
h+1 = sh+1

]
∈ [0, Rmax]

σh(sh, ah, sh+1) := Varπ

[
r
(1)
h

∣∣∣s(1)h = sh, a
(1)
h = ah, s

(1)
h+1 = sh+1

]1/2
≤ σ

V πh (sh) := Eπ

[
H∑
t=h

rt(s
(1)
t , a

(1)
t )

∣∣∣∣∣s(1)h = sh

]
∈ [0, Vmax].
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For the simplicity of the statement, define boundary conditions: r0(s0) ≡ 0, σ0(s0, a0) ≡ 0,d
π
0 (s0)
dµ0 (s0)

≡

1, π(a0|s0)µ(a0|s0) ≡ 1 and V πH+1 ≡ 0. Moreover, let τa := maxt,st,at
π(at|st)
µ(at|st) and τs := maxt,st

dπt (st)
dµt (st)

. If
the number of episodes n obeys that

n > max

{
4tτaτs

mint,st max{dπt (st), d
µ
t (st)}

,
16 log n

mint,st d
µ
t (st)

}
for all t = 2, ...,H , then the our estimator v̂πMIS with an additional clipping step obeys that

E[(P v̂πMIS − vπ)2] ≤ 1

n

H∑
h=0

∑
sh

dπh(sh)2

dµh(sh)
Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]

·

(
1 +

√
16 log n

nmint,st d
µ
t (st)

)
+

19τ2aτ
2
s SH

2(σ2 +R2
max + V 2

max)

n2
.

Proof of Theorem 4.1. Choose δ =
√

4 log(n)/(nmint,st d
µ
t (st)). Lemma B.2, Lemma B.3 and

Theorem B.1 provide an MSE bound of the fictitious estimator and then by substituting the resulting
bound to Lemma B.1, we obtain:

E[(P v̂πMIS − vπ)2]

≤Var[V π1 (s
(1)
1 )]

n
+

(1− δ)−1

n

H∑
h=1

∑
sh

dπh(sh)2

dµh(sh)
Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]

+
(1− δ)−1

n

H∑
h=1

∑
sh

2(1− δ)−1hτaτs
n

dπh(sh)

dµh(sh)
Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]
(B.6)

+
3

n2
HSV 2

max.

The first assumption on n ensures that δ < 1/2, which allows us to write (1− δ)−1 ≤ (1 + 2δ) in
the leading term and (1− δ)−1 ≤ 2 in the subsequent terms. The second assumption on n ensures
that we can apply Theorem B.1 with parameter δ < 1/2.

Then to obtain the simplified expression as stated in the theorem, we simply bound dπh(sh)/dµh(sh) ≤
τs in (B.6), and then use the following bound

Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]

=EVar

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh, a
(1)
h , s

(1)
h+1

]

+ Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + rh(sh, a

(1)
h+1, s

(1)
h+1))

∣∣∣∣∣s(1)h = sh

]

≤Eπ

[
π(a

(1)
h |sh)2

µ(a
(1)
h |sh)2

∣∣∣∣∣s(1)h = sh

]
σ2 + Varµ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + rh(sh, a

(1)
h+1, s

(1)
h+1))

∣∣∣∣∣s(1)h = sh

]

≤Eπ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

∣∣∣∣∣s(1)h = sh

]
σ2 + Eπ

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + rh(sh, a

(1)
h+1, s

(1)
h+1))2

∣∣∣∣∣s(1)h = sh

]
≤τa(σ2 + 2V 2

max + 2R2
max).

The second line uses the law of total expectation, the third line replaces the variance with an upper
bound σ2, the fourth line uses Var[X] ≤ E[X2] and a change of measure from µ to π. The last line
takes the upper bound τa, Rmax and Vmax.

The proof is complete by combining the bounds of the second and the third term.
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Proof of Corollary 1. The results in Corollary 1 requires a slightly different bound of (B.6) then the
one we derived above. We use the assumption on n to ensure that

4hτaτs
n

dπh(sh)

dµh(sh)
≤
dπh(sh) max{dπh(sh), dµh(sh)}

dµh(sh)
≤ dπh(sh)2

dµh(sh)
+ dπh(sh),

which gives us an upper bound of proportional to n−1H(τaτs + τa)(σ2 +H2R2
max).

Remark 2 (Sample complexity in the finite action case). The result implies a sample complexity
upper bound (in terms of the number of episodes) of H3SA/ε2 for evaluating a fixed target policy by
running an exploration policy that visits every state and action pair with probability Ω(1/(SA)).

The Cramer-Rao lower bound for the discrete DAG-MDP model Jiang and Li [2016, Theorem 3]
implies a lower bound of H2SA/ε2, which suggests that our bound is optimal up to a factor of H
even for the cases where A is small. In the settings where A is unbounded. Based on our insight with
the contextual bandits setting[Wang et al., 2017], we conjecture that the additional dependence on H
in our H3τaτs/ε

2 bound is required.

The comparison with the CR lower bound is a lot more delicate and interesting. We defer more
detailed discussion on that to Remark 4.

Remark 3 (When π ≈ µ). It is not entirely straightforward to see how Theorem 4.1 gives a H2/n
bound in the case of π ≈ µ rather than the H3/n bound that we describe in Corollary 1. We
make it explicit here in this remark. First the variance term in the bound can be expanded using
Var[X] = E[X2]− E[X]2.

∑
sh

dπ(sh)2

dµ(sh)
Var

[
π(a

(1)
h |sh)

µ(a
(1)
h |sh)

(V πh+1(s
(1)
h+1) + r

(1)
h )

∣∣∣∣∣s(1)h = sh

]

=
∑
sh

dπ(sh)2

dµ(sh)

∑
ah

π(ah|sh)2

µ(ah|sh)

(
E[V πh+1(sh+1)2 + rh(sh, ah, s

′
h)2 + σ2(sh, ah, s

′
h)|sh, ah]

+ 2E[V πh+1(sh+1)rh(sh, ah, s
′
h)|sh, ah]

)
−
∑
sh

dπ(sh)2

dµ(sh)
V πh (sh)2

=
∑

sh,ah,sh+1

dπ(sh, ah, sh+1)2

dµ(sh, ah, sh+1)

(
V πh+1(sh+1)2 + [r2h + σ2

h + 2rhV
π
h+1](sh, ah, sh+1)

)
−
∑
sh

dπ(sh)2

dµ(sh)
V πh (sh)2.

If we substitute the above bound into Theorem 4.1, we can see that the negative part of the bound
getting combined with

∑
sh−1,ah−1,sh

dπ(sh−1,ah−1,sh)
2

dµ(sh,ah,sh+1)
V πh (sh)2 from the previous time point, which

gives the following more interpretable upper bound of the leading term below

1

n

H∑
h=0

[∑
sh+1

(∑
sh,ah

dπ(sh, ah, sh+1)2

dµ(sh, ah, sh+1)
− dπ(sh+1)2

dµ(sh+1)

)
V πh+1(sh+1)2

+
∑

sh,ah,sh+1

dπ(sh, ah, sh+1)2

dµ(sh, ah, sh+1)

(
[r2h + σ2

h + 2rhV
π
h+1](sh, ah, sh+1)

)]
.

When π = µ, the first term goes away and the above can be bounded by

1

n

H∑
h=0

∑
sh,ah,sh+1

dπ(sh, ah, sh+1)(Rmaxrh+σ2+2V π1 rh) ≤ 1

n
(RmaxV

π
1 +Hσ2+2[V π1 ]2) ≤ 3V 2

max +Hσ2

n
.

Check that when π and µ are sufficiently close such that∑
sh+1

(∑
sh,ah

dπ(sh,ah,sh+1)
2

dµ(sh,ah,sh+1)
− dπ(sh+1)

2

dµ(sh+1)

)
= O(1/H), then we get the same H2/n rate

as above.

Remark 4 (Comparison to the Cramer-Rao lower bound). Theorem 3 in [Jiang and Li, 2016,
Appendix C.] provides a Cramer-Rao lower bound on the variance of any unbiased estimator for a
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simplified setting of an nonstationary episodic MDP where a reward only appear at the end of the
episode and the reward is deterministic (i.e.,σ2 = 0). Their bound, in our notation, translates into

lim
n→∞

Var
[√
n(v̂π − vπ)

]
≥

H∑
t=0

Eµ

[
dπ(s

(1)
t )2

dµ(s
(1)
t )2

π(a
(1)
t |s

(1)
t )2

µ(a
(1)
t |s

(1)
t )2

Var
[
V πt+1(s

(1)
t+1)

∣∣∣s(1)t , a
(1)
t

]]
.

Our Theorem 4.1 implies

lim
n→∞

nE[(P v̂πMIS − vπ)2] ≤
H∑
t=0

Eµ

[
dπ(s

(1)
t )2

dµ(s
(1)
t )2

Varµ

[π(a
(1)
t |s

(1)
t )

µ(a
(1)
t |s

(1)
t )

V πt+1(s
(1)
t+1)

∣∣∣s(1)t ]
]
.

The upper and lower bounds are clearly very similar, with the only difference in where the importance
weights of the actions are. We can verify that the upper bound is bigger because

Varµ

[π(a
(1)
t |s

(1)
t )

µ(a
(1)
t |s

(1)
t )

V πt+1(s
(1)
t+1)

∣∣∣s(1)t ]
=Eµ

[
Var
[π(a

(1)
t |s

(1)
t )

µ(a
(1)
t |s

(1)
t )

V πt+1(s
(1)
t+1)

∣∣∣s(1)t , a
(1)
t

]∣∣∣∣∣s(1)t
]

+ Varµ

[
E
[π(a

(1)
t |s

(1)
t )

µ(a
(1)
t |s

(1)
t )

V πt+1(s
(1)
t+1)

∣∣∣s(1)t , a
(1)
t

]∣∣∣∣∣s(1)t
]

=Eµ

[
π(a

(1)
t |s

(1)
t )2

µ(a
(1)
t |s

(1)
t )2

Var
[
V πt+1(s

(1)
t+1)

∣∣∣s(1)t , a
(1)
t

]∣∣∣∣∣s(1)t
]

+ Varµ

[
π(a

(1)
t |s

(1)
t )

µ(a
(1)
t |s

(1)
t )

E
[
V πt+1(s

(1)
t+1)

∣∣∣s(1)t , a
(1)
t

]∣∣∣∣∣s(1)t
]

=Eµ

[
π(a

(1)
t |s

(1)
t )2

µ(a
(1)
t |s

(1)
t )2

Var
[
V πt+1(s

(1)
t+1)

∣∣∣s(1)t , a
(1)
t

]∣∣∣∣∣s(1)t
]

+ Varµ

[
π(a

(1)
t |s

(1)
t )

µ(a
(1)
t |s

(1)
t )

Qπt (s
(1)
t , a

(1)
t )

∣∣∣∣∣s(1)t
]
.

Provided that the second term is comparable to the first, then our upper bound is rate-optimal. Both

terms can be bounded by H2R2
maxEµ[

π(a
(1)
t |s

(1)
t )2

µ(a
(1)
t |s

(1)
t )2

] and the bound cannot be improved. However,

if we consider the overall bounds that sum over the H items, the summation of the first term (the
lower bound) is at most H2τaτsR

2
max (note that, somewhat surprisingly, no additional factors of

H is incurred), while the second term can be as large as H3R2
maxEµ[

π(a
(1)
t |s

(1)
t )2

µ(a
(1)
t |s

(1)
t )2

] in some cases.

One trivial example of that would be an MDP that gives a constant immediate reward of Rmax/2 for
all t = H/2 + 1, H/2 + 2, ...,H . Note that in this case, Qπt (s

(1)
t , a

(1)
t ) ≡ (H − t)Rmax/2, which

ensures that the second term is lower bounded by

1

16
H2R2

maxVarµ

[
π(a

(1)
t |s

(1)
t )

µ(a
(1)
t |s

(1)
t )

∣∣∣∣∣s(1)t
]

=
1

16
H2R2

max

(
Eµ

[
π(a

(1)
t |s

(1)
t )2

µ(a
(1)
t |s

(1)
t )2

∣∣∣∣∣s(1)t
]
− 1

)

for all t, s(1)t . As we sum over t, this leads to an H3 term in our upper bound that does not exist in
the Cramer-Rao lower bound.

A curious theoretical question is whether such an additional factor ofH in the error bound is required
for off-policy evaluation in the small S, large A setting that we considered.

C Application to Other IS-Based Estimators

In this section, we discuss the applications of our marginalized approach to other IS-based estimators.
We first unify some popular IS-based estimators, such as importance sampling and weighted doubly
robust estimators, using a generic framework of IS-based estimators. Then we show the corresponding
marginalized IS-based estimators, and provide the asymptotic unbiasedness and consistency results.
At last, we provide details about how to deal with partial observability when applying our marginalized
approach.
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C.1 Generic IS-Based Estimators Setup

The IS-based estimators usually provide an unbiased or consistent estimate of the value of target
policy π [Thomas, 2015]. We first provide a generic framework of IS-based estimators, and analyze
the similarity and difference between different IS-based estimators. This framework could give us
insight into the design of IS-based estimators, and is useful to understand the limitation of them.

Let ρ(i)t :=
π(a

(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

be the importance ratio at time step t of i-th trajectory, and ρ
(i)
0:t :=∏t

t′=0

π(a
(i)

t′ |s
(i)

t′ )

µ(a
(i)

t′ |s
(i)

t′ )
be the cumulative importance ratio for the i-th trajectory. We also use ρt(st, at)

to denote π(at|st)/µ(at|st) over this paper. The generic framework of IS-based estimators can be
expressed as follows

v̂π =
1

n

n∑
i=1

g(s
(i)
0 ) +

n∑
i=1

H−1∑
t=0

ρ
(i)
0:t

φt(ρ
(1:n)
0:t )

(r
(i)
t + ft(s

(i)
t , a

(i)
t , s

(i)
t+1)), (C.1)

where φt : Rn+ → R+ are the “self-normalization” functions for ρ(i)0:t, g : S → R and ft : S×A×S →
R are the “value-related” functions. Note Eft = 0. For the unbiased IS-based estimators, it usually
has φt(ρ

(1:n)
0:t ) = n, and we first observe that the importance sampling (IS) estimator [Precup et al.,

2000] falls in this framework using:

(IS) :
g(s

(i)
0 ) = 0; φt(ρ

(1:n)
0:t ) = n;

ft(s
(i)
t , a

(i)
t , s

(i)
t+1) = 0.

For the doubly tobust (DR) estimator [Jiang and Li, 2016], the normalization function and value-
related functions are:

(DR) :
g(s

(i)
0 ) = V̂ π(s0); φt(ρ

(1:n)
0:t ) = n;

ft(s
(i)
t , a

(i)
t , s

(i)
t+1) = −Q̂π(s

(i)
t , a

(i)
t ) + V̂ π(s

(i)
t+1).

Self-normalized estimators such as weighted importance sampling (WIS) and weighted doubly robust
(WDR) estimators [Thomas and Brunskill, 2016] are popular consistent estimators to achieve better
bias-variance trade-off. The critical difference of consistent self-normalized estimators is to use∑n
j=1 ρ

(j)
0:t as normalization function φt rather than n. Thus, the WIS estimator is using the following

normalization and value-related functions:

(WIS) :
g(s

(i)
0 ) = 0; φt(ρ

(1:n)
0:t ) =

∑n
j=1 ρ

(j)
0:t ;

ft(s
(i)
t , a

(i)
t , s

(i)
t+1) = 0,

and the WDR estimator:

(WDR) :
g(s

(i)
0 ) = V̂ π(s0); φt(ρ

(1:n)
0:t ) =

∑n
j=1 ρ

(j)
0:t ;

ft(s
(i)
t , a

(i)
t , s

(i)
t+1) = −Q̂π(s

(i)
t , a

(i)
t ) + V̂ π(s

(i)
t+1).

Note that, the DR estimator reduced the variance from the stochasticity of action by using the
technique of control variate ft(s

(i)
t , a

(i)
t , s

(i)
t+1) in value-related function, and the WDR estimators

reducing variance by the bias-variance trade-off using self-normalization, especially in the presence
of weight clipping [Bottou et al., 2013]. However, both could still suffer large variance, because the
cumulative importance ratio ρ(i)0:t always appear directly in this framework, which makes the variance
to increase exponentially as the horizon goes long.

C.2 Marginalized IS-Based Estimators

Recall the marginalized IS estimators (2.2), we obtain a generic framework of marginalized IS-based
estimators as:

v̂M (π) =
1

n

n∑
i=1

g(s
(i)
0 ) +

1

n

n∑
i=1

H−1∑
t=0

ŵt(s
(i)
t )ρ

(i)
t (r

(i)
t + ft(s

(i)
t , a

(i)
t , s

(i)
t+1)). (C.2)
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Note that the “self-normalization” function φ has not appeared in the framework above is because we
can implement the self-normalization within the estimate of wt(s). Thus, the marginalized IS-based
estimators can be obtained by applying different g and ft in Section C.1 into framework (C.2).

We first show the equivalence between framework (C.1) and framework (C.2) in expectation if
φt(ρ

(1:n)
0:t ) = n and ŵt(s) = wt(s).

Lemma C.1. If φt(ρ
(1:n)
0:t ) = n in framework (C.1) and ŵt(s) = wt(s) in framework (C.2), then

these two frameworks are equal in expectation, i.e.,

E
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]
holds for all i and t.

Proof of Lemma C.1. Given the conditional independence in the Markov property, we have

E
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]
,

where the first equation follows from the law of total expectation, the second equation follows from
the conditional independence from the Markov property. This completes the proof.

Next, we show that if we have an unbiased or consistent estimate ŵt of wt, the IS-based OPE
estimators that simply replace

∏t−1
t′=0

π(at′ |st′ )
µ(at′ |st′ )

with ŵt(st) will remain unbiased or consistent.

Theorem C.1. Let φt(ρ
(1:n)
0:t ) = n in framework (C.1), then framework (C.2) could keep the unbi-

asedness and consistency same as in framework (C.1) if ŵt(s) is an unbiased or consistent estimator
for marginalized ratio wt(s) for all t:

1. If an unbiased estimator falls in framework (C.1), then its marginalized estimator in frame-
work (C.2) is also an unbiased estimator of vπ given unbiased estimator ŵt(s) for all
t.

2. If a consistent estimator falls in framework (C.1), then its marginalized estimator in frame-
work (C.2) is also a consistent estimator of vπ given consistent estimator ŵt(s) for all
t.

Proof of Theorem C.1. We first provide the proof of the first part of unbiasedness. Given
E[ŵnt (s)|s] = wt(s) for all t, then

E
[
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, (C.3)
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where the the first equation follows from the law of total expectation, the second equation follows
from the conditional independence of the Markov property, the last equation follows from Lemma
C.1. Since the original estimator falls in framework (C.1) is unbiased, summing (C.3) over i and t
completes the proof of the first part.

We now prove the second part of consistency. Since we have
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then, to prove the consistency, it is sufficient to show
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(C.4)

given plimn→∞ŵ
n
t (s) = wt(s) for all s ∈ S . Note that dµt (s) is the state distribution under behavior

policy µ at time step t, then for the left hand side of (C.4), we have
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where the first equation follows from the weak law of large number. Similarly, for the right hand side
of (C.4), we have
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π(a
(i)
t′ |s

(i)
t′ )

µ(a
(i)
t′ |s

(i)
t′ )

1(s
(i)
t = s)

π(a
(i)
t |s)

µ(a
(i)
t |s)

(r
(i)
t + ft(s, a

(i)
t , s

(i)
t+1))

]

=
∑
s∈S

dµt (s)E

[
t−1∏
t′=0

π(at′ |st′)
µ(at′ |st′)

π(at|s)
µ(at|s)

(rt + ft(s, at, st+1))
∣∣∣st = s

]

=
∑
s∈S

dµt (s)E

[
t−1∏
t′=0

π(at′ |st′)
µ(at′ |st′)

∣∣∣st = s

]
E
[
π(at|s)
µ(at|s)

(rt + ft(s, at, st+1))
∣∣∣st = s

]
=
∑
s∈S

dµt (s)wt(s)E
[
π(at|s)
µ(at|s)

(rt + ft(s, at, st+1))
∣∣∣st = s

]
, (C.6)

where the first equation follows from the weak law of large number and the third equation follows
from the conditional independence of the Markov property. Thus, we have (C.5) equal to (C.6). This
completes the proof of the second half.
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In partially observable MDPs (POMDPs), we may not be able to obverse all states. However, if
there exist any observable states, our marginalized approach could leverage these observable states to
reduce variance. That is, we use the partial trajectory from the closest observable states to the current
time step to represent the current state. Assume the current time step is t and the closest observable
states is st−L at time step t − L, then we can use dπt (st−L)

dµt (st−L)

∏t−1
i=t−L

π(ai|si)
µ(ai|si) as wt(st), while other

IS-based methods are equivalent to using
∏t−1

0
π(ai|si)
µ(ai|si) as wt(st). The observable states in POMDPs

can be considered as the states that can be reunioned at in the DAG MDPs. If there is no observable
state in POMDPs, then it is equivalent that DAG MDPs is reduced to tree MDPs. Definition of DAG
and Tree MDPs can be found in the extended version of [Jiang and Li, 2016].

Finally, we propose a new marginalized IS estimator to further improve the data efficiency and reduce
variance. Since DR only reduces the variance from the stochasticity of action [Jiang and Li, 2016]
and our marginalized estimator (C.2) reduce the variance from the cumulative importance weights, it
is also possible to reduce the variance the stochasticity of reward function.

Based on the definition of MDPs, we know that rt is the random variable that only determined by
st, at. Thus, if R̂(s, a) is an unbiased and consistent estimator for R(s, a), r(i)t in framework (C.2)
can be replaced by that R̂(s

(i)
t , a

(i)
t ), and keep unbiasedness or consistency same as using r(i)t .

Note that we can use an unbiased and consistent Monte-Carlo based estimator

r̂(st, at) =

∑n
i=1 r

(i)
t 1(s

(i)
t = st, a

(i)
t = at)∑n

i=1 1(s
(i)
t = st, a

(i)
t = at)

,

and then we obtain a better marginalized framework

v̂BM (π) =
1

n

n∑
i=1

g(s
(i)
0 ) +

1

n

n∑
i=1

H−1∑
t=0

ŵt(s
(i)
t )ρ

(i)
t (r̂(s

(i)
t , a

(i)
t ) + ft(s

(i)
t , a

(i)
t , s

(i)
t+1)). (C.7)

Remark 5. Note that, the only difference between (C.2) and (C.7) is r(i)t and r̂(s(i)t , a
(i)
t ). Thus, the

unbiasedness or consistency of (C.7) can be obtained similarly by following Theorem C.1 and its
proof.

One interesting observation is that when each (st, at)-pair is observed only once in n iterations, then
framework (C.7) reduces to (C.2). Note that when this happens, we could still potentially estimate
ŵnt (st) well if |A| is large but |S| is relative small, in which case we can still afford to observe each
potential values of st many times. Thus, we can also obtain better marginalized IS-based estimators,
e.g., the MIS and MDR estimators we use in our experiments, by applying different g and ft in
Section C.1 into framework (C.7).

D Details of Experiments

In this section, we first clarify the experiment settings. We also provide a detailed discussion about the
preference of MIS and SSD-IS. Finally, we provide the extended experiential results about applying
MIS to doubly robust related approaches.

D.1 Environment Settings

ModelWin MDP As depicted in Figure 1(a), the agent in the ModelWin domain always begins in
s1, where it must select between two actions. The first action a1 causes the agent to transition to
s2 with probability p and s3 with probability 1 − p. The second action a2 does the opposite. We
set p = 0.4. The agent receives a reward of 1 every time the state transitions to s2, −1 to s3, and 0
otherwise.

ModelFail MDP The dynamics of ModelFail MDP (Figure 1(b)) is similar to ModelWin, but the
reward is delayed after the unobservable states — the agent receives a reward of 1 only when it arrives
s1 from the left state and −1 only when it arrives s1 from the right state. We set p = 1 to make the
problem easier.
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Policy π takes action a1 and a2 with probabilities 0.2 and 0.8 when at state s1 or observing “?”. µ
take actions uniformly at random.

We remark that the partial-state observability in ModelFail is specialized and should be distinguished
from the more general partial observability considered in the classical POMDP literature. The two
distinctive (and clearly artificial) differences are that

1. There are checkpoints of full state observability every other step.

2. We assume that the action probability is logged when the observation is “?”.

The model-based approach clearly fails when “?” is treated as if it is a state when building the model.
A standard POMDP that uses just a memory of size 2 will resolve this issue without any trouble. One
may also consider an alternative MDP that only takes the checkpoint states s1 as states, but the two
actions that the policies will take are no longer a function of just s1 (in this example it actually is
because the observation is always “?” in the step after s1).

Finally, both ModelWin and ModelFail are highly specialized examples with deterministic transi-
tions into the states s1 that could potentially generate rewards for some actions. Moreover, there are
no non-trivial actions involved as we transition from s2 and s3 back to s1. This means that we can
perfectly estimate the marginal state-distribution of s1 with just one data point in all methods. As
a result, we do not expect the results to reveal the worst-case dependence on the model parameters
such as H . The following example fixes that.

Non-stationary Non-mixing MDP In the time-varying MDP example, we consider the following
carefully designed MDP where there are two states and a continuous action in [0, 1]. In State 0
the agent always transitions to State 0, regardless of the actions. In State 1, it transitions to State
0 deterministically if the action is taken to be within an unknown subset of measure 1/H within
[0, 0.5]. This subset might be different for different t. When the agent is at State 0, then a reward of 1
is received regardless of the actions taken when the step number is larger than H/2; otherwise no
reward is received.

The behavior and target policy (probability density on [0, 1]) are defined to be

µ(a|s = 1) = 1 for all a,

and

π(a|s = 1) =

{
1.9 if a ∈ [0, 0.5]

0.1 otherwise.

and π(a|s = 0) = µ(a|s = 0) = 1.

This example is deliberately designed such that we have a non-stationary dynamics6 that does not
really mix beyond a constant factor so an additional factor of H in the sample complexity can
potentially appear. Meanwhile, the cumulative reward is proportional to H for the target policy, so
we expect to see a H1.5 dependence in the (relative) RMSE curves as we vary H . Finally, due to the
non-mixing property of this example, and the importance weight of stationary distributions based on
SSD-IS is expected to be biased. All the above observations are consistent with what we see in the
experiments presented in Figure 3.

Mountain Car Mountain Car domain is a classic control problem with 2-dimensional state space
(position and velocity), 3 discrete one-dimensional actions (push left, no push, push right), and
deterministic dynamics. We follow the same dynamic as in [Sutton and Barto, 1998]. The horizon,
H , is set to be 100. We use initial state distribution to be uniform in position and 0 in velocity to
ensure exploratory. Since our proposed method mainly focuses on the tabular setting, we use the state
aggregation for both MIS and SSD-IS to ensure fair comparison: position is multiplied by 26 and
velocity is multiplied by 28, and then we use the rounded integers to be the abstract state (adopted
from [Jiang and Li, 2016]). Thus, the (marginalized or stationary) state distribution can be estimated
on the tabular abstract states.

6The transition matrices on both π and µ are actually stationary.
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D.2 Detailed Discussions

The ModelWin domain is only a very special case of episodic fully-observable MDPs. Even if we use
the stationary state distribution (estimated by ignoring the within-episode step count in the dataset)
instead of marginalized state distribution in (3.1), that value will still happen to be correct in both
time-invariant and time-varying case. However, that is not correct in general. As the results we
showed in the Mountain Car domain, SSD-IS fails to provide correct evaluation. That is because
SSD-IS is designed for the infinite-horizon problems and usually cannot be directly applied to the
episodic problems, where SSD-IS uses the stationary distribution (t→∞) to approximate that for all
t = 1, ...,H which is biased and not consistent even as the number of episodes n→∞ in general.
For example, in the Mountain Car domain, the stationary state distribution,

∏∞
t=1 P

π
st−1,std0, will

converge to the probability mass on the absorbing state with any exploratory policy π.

The result of mountain car experiment in the current version is slightly different from the early version.
There are two main modifications in that experiments: 1. In the early version, the on-policy estimated
vπ for calculating RMSE did not use enough trajectories, so that the curves in the early version are
biased. 2. We changed the implementation of SSD-IS in our current version. Previously, we solved
Equation (8) and (9) in [Liu et al., 2018a] using an iterative approach. The current implementation
solves Equation (8) and (9) in [Liu et al., 2018a] directly by re-formalizing it to be a quadratic
programming problem. The current implementation follows the released code provided by the author
of [Liu et al., 2018a], and the detailed description of that can be found in Appendix D.3.

We also explain the reason of MIS outperforming MDR in Figure 5 and Figure 6. In the MDR
methods, we split our dataset into two halves. We use one half to estimate the marginalized state
distribution, and the other half to estimate the Q-function. Intuitively, since Q-function is only used
to be a control variant in the estimator, we suppose the statistical error from the marginalized state
distribution may dominate the overall statistical error. As MIS uses the whole data to estimate the
marginalized state, whereas MDR only uses a half data, the statistical error of MIS could be lass that
of MDR. The theoretical explanation of that goes beyond the topic of this paper, and we will leave it
as the future work.

D.3 SSD-IS with finite state space.

The pioneering work by Liu et al. [2018a] describes a method — SSD-IS — for estimating the ratio
of stationary state distribution under π and µ for an infinite horizon (possibly discounted) MDP.

The estimator is described primarily for the case when the state is a continuous variable, which
requires defining a reproducing kernel Hilbert space (RKHS) and solving a mini-max problem.

To be a bit more self-contained in this paper, we provide the concise formula using our notation for
estimating the stationary distribution dπ∞(s) as well as directly estimating the importance ratio

ρ(s) :=
dπ∞(s)

dµ1:N−1(s)

between the dπ∞(s) and the marginalized state distribution under µ that measures the average state-
visitation within the first N iterations (note that we can observe triplets (st, at, st+1) for all t =
1, ..., N − 1).

Note that a roll-out in an infinite-horizon environment of a fixed length N can be denoted in our
notation with a single episode n = 1 and horizon H = N .

The master equation that we need is the following:

dπ∞(s′) = Pπ(s′|s)dπ∞(s) = Pπ(s′|s)dµ1:H−1(s)
dπ∞(s)

dµ1:H−1(s)
,

which, in matrix form, is:
dπ∞ = Aπ,µDiag(dµ1:H−1)−1dπ∞ (D.1)

where Aπ,µ ∈ RS×S and Aπ,µ(s′, s) measures the joint distribution of s ∼ dµt with a randomly
chosen t from 1, ...,H − 1 and s′ that is obtained by taking an action according to π at s.

By left-multiplying Diag(dµ1:H−1)−1 on both sides of the equation, we also get

ρ = Diag(dµ1:H−1)−1Aπ,µρ. (D.2)
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Observe that (D.1) and (D.2) are eigenvalue problems of dπ∞ and ρ. They differ only by whether
we normalize the Aπ,µ matrix on the left or on the right by multiplying the diagonal matrix
Diag(dµ1:H−1)−1.

They suggest that if we can consistently estimate Aπ,µ and Diag(dµ1:H−1)−1, then the right eigen-
vector of the corresponding estimated matrices with eigenvalue closest to 1 will be consistent
estimators of dπ∞ and ρ.

Note that we can estimate the joint-distribution Aπ,µ[s′, s] by importance sampling using

Âπ,µ[s′, s] =
1

n

n∑
i=1

1

H − 1

H−1∑
t=1

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

1(s
(i)
t = s, s

(i)
t+1 = s′)

with potentially infinite action. And dµ1:H−1 can be estimated by

d̂µ1:H−1(s) =
1

n

n∑
i=1

1

H − 1

H−1∑
t=1

1(s
(i)
t = s).

For the infinite horizon case, we can just take n = 1.

We emphasize that while the above results and the spectral estimators were not explicitly presented
by Liu et al. [2018a], they are simply a rewriting of Equation (8) and (9) in [Liu et al., 2018a] more
explicitly in a more specialized case.

The SSD-IS implementation that we used in the experiments with discrete state space corresponds to
this particular version that we described in this section, which is the same as the version of the code
released by the authors modulo some boundary conditions7. These boundary conditions seem to be
important for getting SSD-IS to work correctly for the finite horizon MDPs.

That said, we acknowledge that when the underlying MDP is stationary andH is large enough relative
to the mixing rate of the MDP, then using the estimated importance weight ρ to construct importance
sampling estimators as in SSD-IS may provide a favorable bias-variance trade-off in finite sample,
because its variance is smaller by a factor of H than the standard MIS while its bias on the estimated
importance ratio dπt (s)

dµt (s)
decays exponentially as t gets larger.

D.4 Extended Experimental Studies

We now present further empirical results. To test the use of our approach in other IS-based estimators,
we compared DR, WDR, MDR, and MIS in the same environments, where DR denotes the doubly
robust estimator [Jiang and Li, 2016], WDR denotes the weighted doubly robust estimator [Thomas
and Brunskill, 2016], MIS denotes the estimator using proposed marginalized approach used with
doubly robust, and MIS is our marginalized importance sampling estimator. The estimates of dπt and
dµt are projected to the probability simplex in our MDR and MIS estimators. The results are obtained
in the same environments as Section 5.

The results are in Figure 5 and Figure 6. These demonstrate that other IS based methods can also
leverage our marginalized approach to benefit performance dramatically.

E Algorithm Details

Algorithm 1 summarizes our method of marginalized off-policy evaluation. Note that the MIS
estimator in Section 5 is using the estimate of dπt (·) by normalizing (E.1) into the probability simplex
for better performance.

7In the released code provided by the authors of [Liu et al., 2018a], there is a version of SSD-IS implemented
for the discrete state space that first estimates dπ∞(s) than output the importance weights to be the ratio of this
estimate and d̂µ1:H−1 (see https://github.com/zt95/infinite-horizon-off-policy-estimation/
blob/master/taxi/Density_Ratio_discrete.py). However, d̂π∞(s) is slightly different from the spectral
algorithm that we described and it provides a mysterious result that is inconsistent with the stationary distribution
that we derived analytically by hands in the example we considered in Figure 3 (dπ∞(s = 1) = 1 with large
probability, while the estimated value by running that piece of code is far off).
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Figure 5: Results on Time-invariant MDPs.
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Figure 6: Mountain Car with different number of episodes.

Algorithm 1 Marginalized Off-Policy Evaluation

Input: Transition data D = {{s(i)t , a
(i)
t , r

(i)
t , s

(i)
t+1}

H−1
t=0 }ni=1 from the behavior policy µ. A target

policy π which we want to evaluate its cumulative reward.
1: Calculate the on-policy estimation of d0(·) by

d̂0(s) =
1

n

n∑
i=1

1(s
(i)
0 = s),

and set d̂µ0 (·) and d̂π0 (·) as d̂0(s).
2: for t = 0, 1, . . . ,H − 1 do
3: Choose all transition data as time step t, {s(i)t , a

(i)
t , r

(i)
t , s

(i)
t+1}ni=1.

4: Calculate the on-policy estimation of dµt+1(·) by

d̂µt+1(s) =
1

n

n∑
i=1

1(s
(i)
t+1 = s).

Calculate the off-policy estimation of dπt+1(·) by

d̂πt+1(s) =
1

n

n∑
i=1

d̂πt (s
(i)
t )

d̂µt (s
(i)
t )

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

1(s
(i)
t+1 = s) (E.1)

5: Estimate the reward function

r̂(st, at) =

∑n
i=1 r

i
t1(sit = st, a

i
t = at)∑n

i=1 1(sit = st, ait = at)
.

6: Normalize dπt+1(·) into the probability simplex, and specify ŵt+1(s) as
d̂πt+1(s)

d̂µt+1(s)
for each s.

7: end for
8: Substitute the all estimated values above into (C.7) to obtain v̂(π), the estimated cumulative

reward of π.
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