
Appendices
Outline This paper gathers all the supplementary material and goes as follows: Appendix A details
all the proofs of the main results. Appendix B recalls the full scalable BFTQ algorithm. Appendix C
describes a naive alternative to BFTQ based on Lagrangian Relaxation. The Appendix D assembles
all the assets for visualising and reproducing the experiments, including visualisations of policy
executions, algorithms and environment parameters, and instructions for executing the attached
source code. Finally we fill the Machine Learning Reproducibility Checklist and we justify each
statement in Appendix E. Please note that all the materials referenced through web links are also
available in the zip file of supplementary materials.

A Proofs of Main Results

A.1 Proposition 1

Proof. Thanks to the introduction of the augmented spaces S,A and dynamics P , this proof is the
same as that in classical multi-objective MDPs.

V π(s)
def=E [Gπ | s0 = s]

=
∑
a∈A

P (a0 = a | s0 = s)E [Gπ | s0 = s, a0 = a]

=
∑
a∈A

π(a|s)Qπ(s, a)

Qπ(s, a)
def=E

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]

= R(s, a) +
∑
s′∈S

P (s1 = s′ | s0 = s, a0 = a) · E

[ ∞∑
t=1

γtR(st, at)

∣∣∣∣∣ s1 = s′

]

= R(s, a) + γ
∑
s′∈S

P (s′ | s, a)E

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s′

]

= R(s, a) + γ
∑
s′∈S

P (s′ | s, a)V π(s′)

Contraction of T π: Let π ∈ Π, Q1, Q2 ∈ (R2)SA.

∀s ∈ S, a ∈ A, |T πQ1(s, a)− T πQ2(s, a)| =

∣∣∣∣∣∣∣γ E
s′∼P (s′|s,a)
a′∼π(a′|s′)

Q1(s′, a′)−Q2(s′, a′)

∣∣∣∣∣∣∣
≤ γ ‖Q1 −Q2‖∞

Hence, ‖T πQ1 − T πQ2‖∞ ≤ γ ‖Q1 −Q2‖∞
According to the Banach fixed point theorem, T π admits a unique fixed point. It can be easily verified
that Qπ is indeed this fixed point by combining the two Bellman Expectation equations (5).

A.2 Theorem 1

Proof. Let s, a ∈ A× S . For this proof, we consider potentially non-stationary policies π = (ρ, π′),
with ρ ∈ M(A), π′ ∈ M(A)N. The results will apply to the particular case of stationary optimal
policies, when they exist.
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Q∗r(s, a) = max
ρ,π′

Qρ,π
′

r (s′, a′) (14)

= max
ρ,π′

Rr(s, a) + γ
∑
s′∈S

P (s′|s, a)V ρ,π
′

r (s′) (15)

= Rr(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ,π′

∑
a′∈A

ρ(a′|s′)Qπ
′

r (s′, a′) (16)

= Rr(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ

∑
a′∈A

ρ(a′|s′) max
π′∈Πa(s′)

Qπ
′

r (s′, a′) (17)

= Rr(s, a) + γ
∑
s′∈S

P (s′|s, a) max
ρ

E
a′∼ρ

Q∗r(s
′, a′) (18)

where π = (ρ, π′) ∈ Πa(s) and π′ ∈ Πa(s′).

This follows from:

(14). Definition of Q∗.

(15). Bellman Expectation expansion from Proposition 1.

(16). Marginalisation on a′.

(17). • Trivially maxπ′∈Πa(s′)

∑
a′∈A · ≤

∑
a′∈Amaxπ′∈Πa(s) ·

• Let π ∈ arg maxπ′∈Πa(s′)Q
π′

r (s′, a′), then:∑
a′∈A

ρ(a′|s′) max
π′∈Πa(s′)

Qπ
′

r (s′, a′) =
∑
a′∈A

ρ(a′|s′)Qπr (s′, a′)

≤ max
π′∈Πa(s′)

∑
a′∈A

ρ(a′|s′)Qπ
′

r (s′, a′)

(18). Definition of Q∗.

Moreover, the condition π = (ρ, π′) ∈ Πa(s) gives

E
a′∼ρ

Q∗c(s, a) = E
a′∼ρ

Qπ
′

c (s, a) = V πc (s) ≤ β

Consequently, πgreedy(·;Q∗) belongs to the arg max of (18), and in particular:

Q∗r(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a) E
a′∼πgreedy(s′,Q∗)

Q∗r(s
′, a′)

The same reasoning can be made for Q∗c by replacing max operators by min, and Πa by Πr.

A.3 Proposition 2

Proof. Notice from the definitions of T and T π in (11) and (6) that T and T πgreedy(·;Q∗) coincide on
Q∗. Moreover, since Q∗ = T Q∗ by Theorem 1, we have: T πgreedy(·;Q∗)Q∗ = T Q∗ = Q∗. Hence,
Q∗ is a fixed point of T πgreedy(·;Q∗), and by Proposition 1 it must be equal to Qπgreedy(·;Q∗)

To show the same result for V ∗, notice that

V πgreedy(Q
∗)(s) = E

a∼πgreedy(Q∗)
Qπgreedy(Q

∗)(s, a) = E
a∼πgreedy(Q∗)

Q∗(s, a)

By applying the definitions of Q∗ and πgreedy, we recover the definition of V ∗.
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A.4 Theorem 2

Proof. In the trivial case |A| = 1, there exits only one policy π and T = T π , which is a contraction
by Proposition 1.

In the general case |A| ≥ 2, we can build the following counter-example:

Let (S,A, P,Rr, Rc) be a BMDP. For any ε > 0, we define Q1
ε and Q2

ε as:

Q1
ε(s, a) =

{
(0, 0), if a = a0(

1
γ , ε
)
, if a 6= a0

Q2
ε(s, a) =

{
(0, ε), if a = a0(

1
γ , 2ε

)
, if a 6= a0

Then, ‖Q1 −Q2‖∞ = ε. Q1
ε and Q2

ε are represented in Figure 4.

But for a = (a, βa) with βa = ε, we have:

‖T Q1
ε(s, a)− T Q2

ε(s, a)‖∞ = γ

∥∥∥∥∥ E
s′∼P (s′|s,a)

E
a′∼πgreedy(Q1

ε)
Q1
ε(s
′, a′)− E

a′∼πgreedy(Q2
ε)
Q2
ε(s
′, a′)

∥∥∥∥∥
∞

= γ

∥∥∥∥∥ E
s′∼P (s′|s,a)

(
1

γ
, ε

)
− (0, ε)

∥∥∥∥∥
∞

= γ
1

γ
= 1

Hence,

‖T Q1
ε − T Q2

ε‖∞ ≥ 1 =
1

ε
‖Q1 −Q2‖∞

In particular, there does not exist L > 0 such that:

∀Q1, Q2 ∈ (R2)SA, ‖T Q1 − T Q2‖∞ ≤ L‖Q1 −Q2‖∞

In other words, T is not a contraction for ‖ · ‖∞.
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A.5 Theorem 3

Remark. This proof makes use of insights detailed in the proof of Proposition 3 (Appendix A.6),
which we recommend the reader to consult first.

Proof. We now study the contractivity of T when restricted to the functions of Lγ defined as follows:

Lγ =

{
Q ∈ (R2)SA s.t. ∃L < 1

γ − 1 : ∀s ∈ S, a1, a2 ∈ A,
|Qr(s, a1)−Qr(s, a2)| ≤ L|Qc(s, a1)−Qc(s, a2)|

}
(19)

That is, for all state s, the set Q(s,A) plot in the (Qc, Qr) plane must be the graph of a L-Lipschitz
function, with L < 1/γ − 1.

We impose such structure for the following reason: the counter-example presented above prevented
contraction because it was a pathological case in which the slope of Q can be arbitrary large. As a
consequence, when solving Q∗r such that Q∗c = β, a vertical slice of a ‖ · ‖∞ ball around Q1 (which
must contain Q2) can be arbitrary large as well.

This proof makes use of insights detailed in the proof of Proposition 3, which we recommend the
reader to consult first.

We denote B(Q,R) the ball of centre Q and radius R for the ‖ · ‖∞-norm:

B(Q,R) = {Q′ ∈ (R2)SA : ‖Q−Q′‖∞ ≤ R}

We give the three main steps required to show that T restricted to Lγ is a contraction. Given
Q1, Q2 ∈ Lγ , show that:

1. Q2 ∈ B(Q1, R) =⇒ F2 ∈ B(F1, R),∀s ∈ S, where F is the top frontier of the convex
hull of undominated points, as defined in Appendix A.6.

2. Q ∈ Lγ =⇒ F is the graph of a L-Lipschitz function, ∀s ∈ S.

3. taking the slice Qc = β of a ball B(F , R) with F L-Lipschitz results in an interval on Qr
of range at most (L+ 1)R

These three steps will allow us to control Q2∗
r −Q1∗

r as a function of R = ‖Q2 −Q1‖∞.

Step 1: we want to show that if Q1 and Q2 are close, then F1 are F2 are close as well in the
following sense:

F2 ∈ B(F1, R) ⇐⇒ d(F1,F2) ≤ R ⇐⇒ max
q2∈F2

min
q1∈F1

‖q2 − q1‖∞ ≤ R (20)

Assume Q2 ∈ B(Q1, R), we show by contradiction that F2 ∈ B(F1, R). Indeed, assume there
exists q1 ∈ F1 such that F2 ∩B(q1, R) = ∅. Denote q2 the unique point of F2 such that q2

c = q1
c .

By construction of q1, we know that ‖q1 − q2‖∞ > R. There are two possible cases:

• q2
r > q1

r : this also directly implies that q2
r > q1

r + R. But q2 ∈ F2, so there exist
q2
1 , q

2
2 ∈ Q2, λ ∈ R such that q2 = (1 − λ)q2

1 + λq2
2 . But since Q2 ∈ B(Q1, R), there

also exist q1
1 , q

1
2 ∈ Q1 such that ‖q1

1 − q2
1‖∞ ≤ R and ‖q1

2 − q2
2‖∞ ≤ R, and in particular

q1
1r ≥ q2

1r − R and q1
2r ≥ q2

2r − R. But then, the point q1′ = (1 − µ)q1
1 + µq1

2 with
µ = (q2

c − q1
1c)/(q

2
2c − q1

1c) verifies q1′

c = q1
c and q1′

r ≥ q2
r −R > q1

r which contradicts the
definition of q1 ∈ F1 as defined in (25).

• q2
r < q1

r : then the same reasoning can be applied by simply swapping the indexes 1 and 2.

We have shown that F2 ∈ B(F1, R). This is illustrated in Figure 5: given a function Q1, we show
the locus B(Q1, R) of Q2. We then draw F1 the top frontier of the convex hull of Q1 and alongside
the locus of all possible F2, which belong to a ball B(F1, R).

Step 2: We want to show that if Q ∈ Lγ , F is the graph of an L-Lipschitz function:

∀q1, q2 ∈ F , |q2
r − q1

r | ≤ |q2
c − q1

c | (21)
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Figure 5: We represent the range of possible solutions Q2,∗
r for any Q2 ∈ B(Q1), given Q1 ∈ Lλ

Let Q ∈ Lγ and s ∈ S , F the corresponding top frontier of convex hull. For all q1, q2 ∈ F ,∃λ, µ ∈
[0, 1], q11, q12, q21, q22 ∈ Q(s,A) such that q1 = (1− λ)q11 + λq12 and q2 = (1− µ)q21 + µq22.
Without loss of generality, we can assume q11

c ≤ q12
c and q21

c ≤ q22
c . We also consider the worst case

in terms of maximum qr deviation: q12
c ≤ q21

c . Then the maximum increment q2
r − q1

r is:

‖q2
r − q1

r‖ ≤ ‖q12
r − q1

r‖+ ‖q21
r − q12

r ‖+ ‖q2
r − q21

r ‖
= (1− λ)‖q12

r − q11
r ‖+ ‖q21

r − q12
r ‖+ µ‖q22

r − q21
r ‖

≤ (1− λ)L‖q12
c − q11

c ‖+ L‖q21
c − q12

c ‖+ µL‖q22
c − q21

c ‖
= L‖q12

c − q1
c‖+ L‖q21

c − q12
c ‖+ L‖q2

c − q21
c ‖

= L‖q2
c − q1

c‖

This can also be seen in Figure 5: the maximum slope of the F1 is lower than the maximum slope
between two points of Q1.

Step 3: Let F1 be a L-Lipschitz set as defined in (21), and consider a ball B(F1, R) around it as
defined in (20).

We want to bound the optimal reward value Q2∗
r under constraint Q2∗

c = β (regular case in Ap-
pendix A.6 where the constraint is saturated), for any F2 ∈ B(F1, R). This quantity is represented
as a red double-ended arrow in Figure 5.

Because we are only interested in what happens locally at Qc = β, we can zoom in on Figure 5 and
only consider a thin ε-section around β. In the limit ε→ 0, this section becomes the tangent to F1 at
Q1
c = β. It is represented in Figure 6, from which we derive a geometrical proof:

∆Q2∗
r = b+ c

≤ La+ c (F1 L-Lipschitz)
= 2LR+ 2R = 2R(L+ 1)

Hence,

|Q2∗
r −Q1∗

r | ≤
∆Q2∗

r

2
= R(L+ 1)

and Q1∗
c = Q2∗

c = β. Consequently, ‖Q2∗ −Q1∗‖∞ ≤ (L+ 1)R

Finally, consider the edge case in Appendix A.6: the constraint is not active, and the optimal value is
simply arg maxq∈F q

r. In particular, since we showed that F2 ∈ B(F1, R), and since Q2∗ ∈ F2,
there exist q1 ∈ F1 : ‖Q2∗ − q1‖∞ ≤ R and in particular Q1∗

r ≥ q1
r ≥ Q2∗

r −R. Reciprocally, by
the same reasoning, Q2∗

r ≥ Q1∗
r −R. Hence, we have that |Q2∗

r −Q1∗
r | ≤ R ≤ R(L+ 1).

Wrapping it up:
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Figure 6: We represent a section [β − ε, β + ε] of F1 and B(F1, R). We want to bound the range of Q2∗
r .

We’ve shown that for any Q1, Q2 ∈ Lγ , and all s ∈ S, F2 ∈ B(F1, ‖Q2 − Q1‖∞) and F1 is the
graph of a L-Lipschitz function with L < 1/γ − 1. Moreover, the solutions of πgreedy(Q1) and
πgreedy(Q2) at s are such that ‖Q2∗ −Q1∗‖∞ ≤ (L+ 1)‖Q2 −Q1‖∞.

Hence, for all a,

‖T Q1(s, a)− T Q2(s, a)‖∞ = γ

∥∥∥∥∥ E
s′∼P (s′|s,a)

E
a′∼πgreedy(Q1)

Q1(s′, a′)− E
a′∼πgreedy(Q2)

Q2(s′, a′)

∥∥∥∥∥
∞

= γ
∥∥Q2∗ −Q1∗∥∥

∞

≤ γ(L+ 1)‖Q2 −Q1‖∞

Taking the sup on SA,

‖T Q1 − T Q2‖∞ ≤ γ(L+ 1)‖Q1 −Q2‖∞
with γ(L+ 1) < 1. As a conclusion, T is a γ(L+ 1)-contraction on Lγ .

A.6 Proposition 3

Definition 2. Let A be a set, and f a function defined on A. We define:

• Convex hull of A: C(A) = {
∑p
i=1 λiai : ai ∈ A, λi ∈ R+,

∑p
i=1 λi = 1, p ∈ N}

• Convex edges of A: C2(A) = {λa1 + (1− λ)a2 : a1, a2 ∈ A, λ ∈ [0, 1]}

• Dirac distributions of A: δ(A) = {δ(a− a0) : a0 ∈ A}

• Image of A by f : f(A) = {f(a) : a ∈ A}

Proof. Let s = (s, β) ∈ S and Q ∈ (R2)SA. We recall the definition of πgreedy:

πgreedy(a|s;Q) ∈ arg min
ρ∈ΠQ

r

E
a∼ρ

Qc(s, a) (12a)

where ΠQ
r = arg max

ρ∈M(A)

E
a∼ρ

Qr(s, a) (12b)

s.t. E
a∼ρ

Qc(s, a) ≤ β (12c)

Note that any policy in the arg min in (12a) is suitable to compute T . We first reduce the set of
candidate optimal policies. Consider the problem described in (12b),(12c): it can be seen as a
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single-step CMDP problem with reward Rr = Qr and cost Rc = Qc. By (Theorem 4.4 Beutler and
Ross, 1985), we know that the solutions are mixtures of two deterministic policies. Hence, we can
replaceM(A) by C2(δ(A)) in (12b).

Moreover, remark that:

{ E
a∼ρ

Q(s, a) : ρ ∈ C2(δ(A))} = { E
a∼ρ

Q(s, a) : ρ = (1− λ)δ(a− a1) + λδ(a− a2), a1, a2 ∈ A, λ ∈ [0, 1]}

= {(1− λ)Q(s, a1) + λQ(s, a2), a1, a2 ∈ A, λ ∈ [0, 1]}
= C2(Q(s,A))}

Hence, the problem (12b), (12c) has become:

Π̃Q
r = arg max

(qr,qc)∈C2(Q(s,A))

qr s.t. qc ≤ β

and the solution of πgreedy is q∗ = arg minq∈Π̃Q
r
qc.

The original problem in the space of actions A is now expressed in the space of values Q(s,A)
(which is why we use = instead of ∈ before arg min here).

We further restrict the search space of q∗ following two observations:

1. q∗ belongs to the undominated points C2(Q−):

Q+ = {(qc, qr) : qc > q±c = min
q+

q+
c s.t. q+ ∈ arg max

q∈Q(s,A)

qr} (23)

Q− = Q(s,A) \Q+ (24)

Denote q∗ = (1− λ)q1 + λq2, with q1, q2 ∈ Q(s,A). There are three possible cases:

(a) q1, q2 6∈ Q−. Then q∗c = (1− λ)q1
c + λq2

c > q±c . But then q±c < q∗c ≤ β so q± ∈ Π̃Q
r

with a strictly lower qc than q∗, which contradicts the arg min.
(b) q1 ∈ Q−, q2 6∈ Q−. But then consider the mixture q> = (1 − λ)q1 + λq±. Since

q±r ≥ q2
r and q±r < q2

r , we also have q>r ≥ q∗r and q>c < q∗c , which also contradicts the
arg min.

(c) q1, q2 ∈ Q− is the only remaining possibility.

2. q∗ belongs to the top frontier F :

FQ = {q ∈ C2(Q−) :6 ∃q′ ∈ C2(Q−) : qc = q′c and qr < q′r} (25)

Trivially, otherwise q’ would be a better candidate than q∗.

Let us characterise this frontier F . It is both:

1. the graph of a non-decreasing function: ∀q1, q2 ∈ F such that q1
c ≤ q2

c then q1
r ≤ q2

r .
By contradiction, if we had q1

r > q2
r , we could define q> = (1 − λ)q1 + λq± where q±

is the dominant point as defined in (23). By choosing λ = (q2
c − q1

c )/(q±c − q1
c ) such that

q>c = q2
c , then since q±r ≥ q1

r > qr2 we also have q>r > q2
r which contradicts q2 ∈ F .

2. the graph of a concave function: ∀q1, q2, q3 ∈ F such that q1
c ≤ q2

c ≤ q3
c with λ such that

q2
c = (1− λ)q1

c + λq3
c , then q2

r ≥ (1− λ)q1
r + λq3

r .
Trivially, otherwise the point q> = (1− λ)q1 + λq3 would verify q>c = q2

c and q>r > q2
r ,

which would contradict q2 ∈ F .

We denote FQ = F ∩Q. Clearly, q∗ ∈ C2(FQ): let q1, q2 ∈ Q− such that q∗ = (1− λ)q1 + λq2.
First, q1, q2 ∈ Q− ⊂ C2(Q−). Then, by contradiction, if there existed q1′ or q2′ with equal qc and
strictly higher qr, again we could build an admissible mixture q> = (1− λ)q1′ + λq2′ strictly better
than q∗.

q∗ can be written as q∗ = (1−λ)q1 +λq2 with q1, q2 ∈ FQ and, without loss of generality, q1
c ≤ q2

c .
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Figure 7: Neural Network for Q-functions approximation when S = R2 and |A| = 2.

Regular case: there exists q0 ∈ FQ such that q0
c ≥ β.

Then q1 and q2 must flank the budget: q1
c ≤ β ≤ q2

c . Indeed, by contradiction, if q2
c ≥ q1

c > β then
q∗c > β which contradicts ΠQ

r . Conversely, if q1
c ≤ q2

c < β then q∗ < β ≤ q0
c , which would make q∗

a worse candidate than q> = (1− λ)q∗ + λq0 when λ is chosen such that q>c = β, and contradict
ΠQ
r again.

Because F is the graph of a non-decreasing function, λ should be as high as possible, as long as the
budget q∗ ≤ β is respected. We reach the highest q∗r when q∗c = β, that is: λ = (β − q1

c )/(q2
c − q1

c ).

It remains to show that q1 and q2 are two successive points inFQ: 6 ∃q ∈ FQ\{q1, q2} : q1
c ≤ qc ≤ q2

c .
Otherwise, as F is the graph of a concave function, we would have qr ≥ (1− µ)q1

r + µq2
r . qr cannot

be strictly greater than (1− µ)q1
r + µq2

r which would contradict q∗, but it can still be equal, which
means the tree points q, q1, q2 are aligned. In fact, every points aligned with q1 and q2 can also be
used to construct mixtures resulting in q∗, but among these solutions we can still choose q1 and q2 as
the two points in FQ closest to q∗.

Edge case: ∀q ∈ FQ, qc < β. Then q∗ = arg maxq∈F qr = q± = arg maxq∈Q− qr

B Scalable Implementation of BFTQ

We recall the scalable version of BFTQ in Algorithm 5 and the architecture of the neural network
Figure 7.

Remark 2. Because of the budget dynamics β′ = βa in (2), we can see in (5) that for all s = (s, β)
and a = (a, βa), Qπ(s, a) only depends on s, a, βa and not on β. We will slightly abuse notations

and sometimes denote in the following Qπ(s, a, βa)
def=Qπ(s, a).

C The Lagrangian Relaxation Baseline

As explained on Figure 8, the optimal deterministic policy can be obtained by a line-search on the
Lagrange multiplier values λ.

Then, according to Beutler and Ross (1985, Theorem 4.4), the optimal policy is a randomised mixture
of two deterministic policies: the safest deterministic policy that violates the constraint πλ− and the
riskier of the feasible ones πλ+.

Fitted-Q (FTQ) (Ernst et al., 2005; Riedmiller, 2005) can be easily adapted for continuous states
CMDP and BMDP through this methodology, but given the high variance it requires a lot of sim-
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Algorithm 5: Scalable BFTQ

Data: D, B̃ a finite subset of B, γ, a model Q ∈ (R2)SA, a regression algorithm fit, a set of
CPU workers W

Result: Q∗
1 Q← 0
2 X ← {si, ai, βai}i∈[0,|D|]
3 S′ ← {s′i}i∈[0,|D|]
4 repeat
5 Evaluate Q(S′,A, B̃) in a single forward pass
6 Split D among workers: D = ∪w∈WDw
7 for w ∈W do // Run in parallel
8 for (·, ·, βai , Rri, Rci, s′i) ∈ D do
9 P ← {(Qc(s′i,A, B̃), Qr(s

′
i,A, B̃))}

10 P.prune() // Remove all dominated points
11 H ← convex_hull(P).vertices() // in cw order
12 k ← min{k : βi ≥ qc with (qc, qr) = H[k]}
13 q2

c , q
2
r , q

1
c , q

1
r ← H[k],H[k − 1]

14 p← (βai − q1
a)/(q2

c − q1
c )

15 Y w,ic ← Rci + γ((1− p)q1
c + pq2

c )

16 Y w,ir ← Rri + γ((1− p)q1
r + pq2

r)
17 end
18 end
19 Join the results: Y ← ∪w∈W (Y wc , Y

w
r )

20 Q← fit(X,Y )
21 until convergence
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Figure 8: Calibration of a penalty multiplier according to the budget β. The optimal multiplier λ∗avg is the
smallest one to satisfy the budget constraint on average. Safer policies can also be selected according to the
largest deviation from this mean cost.

ulations to get a proper estimate of the calibration curve. Our purpose is to avoid this calibration
phase.

D Experiments

D.1 Examples of different exploration strategies

We compare two approaches for constructing a batch of samples. The animations at this https
URL display the trajectories collected in each intermediate sub-batch. The first row corresponds
to a classical risk neutral epsilon-greedy exploration policy while the second row showcases a risk-
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sensitive exploration strategy introduced in the paper. Each animation corresponds to a different
seed.

D.2 Examples of BFTQ policies executions

We display the evolution in the budgeted policy behaviour with respect to the budget on different
environments. The policies have been learnt with a risk-sensitive exploration.

Highway-Env On the highway-env , the budgeted agents display a wide variety of behaviours.
Animations are displayed at this https URL. When β = 1, the ego-vehicle drives in a very aggressive
style: it immediately switches to the opposite lane and drives as fast as possible to pass slower
vehicles, swiftly changing lanes to avoid incoming traffic. On the contrary when β = 0, the ego-
vehicle is conservative: it stays on its lane and drives at a low velocity. With intermediate budgets
such as β = 0.2, the agent sometimes decides to overtake its front vehicle but promptly steers back
to its original lane afterwards.

Slot-filling

Remark on the slot-filling environment When receiving an utterance, the system can
either understand it (µ = µu) or misunderstand it (µ = µm) with a fixed probability called the
sentence error rate ser. Then, the speech recognition score is simulated (Khouzaimi et al., 2015):
srs = (1 + exp(−x))−1 with x ∼ N(µ, σ). It’s the confidence score of the natural language
understanding module about the last utterance. Note that here are no recognition errors (ser = 0 and
srs = 1) when the user provides information using the numeric pad.

In Table 1, we display two dialogues done with the same BFTQ policy on slot-filling. The
policy is given two budgets to respect in expectation, β = 0 and β = 0.5. For β = 0, one can see that
the system never uses the ask_num_pad action. Instead, it uses ask_oral , an action subject to
recognition errors. The system keeps asking for the same slot 2, because it has the lowest speech
recognition score. It eventually summarises the form to the user, but then reaches the maximum
dialogue length and thus faces a dialogue failure. For β = 0.5, the system first asks in a safe way,
with ask_oral. It may want to ask_num_pad if one of the speech recognition score is low. Then,
the system proceeds to a confirmation of the slot values. If it is incorrect, the system continues the
dialogue using unsafe the ask_num_pad action to be certain of the slot values.

Corridors Animations are displayed at this https URL for the corridors environment. When
the budget is low, the agent takes the safest path on the left. When the budget increases, it gradually
switches to the other lane, earning higher rewards but also costs. This gradual process could not be
achieved with a deterministic policy as it would chose either one path or the other. Each animation
corresponds to a different seed.

D.3 Reproducibility

The following section displays environments and algorithms parameters and instructions to reproduce
the exact same results displayed in Section 5.

D.3.1 Algorithm parameters

All algorithm parameters are displayed in Table 2,Table 3 and Table 4.

A note on the parameters search We performed a shallow grid-search for the classic Neural-
Network parameters. Most of the parameters don’t have a strong influence on the results, however in
the slot-filling environment, the choice of the regulation weight is decisive.

D.3.2 Environments Parameters

All environments parameters are displayed in Table 5, Table 6 and Table 7.
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turn β = 0 β = 0.5

turn 0

valid slots : [0, 0, 0]
srs : [ None None None ]
system says ASK_ORAL(1)
user says INFORM

valid slots : [0, 0, 0]
srs : [ None None None ]
system says ASK_ORAL(2)
user says INFORM

turn 1

valid slots : [0, 0, 0]
srs : [ None 0.48 None ]
system says ASK_ORAL(2)
user says INFORM

valid slots : [0, 0, 1]
srs : [ None None 0.56 ]
system says ASK_ORAL(0)
user says INFORM

turn 2

valid slots : [0, 0, 0]
srs : [ None 0.48 0.22 ]
system says ASK_ORAL(0)
user says INFORM

valid slots : [0, 0, 1]
srs : [ 0.30 None 0.56 ]
system says ASK_ORAL(1)
user says INFORM

turn 3

valid slots : [0, 0, 0]
srs : [ 0.62 0.48 0.22 ]
system says ASK_ORAL(2)
user says INFORM

valid slots : [0, 0, 1]
srs : [ 0.30 0.54 0.56 ]
system says ASK_ORAL(0)
user says INFORM

turn 4

valid slots : [0, 0, 0]
srs : [ 0.62 0.48 0.66 ]
system says ASK_ORAL(1)
user says INFORM

valid slots : [0, 0, 1]
srs : [ 0.68 0.54 0.56 ]
system says ASK_NUM_PAD(1)
user says INFORM

turn 5

valid slots : [0, 1, 0]
srs : [ 0.62 0.56 0.66 ]
system says ASK_ORAL(2)
user says INFORM

valid slots : [0, 1, 1]
srs : [ 0.68 1.00 0.56 ]
system says SUMMARIZE_AND_INFORM
user says DENY_SUMMARIZE

turn 6

valid slots : [0, 1, 0]
srs : [ 0.62 0.56 0.14 ]
system says ASK_ORAL(2)
user says INFORM

valid slots : [0, 1, 1]
srs : [ 0.68 1.00 0.56 ]
system says ASK_NUM_PAD(2)
user says INFORM

turn 7

valid slots : [0, 1, 1]
srs : [ 0.62 0.56 0.30 ]
system says ASK_ORAL(2)
user says INFORM

valid slots : [0, 1, 1]
srs : [ 0.68 1.00 1.00 ]
system says SUMMARIZE_AND_INFORM
user says DENY_SUMMARIZE

turn 8

valid slots : [0, 1, 1]
srs : [ 0.62 0.56 0.49 ]
system says ASK_ORAL(2)
user says INFORM

valid slots : [0, 1, 1]
srs : [ 0.68 1.00 1.00 ]
system says ASK_NUM_PAD(0)
user hangs up !

turn 9

valid slots : [0, 1, 1]
srs : [ 0.62 0.56 0.65 ]
system says SUMMARIZE_AND_INFORM
max size reached !

Table 1: Two dialogues generated by a safe policy (β = 0) on the left and a risky one (β = 0.5) on the right.
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Parameters BFTQ(risk-sensitive) BFTQ(risk-neutral)

architecture 256x128x64 256x128x64
regularisation 0.001 0.001
activation relu relu
size beta encoder 3 3
initialisation xavier xavier
loss function L2 L2
optimizer adam adam
learning rate 0.001 0.001
epoch (NN) 1000 5000
normalize reward true true
epoch (FTQ) 12 12
B̃ 0:0.01:1 -
γ 1 1
N = |D| 5000 5000
Nminibatch 10 10
Nseeds 4 4
Ntest 1000 1000
decay epsilon scheduling 0.001 0.001

Table 2: Algorithms parameters for Corridors

Parameters BFTQ FTQ

architecture 256x128x64 128x64x32
regularisation 0.0005 0.0005
activation relu relu
size beta encoder 50 -
initialisation xavier xavier
loss function L2 L2
optimizer adam adam
learning rate 0.001 0.001
epoch (NN) 5000 5000
normalize reward true true
epoch (FTQ) 11 11
B̃ 0:0.01:1 -
γ 1 1
N = |D| 5000 5000
Nminibatch 10 10
Nseeds 6 6
Ntest 1000 1000
decay epsilon scheduling 0.001 0.001

Table 3: Algorithms parameters for Slot-Filling
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Parameters BFTQ FTQ

architecture 256x128x64 128x64x32
regularisation 0.0005 0
activation relu relu
size beta encoder 50 -
initialisation xavier xavier
loss function L2 L2
optimizer adam adam
learning rate 0.001 0.01
epoch (NN) 5000 400
normalize reward true true
epoch (FTQ) 15 15
B̃ 0:0.01:1 -
γ 0.9 0.9
N = |D| 10000 10000
Nminibatch 10 10
Nseeds 10 10
Ntest 150 150
decay epsilon scheduling 0.0003 0.0003

Table 4: Algorithms parameters for Highway-Env

State-Space The states s (from s = (s, β)) of the agent are described in the following:

• Corridors: s = (x, y) where x and y are the 2D coordinates of the agent.
• Slot-Filling: s = (srs,min, au, as, t) where srs is a vector of the speech recognition

score for each slot, min is a one hot vector describing the minimum of the srs vector, au is a
one hot vector of the last user dialogue act and as is the one hot vector of the last system
dialogue act. Finally t ∈ [0, 1] is the fraction of the current turn with the maximum number
of turns authorised.

• Highway-Env: the positions (x, y) and velocities (ẋ, ẏ) of every vehicle on the road.

Parameter Description Value

- Size of the environment 7 x 6

- Standard deviation of the Gaussian
noise applied to actions (0.25,0.25)

H Episode duration 9
Table 5: Parameters of Corridors

Parameter Description Value

ser Sentence Error Rate 0.6
µm Gaussian mean for misunderstanding -0.25
µu Gaussian mean for understanding 0.25
σ Gaussian standard deviation 0.6
p Probability of hang-up 0.25
H Episode duration 10
- Number of slots 3

Table 6: Parameters of Slot-Filling

D.3.3 Instructions for reproducibility

To reproduce the result displayed in Section 5, first install the following conventional libraries for
python3: pycairo, numpy, scipy and pytorch. Then, execute the commands in Figure 9 on a Linux
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Parameter Description Value

Nv Number of vehicles 2 - 6
σp Standard deviation of vehicles initial positions 100 m
σv Standard deviation of vehicles initial velocities 3 m/s
H Episode duration 15 s

Table 7: Parameters of highway-env

Listing 1: bash version

# Install highway-env
pip3 install --user git+https://github.com/eleurent/rl-agents
# clone the phd_code repository
git clone https://github.com/ncarrara/budgeted-rl
# Change python path to the path of this repository
export PYTHONPATH="budgeted-rl/ncarrara"
# Navigate to budgeted-rl folder
cd budgeted-rl/ncarrara/budgeted-rl
# Run main script using any config file
# Choose the range of seeds you want to test on
python3 main/egreedy/main-egreedy.py config/slot-filling.json 0 6
python3 main/egreedy/main-egreedy.py config/corridors.json 0 4
python3 main/egreedy/main-egreedy.py config/highway-two-way.json 0 10

Figure 9: Instructions to reproduce experiments

Operating System. The Graphic Processing Unit used for experiments is an NVIDIA GeForce
GTX 1080 Ti and the Computational Processing Unit is an Intel Xeon E7. Then, follow the
instructions in Figure 9. For more details, check this https URL.

E The machine learning reproducibility checklist

For all models and algorithms presented, indicate if you include:

• A clear description of the mathematical setting, algorithm, and/or model:

– yes, see Section 1, Section 2, Section 3, Section 3.2 and Appendix B.

• An analysis of the complexity (time, space, sample size) of any algorithm:
– yes, see Section 4.3.

• A link to a downloadable source code, with specification of all dependencies, including
external libraries:

– yes, see Appendix D.3.3. All resources are available at this https URL.

For any theoretical claim, indicate if you include:

• A statement of the result:
– yes, see Section 2 and Section 3.

• A clear explanation of any assumptions:
– we make one assumption in Section 2. We assume the program is feasible for any state.

If not, no algorithm would be able to solve it anyway.
• A complete proof of the claim:

– yes, see Appendix A.

For all figures and tables that present empirical results, indicate if you include:
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• A complete description of the data collection process, including sample size:

– yes, see Section 5 and Appendix D.3.1.

• A link to a downloadable version of the dataset or simulation environment:

– yes, all environments are fetch from public repositories, see Appendix D.3.3 for details.

• An explanation of any data that were excluded, description of any pre-processing step:
– it’s not applicable as data comes from simulated environments, so pre-processing

steps are not needed.
• An explanation of how samples were allocated for training / validation / testing:

– it’s not applicable. The complete dataset is used for training. There is no need for
validation set. Testing is performed in the true environment as in classical online
learning approaches.

• The range of hyper-parameters considered, method to select the best hyper-parameter
configuration, and specification of all hyper-parameters used to generate results:

– yes, see Appendix D.3.1.

• The exact number of evaluation runs:

– yes, see Nseeds in the tables from Appendix D.3.1.

• A description of how experiments were run:
– yes, see the two first paragraphs of Section 5.

• A clear definition of the specific measure or statistics used to report results:
– yes, see Section 5.2.

• Clearly defined error bars:

– yes, we plot 95% confidence intervals in all figures, see Section 5.2.

• A description of results with central tendency (e.g. mean) variation (e.g. stddev):

– yes, we even observe less variability with our novel approach, see Section 5.2.

• A description of the computing infrastructure used:
– The Graphic Processing Unit used for experiments is an NVIDIA GeForce GTX
1080 Ti and the Central Processing Unit is an Intel Xeon E7.
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