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Abstract

This paper considers the problem of estimating the distribution of returns in rein-
forcement learning, i.e., distributional RL problem. It presents a new representa-
tional framework to maintain the uncertainty of returns and provides mathematical
tools to compute it. We show that instead of representing a probability distribution
function of returns, one can represent their characteristic function, the Fourier
transform of their distribution. We call the new representation Characteristic Value
Function (CVF). The CVF satisfies a Bellman-like equation, and its corresponding
Bellman operator is contraction with respect to certain metrics. The contraction
property allows us to devise an iterative procedure to compute the CVF, which
we call Characteristic Value Iteration (CVI). We analyze CVI and its approximate
variant and show how approximation errors affect the quality of the computed
CVF.

1 Introduction

The object of focus of the conventional RL is the expected return of following a policy, i.e., the value
function [Sutton and Barto, 2019]. The goal is to find a policy that maximizes that expectation over
all states, i.e., the optimal policy. This leads to agents that do not consider the distribution of returns
in their decision making, but only its first moment. This might be of concern in scenarios where the
risk is of paramount importance. Estimating the distribution of the return facilitates designing agents
that consider objectives more general than maximizing the expected return, such as various notions
of risk [Tamar et al., 2012, Prashanth and Ghavamzadeh, 2013, García and Fernández, 2015, Chow
et al., 2018].

The Distributional RL (DistRL) literature [Engel et al., 2005, Morimura et al., 2010b, Bellemare
et al., 2017, Barth-Maron et al., 2018, Lyle et al., 2019], on the other hand, moves away from
the conventional goal of estimating the expectation of return and attempts to estimate a richer
representation of the return, such as the distribution itself [Morimura et al., 2010b,a] or some
statistical functional of it [Rowland et al., 2018, Dabney et al., 2018, Rowland et al., 2019]. It is
notable that so far the focus of the DistRL literature has mostly been on designing better performing
agents according to the expected return, and not any risk-related performance measure, but it is
conceivable that those methods can be be used for designing risk-aware agents too.

This paper develops a new framework for maintaining the information available in the distribution of
returns. Instead of estimating the distribution function itself, we maintain the Characteristic Function
(CF) of the returns. The CF of a random variable (r.v.) is the Fourier transform of its probability
distribution function (PDF). Similar to PDF, the CF of a r.v. contains all the information available
about the distribution of that r.v., i.e., CF and PDF have a bijection relationship. They are nonetheless
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different representations of the uncertainty of a r.v., hence they allow different types of manipulations
and processing. The benefit of a new representation is that it opens up the possibility of designing
new algorithms. An example from the field of control theory is that we have both time and frequency
domain representations of a dynamical system. Although they are equivalent in many cases, designing
a controller in the frequency domain is sometimes easier and may provide better insights. This work
brings the frequency-based representation of uncertainty to DistRL.

The estimation procedures based on CF are not novel. Methods based on the Empirical Characteristic
Function (ECF) have a long history in the statistics and econometrics literature [Feuerverger and
Mureika, 1977, Feuerverger and McDunnough, 1981, Feuerverger, 1990, Knight and Yu, 2002, Yu,
2004]. These methods are considered as alternatives to the maximum likelihood estimation (MLE),
because as opposed to MLE, whose computation might be infeasible for some distributions, one can
always define and compute the ECF. This paper is inspired from that literature and develops similar
tools for RL and approximate dynamic programming.

The main idea of this work is that by transforming the return, which is a r.v., to the frequency
domain through the Fourier transform, we can define Characteristic Value Function (CVF), which
essentially captures all information about the distribution of the return. A contribution of this work
is that we prove that CVF indeed satisfies a Bellman-like equation T̃πṼ = Ṽ (Section 3). The
corresponding Bellman operator, however, is different from the conventional ones or those in the
DistRL literature. Instead of having an additive form, it is multiplicative, i.e., (T̃πṼ )(ω;x) ,
R̃(ω;x)

∫
Pπ(dy|x)Ṽ (γω; y) with ω being the frequency variable, x being the state variable, and

R̃ being the Fourier transform of the immediate reward distribution (we will define these quantities
later). We also prove that the new Bellman operator is contraction with respect to (w.r.t.) some
specific metrics defined in the frequency domain (Section 3.1). The contraction property suggests
that one might find the CVF through an iterative procedure similar to value iteration, which we call
the Characteristic Value Iteration (CVI) algorithm (Section 4). This is the algorithmic contribution of
this work.

Any procedure that implements CVI, however, may not perform it exactly, for example because we
only have data as opposed to the actual transition probability distribution or because the state space is
very large and we need to use function approximation. In case we can only approximately perform
CVI, which we call Approximate CVI (ACVI), we inevitably have some errors. To understand the
effect of using function approximation on these errors better, we consider a class of band-limited
(in the frequency domain) functions, and study their function approximation and covering number
properties . Another contribution of this work is the analysis of how the errors caused at each iteration
of ACVI propagate throughout iterations and affect the quality of the outcome CVF (Section 5). We
show that the errors in earlier iterations decay exponentially fast, i.e., the past errors are forgotten
quickly. This is the same phenomenon observed in the conventional approximate value iteration.
Finally, we show how to convert the error of CVF in the frequency domain to an error in distributions,
measured according to the p-smooth Wasserstein distance (Section 6).

2 Distributional Bellman equation

We consider a discounted Markov Decision Process (MDP) (X ,A,R,P, γ) [Szepesvári, 2010].
Here X is the state space, A is the action space, P : X ×A →M(X ) is the transition probability
kernel, R : X ×A →M(R) is the immediate reward distribution, and 0 ≤ γ < 1 is the discount
factor.2 The (Markov stationary) policy π : X → M(A) induces the transition probability kernel
Pπ : X →M(X ) and the immediate reward distribution for the policyRπ : X →M(R).

An MDP together with an initial state distribution ρ ∈M(X ) encode the laws governing the temporal
evolution of a discrete-time stochastic process controlled by an agent as follows: The controlled
process starts at time t = 0 with random initial state X0 drawn from ρ, i.e., X0 ∼ ρ. The agent
following a policy π chooses action At ∈ A according to At ∼ π(·|Xt) (stochastic policy) or
At = π(Xt) (deterministic policy). In response, the next state is Xt+1 ∼ P(·|Xt, At) and the agent

2HereM(Ω) refers to the space of all probability distributions on an appropriately defined σ-algebra of Ω,
e.g., the Borel σ-algebra on R. We do not deal with the measure theoretic considerations in this work. Refer to
Appendix C of Bertsekas [2013] or Chapter 7 of Bertsekas and Shreve [1978]. We occasionally use X̄ to denote
the probability distribution µ of the r.v. X .
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receives reward Rt ∼ R(·|Xt, At). This process repeats. We may occasionally use R(x, a) or Rπ(x)
to denote to the r.v. that is drawn from R(·|x, a) or Rπ(·|x). Also we may use z = (x, a) as a
shorthand. When we refer to a r.v. Z = (X,A), this should be interpreted as a r.v. defined with
A ∼ π(·|X), where the policy should be clear from the context.

The return of the agent starting from a state x ∈ X and following a policy π is the following random
variable:

Gπ(x) =
∑
i≥0

γiRi.

The (conventional) value function V π is the first moment of this r.v., i.e.,

V π(x) = E [Gπ(X0)|X0 = x] .

Likewise, one may define the return Gπ(x, a) for starting from state x, choosing action a, and
following policy π afterwards. The corresponding first moment of Gπ(x, a) would be the action-
value function Qπ(x, a).

From Gπ(x) = R0 +γ
∑
i≥0 γ

iRi+1, we see that Gπ(x) is the addition of two r.v. R0 and γGπ(X1)

with X1 ∼ Pπ(·|X0 = x). Therefore, the law (probability distribution) of Gπ(x) is the same as the
law of R0 + γGπ(X1), i.e.,

Gπ(x)
(D)
= R0 + γGπ(X1). (1)

Here we use the symbol (D)
= to emphasize that we are comparing two probability distributions. This is

the Bellman-like distributional equation in the conventional DistRL.

We can also have a similar equation that relates Ḡπ (the distribution of the r.v. Gπ) and R̄(x) =
Rπ(·|x) (the distribution of the r.v. Rπ(x)) [Rowland et al., 2018]. To define it, we recall the
definition of the pushforward measure: Given a probability distribution ν ∈M(R) and a measurable
function f : R→ R, the pushforward measure f#ν ∈M(R) is defined as (f#ν)(A) = ν(f−1(A))
for all Borel sets A ⊂ R.

The Bellman operator T̄π :M(X )→M(X ) between distributions is defined as

(T̄πḠ)(x) ,
∫

(r + γy)# Ḡ(y)Rπ(dr|x)Pπ(dy|x), ∀x ∈ X .

With this notation, the distributional Bellman equation is

Ḡπ(x) = (T̄πḠπ)(x), ∀x ∈ X . (2)

The distributional Bellman equation represents the intrinsic uncertainty of the return due to the
randomness of the dynamics and policy. We may occasionally use V̄ π to refer to Ḡπ, to show its
close relation to the conventional value function.

3 Characteristic value function

The conventional approach to representing the uncertainty of a r.v. is through its probability distribu-
tion function. This is not the only way to characterize a r.v. though. An alternative is to characterize
the r.v. through the Fourier transform of its distribution function. This is known as the Characteristic
Function (CF) of the random variable [Williams, 1991].

In this section we show that the instead of representing the distribution function of the return Gπ,
we may represents its characteristic function. Interestingly, the CF of return satisfies a Bellman-like
equation, which is quite different from the conventional ones (1) and (2) that we have encountered so
far.

Let us briefly recall the definition of a CF of a random variable. Given a real-valued r.v. X with the
probability distribution µ ∈M(R), its corresponding CF cX : R→ C is the function defined as3

cX(ω) , E
[
ejXω

]
=

∫
exp(jxω)µ(dx), ω ∈ R (3)

3Here X is a generic r.v. and does not refer to the state. The particular r.v. will be clear from the context.
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where j =
√
−1 is the imaginary unit. The CF of a probability distribution is closely related to

the Fourier transform of its distribution function. If the probability density function is well-defined,
CF is its Fourier transform, though CF exists even if the density does not. Several properties of
CF are summarized in Appendix A. Thinking in the terms of the spatial-frequency duality common
in the Fourier analysis, the probability distribution function is the spatial representation of a r.v.
(with the magnitude of the r.v. corresponding to the space dimension), and the CF is its frequency
representation.

Consider the recursive relation Gπ(x) = Rπ(x) + γGπ(X ′), with X ′ ∼ Pπ(·|x), between the
return Gπ(x) (a r.v.) and the random reward Rπ(x) and the return at the next step Gπ(X ′). By the
distributional equality of both sides (cf. (1)), we have

cGπ(x)(ω) = E [exp (jωGπ(x))] = E [exp (jω (Rπ(x) + γGπ(X ′)))] , ∀ω ∈ R. (4)

The right-hand side (RHS) of (4) is
E [exp (jω (Rπ(x) + γGπ(X ′)))] = E [E [exp (jω (Rπ(x) + γGπ(X ′))) | X = x,A]]

= E [E [exp (jωRπ(x)) | X = x,A]E [exp (jωγGπ(X ′)) | X = x,A]]

= cRπ(x)(ω)E [E [exp (jωγGπ(X ′)) | X = x,A]]

= cRπ(x)(ω)E [exp (jωγGπ(X ′)) | X = x] , (5)

where A is a r.v. drawn from π(·|x). Here we benefitted from the fact that the r.v. Rπ(x) and Gπ(X ′)
are conditionally independent given X = x and A.

Let us consider the CF of Gπ(X ′) conditioned on X = x:
E [exp (jωGπ(X ′)) | X = x] = E [E [exp (jωGπ(X ′)) | X ′] | X = x]

=

∫
Pπ(dx′|x)E [exp (jωGπ(x′))]

= E
[
cGπ(X′)(ω) | X = x

]
, (6)

where we conditioned the inner expectation on the next-state X ′ (so its randomness comes from the
return from that point onward), and used the definition of CF.

Plugging (6) in (5) gives the RHS of (4). So we get
cGπ(x)(ω) = cRπ(x)(ω)E [exp (jωγGπ(X ′)) | X = x]

= cRπ(x)(ω)E
[
cγGπ(X′)(ω) | X = x

]
= cRπ(x)(ω)E

[
cGπ(X′)(γω) | X = x

]
= cRπ(x)(ω)

∫
Pπ(dy|x)cGπ(y)(γω), (7)

where the penultimate equality is because of the scaling property of CF (Lemma 8 in Appendix A).

We denote the CF of the reward cRπ(x)(ω) by R̃(ω;x), and the CF of the return cGπ(x)(ω) by
Ṽ π(ω;x) for all x ∈ X and ω ∈ R. Here the symbol ·̃ is used to remind us that we are referring to a
CF of a random variable. With these notations, we can write (7) in more compact form of

Ṽ π(ω;x) = R̃(ω;x)

∫
Pπ(dy|x)Ṽ π(γω; y). (8)

This is the Bellman-like equation between the CF of return and the reward. The function
Ṽ π : R × X → C1 (where C1 is the area within the unit circle in the complex plane, i.e.,
C1 = { z ∈ C : |z| ≤ 1 }) is the CF of the Gπ(x) for all x ∈ X . We call Ṽ π the Characteris-
tic Value Function (CVF).

We also define the Bellman operator between the CF functions:

(T̃πṼ )(ω;x) , R̃(ω;x)

∫
Pπ(dy|x)Ṽ (γω; y).

With this notation, the Bellman equation can be written more compactly as

Ṽ π = T̃πṼ π.

It is worth mentioning that for any fixed x ∈ X , ω 7→ Ṽ π(ω;x) is a CF. A CF is continuous function
of ω and its magnitude is bounded by 1 (Lemma 8 in Appendix A).
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3.1 Bellman operator is contraction

We show that the Bellman operator T̃π is a contraction w.r.t. certain metrics, to be specified. This
allows us to devise a value iteration-like procedure that converges to the CVF Ṽ π of a policy π.

We first define some distance metrics between CFs. Given two CF c1, c2 : R→ C, and p ≥ 1, we
define

d∞,p(c1, c2) , sup
ω∈R

∣∣∣∣c1(ω)− c2(ω)

ωp

∣∣∣∣ , d1,p(c1, c2) ,
∫ ∣∣∣∣c1(ω)− c2(ω)

ωp

∣∣∣∣dω. (9)

Here we use the convention that 0
0 = 0.4

We also define similar metrics for functions such as R̃ and Ṽ π. Given Ṽ1, Ṽ2 : R × X → R, we
define

d∞,p(Ṽ1, Ṽ2) , sup
x∈X

sup
ω∈R

∣∣∣∣∣ Ṽ1(ω;x)− Ṽ2(ω;x)

ωp

∣∣∣∣∣ , d1,p(Ṽ1, Ṽ2) , sup
x∈X

∫ ∣∣∣∣∣ Ṽ1(ω;x)− Ṽ2(ω;x)

ωp

∣∣∣∣∣ dω.
(10)

There are similar to the distances for comparing two CFs, with the difference that we take the
supremum over all states x ∈ X . To be more precise about how the distances are calculated (e.g., sup
over X , etc.), we could use dX (∞),ω(∞,p)(Ṽ1, Ṽ2) instead of d∞,p(Ṽ1, Ṽ2). To simplify the notations,
however, we use the overloaded symbols d∞,p and d1,p instead.

Based on these distances, we define the following norms for a function Ṽ : R×X → R∥∥∥Ṽ ∥∥∥
∞,p

= d∞,p(Ṽ , 0),
∥∥∥Ṽ ∥∥∥

1,p
= d1,p(Ṽ , 0),

where 0 is a constant function (ω;x) 7→ 0. We sometimes refer to the supremum w.r.t. x ∈ X of Ṽ
by ‖Ṽ (ω; ·)‖∞ = supx∈X |Ṽ (ω;x)|. This should not be confused with ‖Ṽ ‖∞,p, whose supremum
is over both ω and x, and the ω variable is weighted by w−p.

Several properties of d∞,p and d1,p are presented in Appendix B. Briefly, we show that d1,p and d∞,p
are metrics. We also show that the space of VCFs V = {Ṽ : R×X → C1 : Ṽ (0;x) = 1}, which is
a superset of the space of all feasible VCFs, endowed with d∞,p is complete.

The following result shows that the Bellman operator for VCF is a contraction operator w.r.t. d1,p

and d∞,p. This is the main result of this section.

Lemma 1. Let 0 < γ < 1. The operator T̃π is a γp-contraction in d∞,p (for p > 0) and γp−1-
contraction in d1,p (for p > 1). That is, for any Ṽ1, Ṽ2 : R × X → C with d∞,p(Ṽ1, Ṽ2) < ∞ or
d1,p(Ṽ1, Ṽ2) <∞, we have

d∞,p(T̃
πṼ1, T̃

πṼ2) ≤ γpd∞,p(Ṽ1, Ṽ2),

d1,p(T̃
πṼ1, T̃

πṼ2) ≤ γp−1d1,p(Ṽ1, Ṽ2).

Proof. Consider any Ṽ1, Ṽ2 : R×X → C. From the definition of the Bellman operator T̃π , we have
that for any x ∈ X and ω ∈ R

(T̃πṼ1)(ω;x)− (T̃πṼ2)(ω;x) = R̃(ω;x)

∫
Pπ(dy|x)

(
Ṽ1(γω; y)− Ṽ2(γω; y)

)
.

4The metric d∞,p has been studied under the name of Fourier-based metric Carrillo and Toscani [2007], and
is called Toscani distance by Villani [2008].
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We first prove the result for d∞,p. For any x ∈ X , we have

d∞,p

(
(T̃πṼ1)(·;x), (T̃πṼ2)(·;x)

)
= sup

ω

∣∣∣∣∣ (T̃πṼ1)(ω;x)− (T̃πṼ2)(ω;x)

ωp

∣∣∣∣∣
≤ sup

ω

|R̃(ω;x)|︸ ︷︷ ︸
≤1

∫
Pπ(dy|x)

∣∣∣Ṽ1(γω; y)− Ṽ2(γω; y)
∣∣∣

|ω|p


≤
∫
Pπ(dy|x) sup

ω

∣∣∣∣∣ Ṽ1(γω; y)− Ṽ2(γω; y)

|ω|p

∣∣∣∣∣ . (11)

We benefited from |R̃(ω;x)| ≤ 1 to get rid of the term depending of R̃, see Lemma 8 in Appendix A.

Denote ν = γω, and write

sup
ω∈R

∣∣∣∣∣ Ṽ1(γω; y)− Ṽ2(γω; y)

|ω|p

∣∣∣∣∣ = sup
ν∈R

∣∣∣∣∣ Ṽ1(ν; y)− Ṽ2(ν; y)

|( νγ )|p

∣∣∣∣∣ = |γ|p sup
ν∈R

∣∣∣∣∣ Ṽ1(ν; y)− Ṽ2(ν; y)

|ν|p

∣∣∣∣∣
= |γ|pd∞,p

(
Ṽ1(·; y), Ṽ2(·; y)

)
. (12)

Plugging this result in the RHS of (11), and taking the supremum over y, we get that

d∞,p

(
(T̃πṼ1)(·;x), (T̃πṼ2)(·;x)

)
≤ γp

∫
Pπ(dy|x) sup

y
d∞,p

(
Ṽ1(·; y), Ṽ2(·; y)

)
= γpd∞,p

(
Ṽ1, Ṽ2

)∫
Pπ(dy|x)︸ ︷︷ ︸

=1

= γpd∞,p

(
Ṽ1, Ṽ2

)
.

Since this holds for any x ∈ X , we get the desired result by taking the supremum over x ∈ X in the
left-hand side (LHS).

The proof of the result w.r.t. d1,p is similar. For any x ∈ X , we have

d1,p

(
(T̃πṼ1)(·;x), (T̃πṼ2)(·;x)

)
=

∫ ∣∣∣∣∣∣
R̃(ω;x)

∫
Pπ(dy|x)

(
Ṽ1(γω; y)− Ṽ2(γω; y)

)
ωp

∣∣∣∣∣∣dω
≤
∫ ∣∣∣R̃(ω;x)

∣∣∣︸ ︷︷ ︸
≤1

[∫
Pπ(dy|x)

∣∣∣∣∣ Ṽ1(γω; y)− Ṽ2(γω; y)

ωp

∣∣∣∣∣
]

dω

≤
∫
Pπ(dy|x)

∫ ∣∣∣∣∣ Ṽ1(γω; y)− Ṽ2(γω; y)

ωp

∣∣∣∣∣dω
=

∫
Pπ(dy|x)

∫ ∣∣∣∣∣∣ Ṽ1(ν; y)− Ṽ2(ν; y)(
ν
γ

)p
∣∣∣∣∣∣dν(

1

γ
)

= γp−1

∫
Pπ(dy|x)

∫ ∣∣∣∣∣ Ṽ1(ν; y)− Ṽ2(ν; y)

νp

∣∣∣∣∣dν
≤ γp−1

∫
Pπ(dy|x) sup

y∈X

∫ ∣∣∣∣∣ Ṽ1(ν; y)− Ṽ2(ν; y)

νp

∣∣∣∣∣dν
= γp−1d1,p

(
Ṽ1, Ṽ2

)∫
Pπ(dy|x)︸ ︷︷ ︸

=1

= γp−1d1,p

(
Ṽ1, Ṽ2

)
.

(13)

We used the change of variable ν = γω, which entails that dω = 1
γdν.
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For the contraction to be non-trivial, and avoid having a trivial inequality such as∞ ≤ γp∞, we
require the boundedness of d∞,p(Ṽ1, Ṽ2) or d1,p(Ṽ1, Ṽ2). This is a condition that should be verified,
and as we shall soon see holds under certain conditions.
Remark 1. The conventional Bellman operator is a γ-contraction w.r.t. the supremum norm. Following
this commonly used norm, one could similarly define a supremum-based norm for a VCF Ṽ as∥∥∥Ṽ ∥∥∥

∞
= sup
x∈X

sup
ω∈R

Ṽ (ω;x).

The Bellman operator T̃π, however, is not a contraction w.r.t. this norm. To see this, consider a
simple MDP with Pπ = I (each state returns to itself) and R̃(ω;x) = 1, which corresponds to the
choice of Rπ(dy|x) = δ(y − x), a Dirac’s delta function. Let γ > 0. For any Ṽ1, Ṽ2, we have∥∥∥T̃πṼ1 − T̃πṼ2

∥∥∥
∞

= sup
x∈X

sup
ω∈R

∣∣∣R̃(ω;x)
(
Ṽ1(γω;x)− Ṽ2(γω;x)

)∣∣∣
= sup
x∈X

sup
ω∈R

∣∣∣Ṽ1(γω;x)− Ṽ2(γω;x)
∣∣∣

= sup
x∈X

sup
ν∈R

∣∣∣Ṽ1(ν;x)− Ṽ2(ν;x)
∣∣∣ =

∥∥∥Ṽ1 − Ṽ2

∥∥∥
∞
.

Therefore, the Bellman operator T̃π is a non-expansion, but not a contraction, w.r.t. ‖ · ‖∞. Having
the ω term in the denominator of d∞,p and d1,p is important to get a contraction.

The importance of showing that the Bellman operator for VCF is a contraction is that we can then
apply the Banach fixed point theorem (e.g., Theorem 3.2 of Hunter and Nachtergaele [2001]) to
show the uniqueness of the fixed point Ṽ π (we also require the completeness of the space, which is
shown for d∞,p). Moreover, it suggests that we can find the fixed point by iterative application of the
operator. This is the path we pursue in the next section.

4 Characteristic value iteration

The contraction property of the Bellman operator T̃π (Lemma 1) suggests that we can find Ṽ π by an
iterative procedure, similar to the conventional value iteration. The procedure is

Ṽ1 ← R̃,

Ṽk+1 ← T̃πṼk = R̃PπṼk. (k ≥ 1) (14)

We call this procedure Characteristic Value Iteration (CVI).

CVI converges under certain conditions. To see this, notice that Ṽ π = T̃πṼ π, so for p ≥ 1 by
Lemma 1 we have

d∞,p(T̃
πṼk, Ṽ

π) = d∞,p(T̃
πṼk, T̃

πṼ π) ≤ γpd∞,p(Ṽk, Ṽ π),

under the condition that d∞,p(Ṽk, Ṽ
π) < ∞. Similarly, we have d1,p(T̃

πṼk, Ṽ
π) ≤

γp−1d1,p(Ṽk, Ṽ
π) (for p > 1). By the iterative application of this upper bound, assuming that

d∞,p(R̃, Ṽ
π) <∞, we get that

d∞,p(Ṽk+1, Ṽ
π) ≤ γpd∞,p(Ṽk, Ṽ π) ≤ · · · ≤ (γp)kd∞,p(Ṽ1, Ṽ

π) = (γp)kd∞,p(R̃, Ṽ
π). (15)

Likewise, assuming that d1,p(R̃, Ṽ
π) <∞, we obtain

d1,p(Ṽk+1, Ṽ
π) ≤ (γp−1)kd1,p(R̃, Ṽ

π). (16)

As long as d∞,p(R̃, Ṽ π) (or d1,p(R̃, Ṽ
π)) is finite for some p ≥ 1 (p > 1), CVI converges geomet-

rically fast. Lemma 11 in Appendix B specifies the condition when the d∞,p distance of two CF
would be finite. For p = 1, it is sufficient that the immediate reward Rπ(x) ∼ R(·;x) and the return
Gπ(·;x) be integrable, i.e., E [|Rπ(x)|] ,E [|Gπ(·;x)|] <∞ for all states x ∈ X . Since we deal with
discounted MDP, the integrability of Rπ(x) (uniformly over X ) entails the integrability of Gπ(·;x).
Therefore under very mild conditions, CVI is convergent w.r.t. d∞,1.
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For integer valued p ≥ 2, the condition becomes more restrictive. The first requirement is that
E [|Rπ(x)|p] and E [|Gπ(·;x)|p] are finite. This is not restrictive, and holds for many problems. The
restrictive condition is that the first k = 1, . . . , p− 1 moments of the reward and the return should
match, i.e., E

[
Rπ(x)k

]
= E

[
Gπ(x)k

]
for all x ∈ X . This does not seem realistic, perhaps except

for p = 2 when problems with zero expected immediate reward for all states but with varying variance
are imaginable.

One can show that the fixed point of T̃π is unique.

Proposition 2. Consider an MDP with a discount factor 0 ≤ γ < 1. Consider VB ,{
Ṽ : Ṽ ∈ V, d∞,1(Ṽ , Ṽ π) ≤ B

}
for a finite B > 0. The Bellman operator admits a unique

fixed point in VB , which is Ṽ π. Furthermore, the CVI procedure (14) starting from Ṽ1 ∈ VB gen-
erates a sequence (Ṽk) ⊂ VB that converges to the fixed point. If we assume that the first absolute
moment of the reward distribution is uniformly finite (i.e., r̄max , supx∈X E [|Rπ(x)|] <∞), we may
choose Ṽ1 = R̃ and set B = 2−γ

1−γ r̄max.

Proof. Proposition 10 in Appendix B shows that the metric space (V, d∞,1) is complete. The subset
VB is a closed ball in V , hence (VR̃, d∞,1) is complete.

For any Ṽ1, Ṽ2 ∈ VB , we have that d∞,1(Ṽ1, Ṽ2) ≤ d∞,1(Ṽ1, Ṽ
π) + d∞,1(Ṽ π, Ṽ2) ≤ 2B < ∞.

Therefore, the finiteness condition of the upper bound in Proposition 1 is satisfied, and the Bellman
operator T̃π is a γ-contraction within VB .

Moreover, the application of the Bellman operator on any Ṽ ∈ VB leaves it within VB . To see
this, notice that d∞,1(T̃πṼ , Ṽ π) = d∞,1(T̃πṼ , T̃πṼ π) ≤ γd∞,1(Ṽ , Ṽ π) ≤ γB, which entails
that T̃πṼ ∈ VB . By induction, the sequence generated by the repeated application of the Bellman
operator remains within VB .

Given the contraction property of the Bellman operator and the completeness of the space, the Banach
fixed-point theorem shows that T̃π admits a unique fixed point within VB , and the fixed point is the
limit of a CVI procedure starting from any Ṽ1 ∈ VB .

To show that the CVI procedure with Ṽ1 = R̃ converges to Ṽ π, we should verify that R̃ is within
VB with the choice of B = 2−γ

1−γ r̄max. Lemma 11 in Appendix B shows that d∞,1(R̃, Ṽ π) ≤
supx∈X {E [|Rπ(x)|] + E [|Gπ(x)|]} ≤ r̄max + 1

1−γ r̄max = B.

4.1 Approximate characteristic value iteration

Performing CVI (14) exactly may not be practical, for at least two reasons. First, for problems with
large state space, we cannot represent Ṽ π exactly and we need to rely on function approximation.
Second, for learning scenario where we do not have access to the model Pπ, but only observe data
from interacting with the environment, we cannot apply the Bellman operator T̃π exactly either.

We can extend CVI to Approximate CVI (ACVI) similar to how exact VI can be extended to
Approximate Value Iteration, also known as Fitted Value Iteration or Fitted Q-Iteration. Various
variants of AVI have been empirically and theoretically studied in the literature [Ernst et al., 2005,
Munos and Szepesvári, 2008, Farahmand et al., 2009, Silver et al., 2016, Tosatto et al., 2017, Chen
and Jiang, 2019]. We would like to build the same general framework for CVF and CVI.

Suppose that for whatever reason we perform each iteration of CVI only approximately, that is,
Ṽk+1 ≈ T̃πṼk. The resulting procedure can be described as

Ṽ1 ← R̃+ ε̃1,

Ṽk+1 ← T̃πṼk + ε̃k+1. (k ≥ 1) (17)

Here ε̃k : R×X → C is the error in the frequency-state space. Recall that the value of a valid CF
at frequency ω = 0 is equal to one, i.e., c(0) = 1. To ensure that Ṽk(·;x) is a CF for all x ∈ X ,
we must have Ṽk(0;x) = 1. This is satisfied if we require that ε̃k(0;x) = 0 for all k = 1, 2, . . .
and x ∈ X . We can interpret this requirement by noticing that the condition c(0) = 1 is simply a
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requirement that c(0) = E
[
ejX0

]
= E [1] =

∫
µ(dx) be equal to 1. So we are essentially requiring

that we do not lose or add probability mass at each iteration of ACVI.

Performing ACVI can be quite similar to the conventional AVI. Suppose that we are given a dataset
Dn = {(Xi, Ri, X

′
i)}ni=1, with Xi ∼ µ, X ′i ∼ Pπ(·|Xi) and Ri ∼ Rπ(·|Xi). Given this dataset

and a CVF Ṽ , we define the empirical Bellman operator as the following mapping:

( ˆ̃TπṼ )(ω;Xi) , ejωRi Ṽ (γω;X ′i), ∀ω ∈ R,∀i = 1, . . . , n.

For any fixed function Ṽ and at any fixed state Xi, with a r.v. Ai ∼ π(·|Xi), we have

E
[
( ˆ̃TπṼ )(ω;X) | X = Xi

]
= E

[
ejωRi Ṽ (γω;X ′i) | X = Xi

]
= E

[
E
[
ejωRi Ṽ (γω;X ′i) | X = Xi, Ai

]]
= E

[
E
[
ejωRi | X = Xi, Ai

]
E
[
Ṽ (γω;X ′i) | X = Xi, Ai

]]
= E

[
ejωRi | X = Xi

]
E
[
Ṽ (γω;X ′i) | X = Xi

]
= R̃(ω;Xi)

∫
Pπ(dy|Xi)Ṽ (γω; y) = (T̃πṼ )(ω;Xi).

This shows that the random process ( ˆ̃TπṼ )(ω;Xi) is an unbiased estimate of (T̃πṼ )(ω;Xi). In

other words, (T̃πṼ )(ω;Xi) is the conditional mean of ( ˆ̃TπṼ )(ω;Xi). Finding the conditional
mean of a r.v. is the regression problem (i.e., estimating m(x) = E [Y |X = x] by m̂(x) using a
dataset of {(Xi, Yi)}ni=1), which has been extensively studied in the statistics and machine learning
literature [Györfi et al., 2002, Wasserman, 2007, Hastie et al., 2009, Goodfellow et al., 2016]. A
powerful estimator that generalizes well across states and ω allows us to approximately perform one
step of ACVI.

One approach to finding a regression estimator is to solve an empirical risk minimization problem:

Ṽk+1 ← argmin
Ṽ ∈F

1

n

n∑
i=1

∫ ∣∣∣Ṽ (ω;Xi)− ejωRi Ṽk(γω;X ′i)
∣∣∣2 w(ω)dω, (18)

where F ⊂ V is a space of functions from R×X to C1, which can be represented by various types
of function approximators (including decision trees, kernel-based ones, and neural networks), and
w : R 7→ R is a weighting function that indicates the importance of different frequencies ω. This is
similar to the usual Fitted Value Iteration procedure [Ernst et al., 2005, Munos and Szepesvári, 2008,
Farahmand et al., 2009, Silver et al., 2016, Tosatto et al., 2017, Chen and Jiang, 2019], which solves

Vk+1 ← argmin
V ∈F

1

n

n∑
i=1

|V (Xi)− (Ri + γVk(X ′i))|
2
, (19)

with appropriately chosen function space F (and similar for Fitted Q Iteration and the action-value
functionQ). One clear difference between (18) and (19) is that we have an integral over the frequency
domain in the former. This one-dimensional integral can be numerically integrated, for example,
by discretizing the low-frequency domain [−b,+b] (with b > 0) with resolution εint. This incurs
some controlled numerical error that is a function of εint. For some function approximators, such as
a decision tree, one might be able to calculate the integral more efficiently by benefitting from the
constancy of values within a leaf.

The quality of approximating T̃πṼk by Ṽk+1 determines the error ε̃k. The error depends on the
regression method being used, as well as the number of data points available, capacity and express-
ibility of the function space F , etc. We do not analyze this regression problem in this paper. We are
nevertheless interested in knowing whether one can hope to have a small error with a reasonably
selected F . Two relevant questions are whether one can approximate T̃πṼk within F well enough
(function approximation error), and whether F has enough regularity to allow reasonable convergence
rate for the estimation error. Appendices C and D study these questions in detail. We only briefly
mention that if the reward distribution is smooth in a certain sense, a band-limited function class
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Fb = {Ṽ : R × X → C1 : Ṽ (0;x) = 1, Ṽ (ω;x) = 0 ∀|ω| > b} provides an approximation error
that goes to zero as the bandwidth b increases. More specifically, the d∞,1 distance-based norm of the
approximation error behaves like O(b−

1
1+β ) with β being the smoothness parameter. Furthermore,

if the first s absolute moments of the reward distribution are finite, the CVF Ṽ (·;x) belongs to the
smoothness class Cs([−b, b]) ∩ Fb (Theorems 12 and 16). This leads to a well-behaving covering
number, which can be used to obtain a convergence rate for the estimation error (Theorem 19). A side
benefit of working with a band-limited function space is that the integral in (18) can be converted to a
definite integral, which is easier to integrate numerically.

Next we analyze how these errors, however generated, affect the quality of the outcome ṼK after
performing K steps of ACVI.

5 Error propagation analysis

We analyze how the errors in the ACVI procedure (17) propagate throughout the iterations and affect
the quality of the outcome CVF ṼK , where K is the number of times the iteration is performed.

Let us first define some new notations. For a frequency-state function Ṽ and an integer k ≥ 0, we use
Ṽ [k] to denote the same function with the difference that its frequency domain variable ω is γk-scaled,
that is,

Ṽ [k](ω;x) , Ṽ (γkω;x), ∀ω ∈ R,∀x ∈ X . (20)

Notice that Ṽ [0] is the same as Ṽ . The definition of R̃[k] is the same.

We define a new operator Ũ [k] = R̃[k]Pπ , which means that for Ṽ , we have(
Ũ [k]Ṽ

)
(ω;x) = R̃[k](ω;x)

∫
Pπ(dy|x)Ṽ (ω; y).

With this notation, we have

(T̃πṼ )(ω;x) = R̃(ω;x)

∫
Pπ(dy|x)Ṽ (γω; y)

= R̃(ω;x)

∫
Pπ(dy|x)Ṽ [1](ω; y) =

(
Ũ [0]Ṽ [1]

)
(ω;x).

The presence of the Ṽ [1] term in the RHS indicates that each application of the Bellman operator T̃π
expands the frequency domain of the function to which it is applied by a factor of γ. Our choice of
notation (20) makes this more transparent, and allows us to keep track of how much the frequency
domain is expanded.

We define the operator L, which is simply the multiplication of several Ũ , with different frequency
domain scaling.

Li =

{
I i = 0

Ũ [0] · · · Ũ [i−1] i ≥ 1
(21)

The repeated application of the Bellman operator to R̃ (or any other frequency-state function Ṽ ) can
be written as

(T̃π)kR̃ , T̃π · · · T̃π︸ ︷︷ ︸
k times

Ṽ = Ũ [0]Ũ [1] . . . Ũ [k−1]R̃[k] = LkR̃[k]. (22)

The next lemma is a pointwise quantification on how the errors ε̃k propagate throughout iteration of
ACVI.
Lemma 3. Consider the ACVI procedure (17). For k ≥ 0, we have

Ṽk+1 = LkR̃[k] +

k∑
i=0

Liε̃[i]
k+1−i.
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Proof. We expand ACVI, and simplify using the introduced notations.

Ṽ1 ← R̃[0] + ε̃
[0]
1

Ṽ2 ← T̃πṼ1 + ε̃
[0]
2 = T̃π

(
R̃[0] + ε̃

[0]
1

)
+ ε̃

[0]
2

= R̃Pπ
(
R̃[1] + ε̃

[1]
1

)
+ ε̃

[0]
2

= Ũ [0]R̃[1] + Ũ [0]ε̃
[1]
1 + ε̃

[0]
2

Ṽ3 ← T̃πṼ2 + ε̃
[0]
3 = T̃π

(
Ũ [0]R̃[1] + Ũ [0]ε̃

[1]
1 + ε̃

[0]
2

)
+ ε̃

[0]
3

= R̃Pπ
(
Ũ [1]R̃[2] + Ũ [1]ε̃

[2]
1 + ε̃

[1]
2

)
+ ε̃

[0]
3

= Ũ [0]Ũ [1]R̃[2] + Ũ [0]Ũ [1]ε̃
[2]
1 + Ũ [0]ε̃

[1]
2 + ε̃

[0]
3

...

Ṽk+1 ← T̃πṼk + ε̃
[0]
k+1 = Ũ [0] · · · Ũ [k−1]R̃[k]+

Ũ [0] · · · Ũ [k−1]ε̃
[k]
1 + Ũ [0] · · · Ũ [k−2]ε̃

[k−1]
2 + . . .+ Ũ [0]ε̃

[1]
k + ε̃

[0]
k+1.

Substituting the notation Li = Ũ [0] · · · Ũ [i−1] (21) gets us to the desired result.

Example 1. Consider an MDP with self-returning state transition, i.e., Pπ = I. Suppose that we run
the exact CVI for k iterations, that is, ε̃k = 0 for all i = 1, . . . , k + 1. By Lemma 3, we have

Ṽk+1 = LkR̃[k] = Ũ [0] · · · Ũ [k−1]R̃[k].

As Ũ [i] = R̃[i]Pπ = R̃[i]I, we have Ṽk+1 = R̃[0] · · · R̃[k]. For each state x, the CF of the computed re-
turn is Ṽk+1(ω;x) = R̃(ω;x)R̃(γω;x) . . . R̃(γkω;x). By Lemma 8, given two independent random
variablesR1 andR2 and constants a1 and a2, their CFs satisfy ca1R1+a2R2

(ω) = cR1
(a1ω)cR2

(a2ω).
So Ṽk+1(ω;x) is the CF of a r.v. R0 + γR1 + . . .+ γkRk with each Ri ∼ Rπ(·|x) independently.
This r.v. is the k-step Monte Carlo approximation of the return. And running CVI for k iterations
computes its CF. This observation is more general and holds for arbitrary Pπ .

We move from pointwise quantification of the errors (Lemma 3) to computing their norm. We first
state the following intermediate result.

Lemma 4. For any bounded Ṽ : R×X → R, and any integers k, l ≥ 0, we have∥∥∥(Ũ [k]Ṽ
)

(ω; ·)
∥∥∥
∞
≤
∥∥∥R̃[k](ω; ·)

∥∥∥
∞

∥∥∥Ṽ (ω; ·)
∥∥∥
∞
,∥∥∥(Ũ [k]Ũ [l]Ṽ

)
(ω; ·)

∥∥∥
∞
≤
∥∥∥R̃[k](ω; ·)

∥∥∥
∞

∥∥∥R̃[l](ω; ·)
∥∥∥
∞

∥∥∥Ṽ (ω; ·)
∥∥∥
∞
.

Proof. For any x ∈ X , ω ∈ R and k ≥ 0, we have∣∣∣(Ũ [k]Ṽ
)

(ω;x)
∣∣∣ =

∣∣∣∣R̃[k](ω;x)

∫
Pπ(dy|x)Ṽ (ω; y)

∣∣∣∣ ≤ ∣∣∣R̃[k](ω;x)
∣∣∣ ∥∥∥Ṽ (ω; ·)

∥∥∥
∞
.

Taking the supremum over x ∈ X , we get ‖(Ũ [k]Ṽ )(ω; ·)‖∞ ≤ ‖R̃[k](ω; ·)‖∞‖Ṽ (ω; ·)‖∞.

Similarly, we have∣∣∣(Ũ [k]Ũ [l]Ṽ
)

(ω;x)
∣∣∣ =

∣∣∣∣R̃[k](ω;x)

∫
Pπ(dy|x)

(
R̃[l](ω; y)

∫
Pπ(dz|y)Ṽ (ω; z)

)∣∣∣∣
≤
∥∥∥Ṽ (ω; ·)

∥∥∥
∞

∣∣∣∣R̃[k](ω;x)

∫
Pπ(dy|x)

∣∣∣R̃[l](ω; y)
∣∣∣∣∣∣∣

≤
∥∥∥Ṽ (ω; ·)

∥∥∥
∞

∣∣∣R̃[k](ω;x)
∣∣∣ ∥∥∥R̃[l](ω; ·)

∥∥∥
∞
.

Taking the supremum over the state space leads to the desired result.
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The following theorem is the main result of this section.

Theorem 5. Consider the ACVI procedure (17) after K ≥ 1 iterations. Assume that ε̃k(0;x) = 0
for all x ∈ X and k = 1, . . . ,K + 1. We have

d∞,p(ṼK+1, Ṽ
π) ≤

K∑
i=0

(γp)i ‖ε̃K+1−i‖∞,p + (γp)Kd∞,p(R̃, Ṽ
π), (p ≥ 1)

d1,p(ṼK+1, Ṽ
π) ≤

K∑
i=0

(γp−1)i ‖ε̃K+1−i‖1,p + (γp−1)Kd1,p(R̃, Ṽ
π). (p > 1)

Proof. We decompose the error to two parts, one from stopping the exact CVI after K iterations
instead of letting K → ∞, and the other is from only approximately performing CVI, which is
encoded by having ε̃k 6= 0.

We denote the CVF of applying K iterations of the exact CVI by Ṽ ◦K+1. It is equal to K-times
application T̃π to R̃, that is Ṽ ◦K+1 = (T̃π)[K]R̃ = LKR̃[K] (cf. (22)).

By the triangle inequality,

d∞,p(ṼK+1, Ṽ
π) ≤ d∞,p(ṼK+1, Ṽ

◦
K+1) + d∞,p(Ṽ

◦
K+1, Ṽ

π),

d1,p(ṼK+1, Ṽ
π) ≤ d1,p(ṼK+1, Ṽ

◦
K+1) + d1,p(Ṽ

◦
K+1, Ṽ

π). (23)

By (15) and (16), we get

d∞,p(Ṽ
◦
K+1, Ṽ

π) ≤ (γp)Kd∞,p(R̃, Ṽ
π),

d1,p(Ṽ
◦
K+1, Ṽ

π) ≤ (γp−1)Kd1,p(R̃, Ṽ
π). (24)

Let us attend to d∞,p(ṼK+1, Ṽ
◦
K+1) and d1,p(ṼK+1, Ṽ

◦
K+1). Lemma 3 shows that

ṼK+1 = LKR̃[K] +

K∑
i=0

Liε̃[i]
K+1−i.

As d∞,p(ṼK+1, Ṽ
◦
K+1) = d∞,p(ṼK+1,LKR̃[K]), and likewise for d1,p, we need to provide upper

bounds for

d1,p(ṼK+1,LKR̃[K]) ≤ d1,p

(
K∑
i=0

Liε̃[i]
K+1−i, 0

)
,

d∞,p(ṼK+1,LKR̃[K]) ≤ d∞,p

(
K∑
i=0

Liε̃[i]
K+1−i, 0

)
.

By the repeated application of Lemma 4, we have that for any ε̃ and i ≥ 0,

∥∥∥(Liε̃[i]
)

(ω; ·)
∥∥∥
∞

=
∥∥∥(Ũ [0] · · · Ũ [i−1]ε̃[i]

)
(ω; ·)

∥∥∥
∞
≤

i−1∏
j=0

∥∥∥R̃[j](ω; ·)
∥∥∥
∞

∥∥∥ε̃[i]
∥∥∥
∞

(25)
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We consider the case of d∞,p first. Using (25) and the fact that the absolute value |R̃(ω;x)| ≤ 1 (for
all ω ∈ R) because R̃(·;x) is a CF (Lemma 8), we get that

d∞,p

(
K∑
i=0

Liε̃[i]
K+1−i, 0

)
= sup

x
sup
ω

∣∣∣∣∣∣
∑K
i=0

(
Liε̃[i]

K+1−i

)
(ω;x)

ωp

∣∣∣∣∣∣
≤

K∑
i=0

sup
x

sup
ω

∣∣∣∣∣∣
(
Liε̃[i]

K+1−i

)
(ω;x)

ωp

∣∣∣∣∣∣
≤

K∑
i=0

sup
ω

(∏i−1
j=0

∥∥∥R̃[j](ω; ·)
∥∥∥
∞

)∥∥∥ε̃[i]
K+1−i(ω; ·)

∥∥∥
∞

|ω|p

≤
K∑
i=0

sup
ω

∥∥∥ε̃[i]
K+1−i(ω; ·)

∥∥∥
∞

|ω|p
(26)

For any c : R→ R and γ > 0 (cf. (12)),

sup
ω∈R

∣∣∣∣c(γiω)

ωp

∣∣∣∣ = (γp)i sup
ω∈R

∣∣∣∣c(ω)

ωp

∣∣∣∣ .
This allows us to simplify (26) to

d∞,p

(
K∑
i=0

Liε̃[i]
K+1−i, 0

)
≤

K∑
i=0

(γp)i sup
ω

‖ε̃K+1−i(ω; ·)‖∞
|ω|p

=

K∑
i=0

(γp)i ‖ε̃K+1−i‖∞,p . (27)

We now consider the case of d1,p, which is similar.

d1,p

(
K∑
i=0

Liε̃[i]
K+1−i, 0

)
= sup

x

∫ ∣∣∣∣∣∣
∑K
i=0

(
Liε̃[i]

K+1−i

)
(ω;x)

ωp

∣∣∣∣∣∣dω
≤

K∑
i=0

sup
x

∫ ∣∣∣∣∣∣
(
Liε̃[i]

K+1−i

)
(ω;x)

ωp

∣∣∣∣∣∣ dω
=

K∑
i=0

∫ supx

∣∣∣(Liε̃[i]
K+1−i

)
(ω;x)

∣∣∣
|ω|p

dω

≤
K∑
i=0

∫ i−1∏
j=0

∥∥∥R̃[j](ω; ·)
∥∥∥
∞


∥∥∥ε̃[i]
K+1−i(ω; ·)

∥∥∥
∞

|ω|p
dω

≤
K∑
i=0

∫ ∥∥∥ε̃[i]
K+1−i(ω; ·)

∥∥∥
∞

|ω|p
dω. (28)

By using the same change of variable used in (13) in the proof of Lemma 1, we have that for
c : R→ R, γ > 0, and p > 1,∫

|c(γiω)|
|ω|p

dω =

∫
|c(ν)|
| νγ |p

1

γ
dν = (γp−1)i

∫
|c(ω)|
|ω|p

dω.

This allows us to simplify (28) to

d1,p

(
K∑
i=0

Liε̃[i]
K+1−i, 0

)
≤

K∑
i=0

(γp−1)i
∫ ‖ε̃K+1−i(ω; ·)‖∞

|ω|p
dω =

K∑
i=0

(γp−1)i ‖ε̃K+1−i‖1,p .

(29)

Plugging (24), (27), and (29) in (23) leads to the final result.
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This result shows how the errors ε̃k in the ACVI procedure propagate throughout iterations and
affect the quality of the approximation of Ṽ π by ṼK+1. The error is measured according to the
distances d1,p and d∞,p. The upper bounds show that errors in the earlier iterations are geometrically
decayed. This entails that if the resources are limited, it is better to ensure the smallness of errors
in later iterations. This phenomenon is similar to what we have observed in the conventional value
iteration [Farahmand et al., 2010].

As discussed in Section 4, the condition that d∞,p(R̃, Ṽ π) is finite might be very restrictive for p > 2
and even for p = 2, it might hold only in special problems. But the finiteness of d∞,1 requires mild
conditions. For the finiteness of d∞,1(R̃, Ṽ π) in the upper bound, the finiteness of the first absolute
moment of the reward function is sufficient, as discussed after (16). For the finiteness of ‖ε̃i‖∞,1
terms, it is sufficient that ε̃i(0;x) = 0 and that its first derivative w.r.t. ω is bounded for all states
x ∈ X , i.e., |ε̃(1)(ω;x)| <∞ (this can be seen from the proof of Lemma 11 in Appendix B). Based
on these, so from now on we focus on p = 1.

6 From error in frequency domain to error in probability distributions

Theorem 5 in the previous section relates the errors at each iteration of ACVI to the quality of the
obtained approximation of Ṽ π . The error is measured according to the metrics d1,p and d∞,p. These
are metrics in the frequency domain. What does having a small error in the frequency domain imply
about the quality of approximating the distribution of returns V̄ π?

From Levy’s continuity theorem we know that the pointwise convergence of CF implies the conver-
gence in distribution of their corresponding distributions. This suggest that we could define the error
in the frequency domain

dunif(Ṽ , Ṽ
π) = sup

x∈X
sup
ω∈R

∣∣∣Ṽ (ω;x)− Ṽ π(ω;x)
∣∣∣ .

Nevertheless, we did not define the distance this way because the Bellman operator would not be a
contraction w.r.t. to it. So a valid question is whether, or in what sense, the smallness of d∞,p(Ṽ , Ṽ π)
implies anything about the closeness of their corresponding probability distribution functions V̄
and V̄ π? In this section we show that such a relation indeed exists. We relate d∞,p and d1,p to the
p-smooth Wasserstein distance of the probability distribution functions [Arras et al., 2017].
Definition 1. Let p ≥ 1, Cp(Ω) be the space of p-times continuous differentiable functions on domain
Ω, and Fp(Ω) =

{
f ∈ Cp(Ω) : ‖f (k)‖∞ ≤ 1, 0 ≤ k ≤ p

}
. For two probability distributions

µ1, µ2 ∈M(Ω), the p-smooth Wasserstein distance is defined as

WCp(µ1, µ2) = sup
f∈Fp(Ω)

∣∣∣∣∫ f(x) (dµ1(x)− dµ2(x))

∣∣∣∣ .
Remark 2. Note that the conventional 1-Wasserstein distance is defined as

W1(µ1, µ2) = sup
f∈Lip1(Ω)

∣∣∣∣∫ f(x) (dµ1(x)− dµ2(x))

∣∣∣∣ ,
where Lip1 is the space of 1-Lipschitz functions. As

∥∥f (1)
∥∥
∞ ≤ 1 implies 1-Lipschitz functions, but

not necessarily vice versa,WC1(µ1, µ2) ≤ W1(µ1, µ2).

Let us also define the p-smooth Wasserstein between V̄1 and V̄2 as follows:

WCp(V̄1, V̄
π
2 ) , sup

x∈X
WCp(V̄1(·;x), V̄ π2 (·;x)).

This is the maximum over states x ∈ X of the value of the p-smooth Wasserstein between the
distribution of return according to the probability distributions V̄1(·;x) and V̄2(·;x).

The following result provides an upper bound for the p-smooth Wasserstein distances of two r.v.
based on the distance of their CFs (9) in the frequency domain.
Lemma 6. Consider the domain Ω = [−B,B] with 0 < B < ∞. Let X1 and X2 be two random
variables with the probability distribution functions µ1, µ2 ∈ M(Ω), and their corresponding CF
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c1, c2 : R→ C. Let p ≥ 1 be an integer. We have

WCp+1
(µ1, µ2) ≤ 2

√
2B√
π

d∞,p(c1, c2),

WCp(µ1, µ2) ≤
√

2B√
π
d1,p(c1, c2).

Proof. Let f ∈ C∞c (R) with the support in [−B,B]. Denote its Fourier transform f̃ , i.e., f̃ =
1√
2π

∫
f(x)e−jωxdx. So we have f(x) = 1√

2π

∫
f̃(ω)e+jωxdω. This is a unitary convention for the

Fourier transform. The difference between the expectation of f w.r.t. X1 ∼ µ1 and X2 ∼ µ2 is

E [f(X1)− f(X2)] = E
[

1√
2π

∫
f̃(ω)

(
e+jωX1 − e+jωX2

)
dω

]
=

1√
2π

∫
f̃(ω)

(
E
[
ejωX1

]
− E

[
ejωX2

])
dω

=
1√
2π

∫
f̃(ω) (cX1

(ω)− cX1
(ω)) dω

=
1√
2π

∫
f̃(ω)ωp

cX1
(ω)− cX1

(ω)

ωp
dω

≤ 1√
2π

∫ ∣∣∣∣cX1
(ω)− cX1

(ω)

ωp

∣∣∣∣ |ω|p|f̃(ω)|dω, (30)

where we used the definition of a CF. We consider the two parts of the result separately.

Part I) d∞,p(c1, c2): We can upper bound (30) by

E [f(X1)− f(X2)] ≤ 1√
2π
d∞,p(c1, c2)

∫
|ω|p|f̃(ω)|dω. (31)

The integral can be upper bound by using the Cauchy-Schwarz inequality:∫
|ω|p|f̃(ω)|dω =

∫
|ω|p|1 + |ω|

1 + |ω|
|f̃(ω)|dω

≤

√∫
|ω|2p(1 + |ω|)2|f̃(ω)|2dω

√∫
1

(1 + |ω|)2
dω

≤ 2

√∫
(|ω|2p + |ω|2p+2) |f̃(ω)|2dω. (32)

Here we used
∫∞
−∞

1
(1+|ω|)2 dω = 2 and (1 + |ω|)2 ≤ 2(1 + |ω|2).

The Fourier transform of the k-th derivative of a function satisfies F{f (k)} = (jω)kf̃(ω). So by
Parseval’s theorem, we have∫ ∣∣∣ωpf̃(ω)

∣∣∣2 +
∣∣∣ωp+1f̃(ω)

∣∣∣2 dω =

∫ ∣∣∣f (p)(x)
∣∣∣2 +

∣∣∣f (p+1)(x)
∣∣∣2 dx.

As the support of f is [−B,+B], we have that∫ ∣∣∣f (p)(x)
∣∣∣2 +

∣∣∣f (p+1)(x)
∣∣∣2 dx =

∫ +B

−B

∣∣∣f (p)(x)
∣∣∣2 +

∣∣∣f (p+1)(x)
∣∣∣2 dx

≤ (2B)

[∥∥∥f (p)
∥∥∥2

∞
+
∥∥∥f (p+1)

∥∥∥2

∞

]
.

Now for any f ∈ Fp+1([−B,+B]), the value of ‖f (p)‖∞ and ‖f (p+1)‖∞ are both less than or equal
to 1, and therefore the integral (32) is upper bounded by 2

√
4B. By combining this with (31), we get

WCp+1
(µ1, µ2) = sup

f∈Fp+1([−B,+B])

E [f(X1)− f(X2)] ≤ 2
√

2B√
π

d∞,p(c1, c2).
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Part 2) d1,p(c1, c2): We can upper bound (30) by

E [f(X1)− f(X2)] ≤ 1√
2π

sup
ω

∣∣∣ωpf̃(ω)
∣∣∣ d1,p(c1, c2). (33)

Observe that for any integrable function g : R→ R and its corresponding Fourier transform g̃, for
any ω we have that

|g̃(ω)| =
∣∣∣∣∫ g(x)e−jωxdx

∣∣∣∣ ≤ ∫ ∣∣g(x)e−jωx
∣∣ dx ≤ ∫ |g(x)|dx.

So as (jω)pf̃(ω) is the Fourier transform of f (p), we get that

sup
ω

∣∣∣ωpf̃(ω)
∣∣∣ ≤ ∫ ∣∣∣f (p)(x)

∣∣∣ dx ≤ 2B
∥∥∥f (p)

∥∥∥
∞
,

where we used the boundedness of the support of f .

By combining this with (33), we get

WCp(µ1, µ2) = sup
f∈Fp([−B,+B])

E [f(X1)− f(X2)] ≤
√

2B√
π
d1,p(c1, c2).

The proof of this theorem closely follows the same line of argument as the proof of Theorem 1
by Arras et al. [2017]. Our result is both a simplification and an extension. It is a simplification
because it considers a bounded support of random variables, whereas Arras et al. [2017] allows an
unbounded, but decaying, tail. The result on d1,p is an extension, as Arras et al. [2017] only consider
d∞,p.

Given this result, we can use it alongside Theorem 5 to prove the main result of this section.
Theorem 7. Consider the ACVI procedure (17) after K ≥ 1 iterations. Assume that ε̃k(0;x) = 0
for all x ∈ X and k = 1, . . . ,K + 1. Furthermore, assume that the immediate reward distribution
Rπ(·|x) is Rmax-bounded. We then have

WC2(V̄K+1, V̄
π) ≤ 2

√
2√
π

√
Rmax

1− γ

[
K∑
i=0

γi ‖ε̃K+1−i‖∞,1 +
2γK

1− γ
Rmax

]
.

Proof. We evoke Theorem 5 with the choice of p = 1 to upper bound d∞,1(ṼK+1, Ṽ
π). This in

turn provides a pointwise (over states x ∈ X ) upper bound guarantee for d∞,1(ṼK+1(·;x), Ṽ π(·;x)).
This allows us to focus on the CF of each state separately. So Lemma 6 shows that for each x ∈ X ,

WC2(V̄K+1(·;x), V̄ π(·;x)) ≤ 2
√

2√
π

√
Rmax

1− γ

[
K∑
i=0

γi ‖ε̃K+1−i‖∞,1 + γKd∞,1(R̃(·;x), Ṽ π(·;x))

]
.

It remains to upper bound d∞,1(R̃(·;x), Ṽ π(·;x)). Because the immediate reward distribution is
Rmax-bounded, the distribution of random returns V̄ π would be Rmax

1−γ -bounded. Lemma 11 allows us
to upper bound d∞,1(R̃(·;x), Ṽ π(·;x)) by E [|Rπ(x)|] +E [|Gπ(x)|] ≤ Rmax + Rmax

1−γ = 2−γ
1−γRmax ≤

2
1−γRmax. This finishes the proof.

This upper bound can be simplified if we are willing to provide a uniform over iterations upper bound
on ‖ε̃K+1−i‖∞,1. In that case, we have

WC2(V̄K+1, V̄
π) ≤ 2

√
2Rmax√

π(1− γ)3/2

[
max

i=1,...,K+1
‖ε̃i‖∞,1 + 2γKRmax

]
.

We note that the 2-smooth Wasserstein distanceWC2 , which is an integral probability metric [Müller,
1997], is only one of the many distances between probability distributions [Gibbs and Su, 2002]. The
choice of the right probability distance most likely depends on the performance measure we would
like the policy to optimize. Studying this further is an interesting topic of future research.
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7 Conclusion

This paper laid the groundwork for a new class of distributional RL algorithms. We have shown
that one might represent the uncertainty about the return in the frequency domain, and such a
representation (called Characteristic Value Function) enjoys properties such as satisfying a Bellman
equation and having a contractive Bellman operator. This in turn allows us to compute the CVF by
an iterative method called Characteristic Value Iteration. We also showed the effect of errors in the
iterative procedure, and provided error propagation results, in both the frequency domain and the
probability distribution space.

This paper is only the first step towards understanding CVFs and their properties. Among remaining
questions is how to perform the regression step (18) of ACVI properly and efficiently. Specifically,
how should we set the weighting function w(ω) in order to achieve accurate CVF in frequencies that
are relevant for the tasks we want to solve. Studying other distances between CFs and their properties
is another interesting research directions. This work only focused on the policy evaluation problem,
so another obvious direction is designing risk-aware policy optimization algorithms based on CVF.
Finally, empirically evaluating this approach for return uncertainty representation may lead to better
understanding of its strengths and weaknesses.

A Characteristic function of a random variable

Given a real-valued random variable X with the probability distribution µ ∈ M(R), the space of
probability distributions over R, its corresponding CF cX : R→ C is the function defined as

cX(ω) , E
[
ejXω

]
=

∫
exp(jxω)µ(dx), ω ∈ R

where j =
√
−1 is the imaginary unit. If the distribution has a density p(x) = dµ

dλ w.r.t. the Lebesgue
measure λ, we have cX(ω) =

∫
exp(jxω)p(x)dx too.

The CF of a probability distribution is closely related to the Fourier transform of its probability
distribution function. The Fourier transform of a function f : R→ C is defined as5

f̃(ω) , F {f} (ω) =

∫
f(x)e−jωxdx.

Hence, cX is F {p}, the complex conjugate of the Fourier transform of the density p.

If X has a probability distribution µθ parameterized by θ, we may refer to its CF by cθ.

Given independent samples X1, . . . , Xn from µ, the Empirical Characteristic Function (ECF) is
defined as

cn(w) ,
1

n

n∑
i=1

ejXiω. ∀ω ∈ R

ECF can be seen as the CF of the empirical measure, which assigns the probability

µn(A) =
1

n

n∑
i=1

I{Xi ∈ A},

to any measurable set A of R (of an appropriate σ-algebra, e.g., Borel σ-algebra). It is easy to see
that because of the law of large numbers, cn(ω)→ cX(ω) (a.s.) for any fixed ω.

We collect some useful properties of the CF in the following lemma, see e.g., Chapters 16 and 18
of Williams [1991] or Chapter 11 of Rosenthal [2006].
Lemma 8. The characteristic function of a random variable X has the following properties:

• cX(0) = 1.

• |cX(ω)| ≤ 1 for all ω ∈ R.

5There are several conventions regarding notations and normalization factors.
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• The function ω 7→ cX(ω) is uniformly continuous in R.

• c(−X)(ω) = cX(ω).

• caX+b(ω) = ejbωcX(aω).

• If X and Y are two (conditionally) independent random variables, cX+Y (ω) =
cX(ω)cY (ω).

• If k ∈ N and E
[
|X|k

]
< ∞, the function cX(ω) is k times differentiable and we have

c
(k)
X (ω) = E

[
(jX)kejXω

]
. In particular, the k-th moment of X satisfies c(k)

X (0) =

jkE
[
Xk
]
.

• (Levy Inversion Formula) If
∫
|cX(ω)|dω <∞, thenX has a continuous probability density

function p(x) and p(x) = 1
2π

∫
exp(−jωx)cX(ω)dω.

• (Levy’s Convergence Theorem) Let (µn) be a sequence of probability distributions, and let
(cn) denote their corresponding CF. Suppose that c(ω) = lim cn(ω) exists for all ω ∈ R
and c is continuous at 0. Then c is a CF of some distribution µ and µn → µ in distribution.

Note that we stated a simplified Levy Inversion formula; a more general inversion formula exists
even when the r.v. X does not have a density.

B Properties of the distance metrics d1,p and d∞,p

We provide some properties of the distances d∞,p and d1,p.
Proposition 9. The distance functions d1,p and d∞,p are metrics.

Proof. We first consider d∞,p defined for the CF and verify the properties of being a metric. The
verification for d∞,p for Ṽ is similar.

It is clear that d∞,p(c1, c2) ≥ 0. Whenever d∞,p(c1, c2) = supω |
c1(ω)−c2(ω)

ωp | is equal to zero, it
entails that c1(ω) = c2(ω) for all ω ∈ R.

We also have d∞,p(c1, c2) = d∞,p(c2, c1).

Finally, notice that for c1, c2, c3 : R→ C, we have

d∞,p(c1, c2) = sup
ω

∣∣∣∣c1(ω)− c2(ω)

ωp

∣∣∣∣ = sup
ω

∣∣∣∣c1(ω)− c3(ω) + c3(ω)− c2(ω)

ωp

∣∣∣∣
≤ sup

ω

[
|c1(ω)− c3(ω)|+ |c3(ω)− c2(ω)|

|ω|p

]
≤ sup

ω

∣∣∣∣c1(ω)− c3(ω)

ωp

∣∣∣∣+ sup
ω

∣∣∣∣c3(ω)− c2(ω)

ωp

∣∣∣∣
= d∞,p(c1, c3) + d∞,p(c3, c2)

The proof for d1,p is the same except that
∫ ∣∣∣ c1(ω)−c2(ω)

ωp

∣∣∣ dω = 0 only entails that c1(ω) = c2(ω)

almost surely.

We define the space of VCF V =
{
Ṽ : R×X → C1 : Ṽ (0;x) = 1

}
.6 We want to show that V

with metric d∞,p is a complete space. Showing that a space is complete allows us to use Banach
fixed point theorem to show that the fixed point of a contraction operator is within the space; if the
space is not complete, the fixed point might be outside the space.
Proposition 10. The metric space (V, d∞,p) is complete.

6 This space is larger than the space of feasible VCFs because a CF is uniformly continuous, but V does not
have any continuity restriction.
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Proof. Let (Ṽn) be a Cauchy sequence in V w.r.t. d∞,p. To show that V is complete, we have to
prove that there exists a Ṽ ∈ V such that d∞,p(Ṽn, Ṽ )→ 0 as n→∞.7

The fact that (Ṽn) is a Cauchy sequence in d∞,p means that for any ε > 0, there exists an integer N
such that for any n,m ≥ N , we have d∞,p(Ṽn, Ṽm) < ε. So

sup
x∈X

sup
ω

∣∣∣∣∣ Ṽn(ω;x)− Ṽm(ω;x)

ωp

∣∣∣∣∣ < ε⇒
∣∣∣Ṽn(ω;x)− Ṽm(ω;x)

∣∣∣ < ε|ω|p, ∀ω ∈ R\{0},∀x ∈ X .

We would like to show that for any fix x ∈ X and ω 6= 0, the sequence (Ṽn(ω;x)) is Cauchy
too. For any ε′ > 0, let us pick ε = ε′

|ω|p . As (Ṽn) is Cauchy w.r.t. d∞,p, there exists an integer

number N such that for any n,m ≥ N , we have
∣∣∣ Ṽn(ω;x)−Ṽm(ω;x)

ωp

∣∣∣ < ε. This is equivalent to∣∣∣Ṽn(ω;x)− Ṽm(ω;x)
∣∣∣ < ε|ω|p = ε′, which shows that (Ṽn(ω;x)) is indeed a Cauchy sequence.

As the real-valued sequence (Ṽn(ω;x)) is a Cauchy sequence and R is complete, the pointwise
sequence Ṽn(ω;x) converges to a limit. We define the following function for all x ∈ X and
ω ∈ R \ {0}.

Ṽ (ω;x) = lim
n→∞

Ṽn(ω;x)

For ω = 0, we pick Ṽ (0;x) = 1.

As Ṽ (ω;x)→ Ṽm(ω;x) when m→∞, we have

d∞,p(Ṽn, Ṽ ) = sup
x,ω

∣∣∣∣∣ Ṽn(ω;x)− Ṽ (ω;x)

ωp

∣∣∣∣∣
= sup

x,ω
lim
m→∞

∣∣∣∣∣ Ṽn(ω;x)− Ṽm(ω;x)

ωp

∣∣∣∣∣
≤ lim inf

m→∞
sup
x,ω

∣∣∣∣∣ Ṽn(ω;x)− Ṽm(ω;x)

ωp

∣∣∣∣∣ = lim inf
m→∞

d∞,p(Ṽn, Ṽm).

As (Ṽn) is a Cauchy sequence, for all ε > 0, there exists N such that for all n,m ≥ N ,
d∞,p(Ṽn, Ṽm) < ε, which along the inequality above show that d∞,p(Ṽn, Ṽ ) < ε for all n ≥ N .
This proves that limn→∞ d∞,p(Ṽn, Ṽ ) = 0, as desired.

Showing whether d1,p also defines a complete metric space is an interesting question postponed to a
future work.

We provide a condition under which the distance d∞,p between two CF c1, c2 would be finite.
Lemma 11. Consider two random variablesX1 andX2 with their corresponding CF c1, c2 : R→ C.
Let p ≥ 1. If

1. (Matched first p− 2-th moments) E
[
Xk

1

]
= E

[
Xk

2

]
for k = 1, . . . , p− 1 (for p ≥ 2),

2. (Finite p-th moments) E [|X1|p] ,E [|X2|p] <∞,

the distance d∞,p(c1, c2) would be finite and can be upper bounded by E[|X1|p]+E[|X2|p]
p! .

Proof. We use Taylor series expansion of c1 and c2 to provide an upper bound on c1(ω)−c2(ω)
ωp . As

E [|X|p] is finite for both X1 and X2, they are finite for k = 0, . . . , p − 1 too. By Lemma 8, the
functions c1(ω) and c2(ω) are differentiable for k = 0, . . . , p, and for both of them we have

c(ω) = c(0) + c(1)(0)
ω1

1!
+ . . .+ c(p−1)(0)

ωp−1

(p− 1)!
+ c(p)(ν)

∣∣∣
0≤ν≤ω

ωp

p!
.

7The proof of this result closely follows the proof of Theorem 2.4 of Hunter and Nachtergaele [2001].
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Therefore for any ω, we can write

c1(ω)− c2(ω)

ωp
=

p−1∑
k=0

(
c
(k)
1 (0)− c(k)

1 (0)
) 1

k!ωp−k
+

1

p!

(
c
(p)
1 (ν1)

∣∣∣
0<ν1<ω

− c(p)2 (ν1)
∣∣∣
0<ν1<ω

)
.

Note that if c(k)
1 (0) 6= c

(k)
2 (0) (for k = 0, . . . , p − 1), the corresponding term in the summation

would be singular at ω = 0. Because c(k)
X (0) = jkE

[
Xk
]
, the condition of moments of the random

variables being matched implies that the summation is zero. Under that condition, we have

c1(ω)− c2(ω)

ωp
=
c
(p)
1 (ν1)− c(p)2 (ν2)

p!
,

for some 0 ≤ ν1, ν2 ≤ ω. We use the definition of CF to write∣∣∣c(p)1 (ν1)− c(p)2 (ν2)
∣∣∣ =

∣∣E [(jX1)pejν1X1
]
− E

[
(jX2)pejν2X2

]∣∣
≤ E

[∣∣(jX1)pejν1X1
∣∣]+ E

[∣∣(jX2)pejν2X2
∣∣]

≤ E [|X1|p] + E [|X2|p] .

Therefore, if in addition to the first condition, the p-th moments E [|X1|p] and E [|X2|p] are finite too,

d∞,p(c1, c2) = sup
ω

∣∣∣∣c1(ω)− c2(ω)

ωp

∣∣∣∣ ≤ E [|X1|p] + E [|X2|p]
p!

is finite too, which is the desired result.

Observe that d∞,1(c1, c2) is bounded as long as E [|X1|] and E [|X2|] are finite, which is quite mild.
A similar result holds if we replace CF with CVF, i.e., d∞,p(Ṽ1, Ṽ2). The required condition would
then be on the moments of the set of random variables, indexed by x ∈ X , that have CF of Ṽ1(·;x)

and Ṽ2(·;x).

We leave the result specifying the conditions for d1,p(c1, c2) to be bounded as a future work.

C A Study on function approximation error

We argued in Section 4.1 that performing CVI exactly may not be practical and we have to perform
it approximately. This might be done by solving a sequence of regression problems, which find
Ṽk+1 ≈ T̃πṼk. A regression estimator such as (18) finds the estimate within a function space F ,
which is often smaller than the space of all possible CVF, which is a subset of V = {Ṽ : R×X →
C1 : Ṽ (0;x) = 1}. As a result, we might have some function approximation error. We would like
to know whether it is possible to have small function approximation error under some reasonable
assumptions on the reward distribution and the choice of F . This section attends to this question.

The function approximation error, however, is only one source of error in the analysis of a regression
algorithm. Another source of error is the estimation error, which reflects the effect of having a finite
number of samples. The estimation error depends on the complexity of the function space, which can
be quantified in terms of its covering number. We provide a covering number result for a particular
choice of function space in Appendix D. We should note that even though studying the function
approximation error and covering number of a function space are crucial steps in the error analysis of
a regression method, we do not provide a complete analysis of the regression problem that should be
solved at each step of CVI in this work.

Before going into the detail, we briefly describe the result: If the reward distribution is smooth in a
certain sense, a band-limited function class Fb, to be defined shortly, provides an approximation error
that goes to zero as the bandwidth b increases. Furthermore, if the first s absolute moments of the
reward distribution are finite (uniformly for all x ∈ X ), the CVF Ṽ (·;x) belongs to the smoothness
class Cs([−b, b]) ∩ Fb. This leads to a well-behaving covering number, which can be used to obtain
a convergence rate for estimation error.
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Let Fb ⊂ V be defined as the b-band-limited CVF, i.e.,

Fb =
{
Ṽ : R×X → C1 : Ṽ (0;x) = 1, Ṽ (ω;x) = 0 ∀|ω| > b

}
. (34)

These are functions whose frequency component can be non-zero only in |ω| ≤ b. Soon we show that
this function space can approximate the CF of a large class of distributions.

We define the class of β-smooth and super-smooth reward distributions, following the definition
by Fan [1991].
Definition 2. The reward distributionRπ is β-smooth if for all x ∈ X ,

c0|ω|−β ≤ |R̃(ω;x)| ≤ c1|ω|−β ,
for some c0, c1, β > 0 and for |ω| ≥ ω0 with some finite ω0 ≥ 0.

The reward distribution is β-super smooth if for all x ∈ X ,

c0|ω|β0 exp

(
−|ω|

β

τ

)
≤ |R̃(ω;x)| ≤ c1|ω|β1 exp

(
−|ω|

β

τ

)
,

for some positive constants c0, c1, τ, β and constants β0 and β1, and for |ω| ≥ ω0 with some finite
ω0 ≥ 0.

The condition of being β-smooth is satisfied by many distributions such as exponential (β = 1),
uniform (β = 1), gamma (β = k, the shape parameter), etc. The condition of being super-smooth is
satisfied for distributions such as normal (β = 2), Cauchy (β = 1), etc.

We would like to know that if the reward distribution is smooth (or super-smooth), what is the smallest
‖ε̃‖∞,p for ε̃ = Ṽ − T̃πṼ ′ with Ṽ being restricted to be in Fb. The following proposition answers
this question.
Theorem 12. Consider function space Fb with b ≥ ω0 (cf. Definition 2). If R is a β-smooth
distribution, we have

sup
Ṽ ′∈V

inf
Ṽ ∈Fb

∥∥∥Ṽ − T̃πṼ ′∥∥∥
∞,p
≤ c1
bp+β

,

inf
Ṽ ∈Fb

∥∥∥Ṽ − R̃∥∥∥
∞,p
≤ c1
bp+β

.

If R is β-super smooth distribution, under the condition that either (1) β1 ≤ p or (2) β1 > p and

b > β

√
τ(β1−p)

β , we have

sup
Ṽ ′∈V

inf
Ṽ ∈Fb

∥∥∥Ṽ − T̃πṼ ′∥∥∥
∞,p
≤ c1|b|β1−p exp

(
−b

β

τ

)
,

inf
Ṽ ∈Fb

∥∥∥Ṽ − R̃∥∥∥
∞,p
≤ c1|b|β1−p exp

(
−b

β

τ

)
.

Proof. For any Ṽ ′ ∈ V , consider (T̃πṼ ′)(ω;x) = R̃(ω;x)
∫
Pπ(dy|x)Ṽ ′(γω; y) and define a

function Ṽ (ω;x) = (T̃πṼ ′)(ω;x)I{ω ∈ [−b,+b]}. This function is a CF and is zero outside
[−b, b], so it belongs to Fb. So ε̃ = Ṽ − T̃πṼ ′ is ε̃(ω;x) = (T̃πṼ ′)(ω;x)I{ω /∈ [−b,+b]}. As
|Ṽ ′(ω;x)| ≤ 1 for all x and ω, we have

|ε̃(ω;x)| =
∣∣∣∣I{ω /∈ [−b,+b]}R̃(ω;x)

∫
Pπ(dy|x)Ṽ π(γω; y)

∣∣∣∣
≤ I{ω /∈ [−b,+b]}

∣∣∣R̃(ω;x)
∣∣∣ ∫ Pπ(dy|x)

∣∣∣Ṽ π(γω; y)
∣∣∣

≤ I{ω /∈ [−b,+b]}
∣∣∣R̃(ω;x)

∣∣∣ .
Under the β-smooth condition, the norm of ε̃ can be upper bounded by

‖ε̃‖∞,p = sup
x

sup
|ω|>b

∣∣∣∣∣ R̃(ω;x)

ωp

∣∣∣∣∣ ≤ sup
|ω|>b

c1
|ω|p+β

=
c1
bp+β

. (35)
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As this holds for any Ṽ ′ ∈ V , by taking the supremum over V we obtain the first statement
for the β-smooth case. The proof of the second statement is essentially the same with the dif-
ference that we choose Ṽ (ω;x) = R̃(ω;x)I{ω ∈ [−b,+b]} ∈ Fb and compute the norm of
ε̃ = R̃(ω;x)I{ω /∈ [−b,+b]}.
For the β-super smooth case, the argument is similar except that instead of (35), we have

‖ε̃‖∞,p ≤ sup
|ω|>b

c1 exp
(
− |ω|

β

τ

)
|ω|p−β1

. (36)

The function in the upper bound is not monotonically non-increasing as a function of ω (it might
increase for small ω before the exponential term dominates), but under the conditions specified in the
statement of the theorem, it is. In that case, we simply replace ω with b.

This result shows that for the class of β-smooth or super smooth reward distributions, the error in
approximating T̃πṼ ′ (for any Ṽ ′ ∈ V) decreases as the bandwidth b increases. The rate depends on
β and p for the smooth distributions as well as τ and β1 for the super smooth ones. As discussed in
Section 5, the choice of p > 2 is restrictive. So we summarize the result by stating that for p = 1,
which we often care about, we have

sup
Ṽ ′∈V

inf
Ṽ ∈Fb

∥∥∥Ṽ − T̃πṼ ′∥∥∥
∞,1
≤

{
c1
b1+β , (smooth)

c1|b|β1−1 exp
(
− b

β

τ

)
. (super smooth)

Analyzing the approximation error is only one part of the error analysis of a regression estimator.
Another part is the analysis of the estimation error. One may use any universally consistent regression
estimator, such as a K-NN estimator or many other partitioning-based estimator, to show that
the estimation error goes to zero as the number of samples increases. This along with the above
approximation error lead to a controlled asymptotic upper bound.

Providing a convergence rate for the estimation error, however, requires some more (mild) assumptions
on the complexity of the function class. The function class Fb (34) is quite large. Even if we fix
a single state x, the function Ṽ (·;x) with Ṽ ∈ Fb belongs to the space of 1-bounded functions on
the domain [−b, b]. Learning such a function can be arbitrary slow, cf. Theorem 3.1 of Györfi et al.
[2002]. This might appear hopeless, but it is not.

First of all, the function space Fb was chosen needlessly large. A CF is uniformly continuous, so
we could choose to work with the smaller space of 1-bounded continuous functions. Moreover,
with some extra mild assumptions, we can define a function space that is reasonably small and can
potentially lead to a convergence rate for the estimation error. In particular, if the reward distribution
has s finite absolute moments, its CF R̃(·;x) is s-times differentiable (Lemma 8). The space of
s-times differentiable function is regular enough for a relatively fast convergence rate (depending on
s). We provide the covering number result for such a space in Appendix D. In the rest of this section,
we show that choosing this smaller function space still leads to reasonable function approximation
properties. Let us introduce the necessary definitions.

Given an open set Ω ⊂ Rd, denote Cs(Ω) as the class of s-times differentiable functions with the
norm defined as

‖f‖Cs ,
s∑
i=0

∥∥∥f (i)
∥∥∥
∞
. (37)

If we want to emphasize that the domain is Ω, we use ‖·‖Cs(Ω) and ‖·‖∞(Ω), for the supremum norm.
We use cΩ (with c > 0) to denote the set { cω : ω ∈ Ω }. In our applications, Ω would be an interval
in R, e.g., (−b, b) for some b > 0.

Denote the class of CVF functions that are s-smooth function over ω with bandwidth of b and an
r-bounded norm by

Fsb,r =
{
Ṽ ∈ Fb : ‖Ṽ (·;x)‖Cs((−b,b)) ≤ r, ∀x ∈ X

}
. (38)
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This is a subset of Fb that contains VCFs that are s-smooth in the frequency domain with a certain
norm of smoothness.

We denote the smoothness norm of Ṽ ∈ Fsb,r by∥∥∥Ṽ ∥∥∥
Cs

=
∥∥∥Ṽ ∥∥∥

Cs(Ω)
= sup
x∈X

∥∥∥Ṽ (·;x)
∥∥∥
Cs(Ω)

.

We would like to study the function approximation properties of Fsb,r, similar to Theorem 12. For
simplicity, we focus only on β-smooth reward distributions, and not the super smooth ones.

We first provide some intermediate results.

Proposition 13. Suppose that the reward random variable R(x) ∼ Rπ(·|x) has finite absolute
moments up to order s, with

E
[
|R(x)|i

]
≤ mi

i. i = 1, . . . , s

Then, for any ω ∈ R, we have

|R̃(i)(ω;x)| ≤ mi
i. i = 1, . . . , s

Proof. This is the direct consequence of Lemma 8 applied to the random variable R(x) ∼ Rπ(·|x)

i.e., |R̃(i)(ω;x)| = |E
[
(jR)iejRω

]
| ≤ E

[
|(jR)i||ejRω|

]
= E

[
|R|i

]
.

This result guarantees that as long as the reward distribution has s finite absolute moments, the CF R̃π

is s-times continuously differentiable too, i.e., R̃π(·;x) ∈ Cs(R). This result along with an argument
similar to the proof of Theorem 12 can be used to show that at the first iteration of ACVI, where
we would like to approximate R̃ with Ṽ1, we can choose Ṽ1(·;x) to be from the smoothness class
Cs((−b, b)) and incur a small error. The error depends on the bandwidth b. The moment condition
shows that R̃π ∈ Fsb,r with b =

∑s
i=0m

i
i.

The challenge, however, is to show that after applying the Bellman operator T̃π to Ṽ1 (and to Ṽk
with k > 1 in later iterations), it still remains in the same (or similar) smoothness class. If not, our
function approximation result would only be applicable for the first iteration of the ACVI.

Let us denote two notations for the supremum norm of Ṽ . Given a domain Ω and a fixed x ∈ X , we
use ∥∥∥Ṽ (·;x)

∥∥∥
∞(Ω)

= sup
ω∈Ω
|Ṽ (ω;x)|,

if we want to emphasize the domain where the supremum is taken over. We denote the supremum
norm of a VCF Ṽ over both state and frequency space by∥∥∥Ṽ ∥∥∥

∞
=
∥∥∥Ṽ ∥∥∥

∞(Ω),∞
= sup
x∈X

sup
ω∈Ω

∣∣∣Ṽ (ω;x)
∣∣∣ .

We use ‖Ṽ ‖∞(Ω),∞ whenever we want to emphasize the domain Ω, and use ‖Ṽ ‖∞ otherwise. This
notation should not be confused with ‖Ṽ ‖∞,p defined in Section 3.1.

To show that applying the Bellman operator T̃π on a function Ṽ in a smoothness class does not take
the function outside the class, we study the operator’s effect on the smoothness norm, i.e., ‖T̃πṼ ‖Cs .
The next intermediate result studies the the effect of taking the i-th derivative of Pπ(·|x)Ṽ (γω; ·)
w.r.t. the frequency parameter ω, and upper bounds it by γi‖Ṽ (i)‖∞(γΩ),∞

Proposition 14. Let Ω be an open interval in R and i ∈ N0 an integer number. Assume that Ṽ (·;x)
is i-times differentiable for all x ∈ X . For any x ∈ X , we have

sup
ω∈Ω

∣∣∣∣ di

dωi

∫
Pπ(dy|x)Ṽ (γω; y)

∣∣∣∣ ≤ γi ∥∥∥Ṽ (i)
∥∥∥
∞(γΩ),∞

.
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Proof. Note that by the chain rule, we have dṼ (γω;x)
dω = γ dṼ (u;x)

du |u=γω . By the repeated application

of the chain rule, we get that diṼ (γω;x)
dωi = γi diṼ (u;x)

dui |u=γω . We have

sup
ω∈Ω

∣∣∣∣ di

dωi

∫
Pπ(dy|x)Ṽ (γω; y)

∣∣∣∣ = sup
ω∈Ω

∣∣∣∣∣
∫
Pπ(dy|x)

diṼ (γω; y)

dωi

∣∣∣∣∣
= sup
ω∈Ω

∣∣∣∣∣γi
∫
Pπ(dy|x)

diṼ (u; y)

dui

∣∣∣
u=γω

∣∣∣∣∣
≤ γi

∫
Pπ(dy|x) sup

u∈γΩ

∣∣∣∣∣diṼ (u; y)

dui

∣∣∣∣∣
≤ γi

∥∥∥Ṽ (i)
∥∥∥
∞(γΩ),∞

.

The next result shows the effect of applying the Bellman operator on the smoothness norm of a CVF.

Proposition 15. Consider Ω to be an open interval in R. Suppose that Ṽ (·;x) ∈ Cs(Ω) for all
x ∈ X . Assume that there exist finite constants m0, . . . ,ms such that the absolute moments of the
rewards satisfy E

[
|R(x)|i

]
≤ mi

i for all x ∈ X . Let us denote m = maxi=0,...,smi. We then have∥∥∥T̃πṼ ∥∥∥
Cs(Ω)

≤ s(m+ γ)s
∥∥∥Ṽ ∥∥∥

Cs(γΩ)
.

Proof. Consider the Bellman operator applied to Ṽ , which is (T̃πṼ )(ω;x) =

R̃(ω;x)Pπ(·|x)Ṽ (γω; ·). To simplify the notation, we denote h̃(ω;x) = (T̃πṼ )(ω;x) and
g̃(ω;x) = Pπ(·|x)Ṽ (γω; ·), so h̃(ω;x) = R̃(ω;x)g̃(ω;x). For any k = 0, . . . , s, by the Leibniz
product rule we have

h̃(k)(ω;x) =

k∑
i=0

(
k

i

)
R̃(i)(ω;x)g̃(k−i)(ω;x).

We take the supremum over ω ∈ Ω of both sides, and use Propositions 13 and 14 to get∥∥∥h̃(k)(·;x)
∥∥∥
∞(Ω)

≤
k∑
i=0

(
k

i

)∥∥∥R̃(i)(·;x)
∥∥∥
∞(Ω)

∥∥∥g̃(k−i)(·;x)
∥∥∥
∞(Ω)

≤
k∑
i=0

(
k

i

)∥∥∥R̃(i)(·;x)
∥∥∥
∞(R)

∥∥∥g̃(k−i)(·;x)
∥∥∥
∞(Ω)

≤
k∑
i=0

(
k

i

)
mi
i γ

k−i
∥∥∥Ṽ (k−i)(·;x)

∥∥∥
∞(γΩ)

.

We use mi ≤ m and ‖Ṽ (i)(·;x)‖∞(γΩ) ≤ ‖Ṽ (·;x)‖Ck(γΩ) for any i ≤ k to get that∥∥∥h̃(k)(·;x)
∥∥∥
∞(Ω)

≤
∥∥∥Ṽ (·;x)

∥∥∥
Ck(γΩ)

k∑
i=0

(
k

i

)
miγk−i =

∥∥∥Ṽ (·;x)
∥∥∥
Ck(γΩ)

(m+ γ)
k
,

where the last equality is because of the binomial theorem. As m ≥ 1 and ‖h̃(·;x)‖Ck ≤ ‖h̃(·;x)‖Cs
(for any k ≤ s), we have∥∥∥h̃(·;x)

∥∥∥
Cs(Ω)

=

s∑
k=0

∥∥∥h̃(k)(·;x)
∥∥∥
∞(Ω)

≤
∥∥∥Ṽ (·;x)

∥∥∥
Cs(γΩ)

s∑
k=0

(m+ γ)k

≤ s(m+ γ)s
∥∥∥Ṽ (·;x)

∥∥∥
Cs(γΩ)

.

Taking the supremum over x ∈ X from both sides leads to the stated result.
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This result shows that after applying the Bellman operator to a CVF Ṽ that has a finite smoothness
norm ‖Ṽ ‖Cs(Ω), its smoothness norm ‖T̃πṼ ‖Cs(Ω) remains finite. The upper bound shows that the
smoothness norm might expand by a factor that depends on the absolute moments of the reward
distribution and the smoothness degrees s.

We can now show a result similar to Theorem 12, but for when we choose the current and the next
iteration’s VCF from Fsb,r.
Theorem 16. Let R be a β-smooth distribution. Assume that the reward distribution has s finite
absolute moments satisfying maxi=0,...,s E

[
|R(x)|i

]
≤ mi for all x ∈ X . Consider function space

Fsb,r with b ≥ ω0 (cf. Definition 2). We have

sup
Ṽ ′∈Fsb,r

inf
Ṽ ∈Fs

b,s(m+γ)sr

∥∥∥Ṽ − T̃πṼ ′∥∥∥
∞,p
≤ c1
bp+β

,

inf
Ṽ ∈Fs

b,sms

∥∥∥Ṽ − R̃∥∥∥
∞,p
≤ c1
bp+β

.

Proof. Let Ω = (−b, b). For any Ṽ ′ ∈ Fsb,r, consider (T̃πṼ ′)(ω;x) =

R̃(ω;x)
∫
Pπ(dy|x)Ṽ ′(γω; y). Because of the frequency shrinkage γω term in Ṽ ′(γω; y), the

bandwidth of T̃πṼ ′ is at most bγ , i.e., it is zero outside γ−1Ω. Proposition 15 shows that∥∥∥T̃πṼ ′∥∥∥
Cs( Ω

γ )
≤ s(m+ γ)s

∥∥∥Ṽ ′∥∥∥
Cs(Ω)

≤ s(m+ γ)sr. (39)

We truncate the high frequency terms of T̃πṼ ′ in order to have a function Ṽ that has a bandwidth of
b. We define Ṽ (ω;x) = (T̃πṼ ′)(ω;x)I{ω ∈ Ω}. This function has a bandwidth of b by construction.
Moreover, its smoothness norm satisfies∥∥∥Ṽ ∥∥∥

Cs(Ω)
=
∥∥∥T̃πṼ ′∥∥∥

Cs(Ω)
≤
∥∥∥T̃πṼ ′∥∥∥

Cs( Ω
γ )
≤ s(m+ γ)sr,

where the last inequality is due to (39). Therefore, the function Ṽ belongs to Fsb,r′ with r′ =

s(m+ γ)sr.

The error function ε̃ = Ṽ − T̃πṼ ′ is ε̃(ω;x) = (T̃πṼ ′)(ω;x)I{ω /∈ Ω}. As |Ṽ ′(ω;x)| ≤ 1 for all x
and ω, we have

|ε̃(ω;x)| =
∣∣∣∣I{ω /∈ Ω}R̃(ω;x)

∫
Pπ(dy|x)Ṽ π(γω; y)

∣∣∣∣ ≤ I{ω /∈ Ω}
∣∣∣R̃(ω;x)

∣∣∣ .
The norm of ε̃ can be upper bounded by

‖ε̃‖∞,p = sup
x

sup
ω∈R−Ω

∣∣∣∣∣ R̃(ω;x)

ωp

∣∣∣∣∣ ≤ sup
|ω|≥b

c1
|ω|p+β

=
c1
bp+β

. (40)

As this holds for any Ṽ ′ ∈ Fsb,r, by taking the supremum over Fsb,r, we obtain the first statement.

The proof of the second statement is similar. We choose Ṽ (ω;x) = R̃(ω;x)I{ω ∈ Ω}. By construc-
tion, its bandwidth is b. By the assumption on the absolute moments, Proposition 13 indicates that
R̃(i)(ω;x) ≤ mi

i ≤ mi for all i = 0, . . . , s, all frequencies ω ∈ R, and all states x ∈ X . Therefore,∥∥∥Ṽ ∥∥∥
Cs(Ω)

=
∥∥∥R̃∥∥∥

Cs(Ω)
≤
∥∥∥R̃∥∥∥

Cs(R)
=

s∑
i=0

∥∥∥R̃(i)
∥∥∥
∞
≤

s∑
i=0

mi ≤ sms,

where we used m ≥ 1 in the last inequality. This shows that Ṽ is in Fsb,sms . By computing the norm
of ε̃ = R̃(ω;x)I{ω /∈ Ω}, as in (40), we obtain the second statement.

This theorem shows that for any function Ṽ that belongs to Fsb,r, we can find an approximation in a
slightly larger function space Fsb,s(m+γ)sr. The approximation error depends on the β-smoothness of
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the reward distribution, the bandwidth b of functions represented by the function space, and the p
parameter used in the definition of distance ‖ · ‖∞,p, and it behaves like O(b−(p+β)). A similar result
would hold for super smooth reward distributions, but we omit it here.

This result is comparable to Theorem 12. The main difference is that the approximation space is
Fsb,r (38) instead of Fb (34), and the target function is limited to Fsb,r instead of any V . The difference
between Fsb,r and Fb is in the smoothness regularity of the former function space. The function
space Fb does not impose any smoothness in the frequency domain, and its restriction is only on
the bandwidth of the functions. As already mentioned, Fb is a very large function space and may
not allow us to provide a convergence rate for the estimation error. The addition of the smoothness
regularity leads to a well-behaving complexity of Fsb,r, which is represented by its covering number.
Studying its covering number is the topic of the next section.

D Covering number of F s
b,r

We provide a covering number result for the function space Fsb,r, defined in (38). The covering
number (and its logarithm, the metric entropy) is a measure of the complexity of a function space,
and appears in the analysis of the estimation error [Györfi et al., 2002, van de Geer, 2000]. We
restrict our analysis to finite state spaces, i.e, |X | < ∞. Our result, Theorem 19, shows that for a
finite state space X , the metric entropy w.r.t. the supremum norm behaves as logN (ε,Fsb,r, L∞) ≤
c|X |b( rε )−1/s (and similar for other Lp-norms). Interestingly, the covering number w.r.t. d∞,1

behaves as logN (ε,Fsb,r, d∞,1) ≤ |X | s log( 2reb
s−1

2

ε ) (and similar w.r.t. d1,1), which shows a quite
different behaviour, i.e., a logarithmic dependence on ε as opposed to a polynomial dependence.

To prepare for the main result of this section, we define some notations and state a few auxiliary
results. Consider a function f : Ω→ C with Ω ⊂ R. We denote its extension to R by f̄ , i.e.,

f̄(ω) =

{
f(ω), |ω| < b

0. |ω| ≥ b (41)

Let us consider the set of functions belonging to Cs(Ω) with a domain Ω and r-bounded Cs(Ω)-norm
and denote it by Bs(r; Ω), i.e.,

Bs(r; Ω) ,
{
f ∈ Cs(Ω) : ‖f‖Cs(Ω) ≤ r

}
.

We sometimes use Bsb (r) instead of Bs(r; (−b,+b)) with b > 0. The value of a CVF at ω = 0 is
equal to 1, so in order to discuss functions whose restriction to domain Ω is smooth and takes the
value of 1 at ω = 0, we define

B̄s(r; Ω) =
{
f̄ : R→ C : f ∈ Bs(r; Ω), f(0) = 1

}
.

We sometimes use B̄sb (r) instead of B̄s(r; (−b,+b)).

The following result, which is based on an already known result on the metric entropy of Cs([0, 1]),
provides an upper bound for the metric entropy of Bsb (r; (−b, b)).
Proposition 17. For any 1 ≤ p ≤ ∞ and b ≥ 1, the covering number of Bsb (r) satisfies

logN (ε,Bsb (r), Lp((−b, b))) ≤ cb
1+ 1

sp

(r
ε

) 1
s

,

for a constant c > 0 that depends only on s and p.

Proof. Consider f ∈ Bs(r; Ω) with Ω = (−b, b). The domain Ω can be partitioned into d2be
intervals Ωi with length of 1 (in the form of (−b, b+ 1], (b+ 1, b+ 2], . . . ) such that Ω ⊂ ∪iΩi. We
denote the restriction of f on each interval by fi, i.e., fi(ω) = f(ω)I{ω ∈ Ωi}. The Cs-norm of fi
over Ωi is less than or equal to that of f over Ω, i.e., ‖fi‖Cs(Ωi) ≤ ‖f‖Cs(Ω). Therefore, each fi,
after a translation, belongs to Bs(r; (0, 1]) ⊂ Bs(r; [0, 1]).

The covering of Bs(r; (0, 1]) for each i = 1, 2, . . . , 2b induces a covering of Bs(r; Ω). To see this,
suppose that Nε is an ε-covering set of Bs(r; (0, 1]) w.r.t. Lp((0, 1]). For any function f ∈ Bs(r; Ω),

26



we can write it as f(ω) =
∑2b
i=1 fi(ω). For each i, pick f ′i ∈ Nε (after a shift of domain so that

Ωi aligns with (0, 1]) so that
∫
|fi(ω) − f ′i(ω)|pdω ≤ εp (for 1 ≤ p < ∞) or ‖fi − f ′i‖∞ ≤ ε

(for p = ∞). We construct f ′(ω) =
∑2b
i=1 f

′
i(ω). The Lp(Ω)-norm of the difference between

f ′ and f is p

√∑2b
i=1

∫
|f ′i(ω)− fi(ω)|pdω ≤ p

√
2bε (for 1 ≤ p < ∞) or ‖

∑2b
i=1(f ′i − fi)‖∞ =

maxi=1,...,2b ‖f ′i − fi‖∞ ≤ ε (for p = ∞). This shows that we can construct an p
√

2bε-covering
(for 1 ≤ p <∞) or an ε-covering (for p =∞) of Bs(r; Ω) based on ε-covering Bs(r; (0, 1]). The
number of choices for each f ′i is |Nε|, so the number of functions to cover Bsb (r) is upper bounded
by |Nε|d2be. As the covering of Bs(r; [0, 1]) implies a covering on Bs(r; (0, 1]), we get that

logN (ε,Bs(r; Ω), Lp(Ω)) ≤ d2be logN (ε′, Bs(r; [0, 1]), Lp([0, 1])) , (42)

with ε′ = ε
p√

2b
for 1 ≤ p <∞ and ε′ = ε for p =∞.

Corollary 4.3.38 of Giné and Nickl [2015] shows that

logN (ε,Bs(r; [0, 1]), Lp([0, 1])) ≤ c
(r
ε

)1/s

,

for some constant c that depends only on s and p.8 This along with (42) finish the proof.

This result can be generalized to other function spaces. There are two points in the proof where the
properties of Cs are used. The first is that the norm of a function is greater or equal to the norm of
that function over a restricted domain. This seems to be true for many other norms. The second is
the covering number of Bs(r; [0, 1]). The same inequality holds for more general function spaces,
including Sobolev space Ws,2([0, 1]) and some Besov spaces with the same order of smoothness s,
cf. Theorem 4.3.36 and Corollary 4.3.38 of Giné and Nickl [2015].

We can also provide a covering number result for B̄sb (r) w.r.t. d∞,1 and d1,1, instead of the supremum
norm for Bsb (r) in the previous proposition.
Proposition 18. For any s ≥ 1 and for any 0 ≤ ε < r, we have

logN
(
ε, B̄s(r; [−b,+b]), d∞,1

)
≤ s log

(
2erb

s−1
2

ε

)
,

logN
(
ε, B̄s(r; [−b,+b]), d1,1

)
≤ s log

(
4ersb

s+1
2

ε

)
.

Proof. Let Ω = (−b,+b). For any f ∈ B̄s(r; Ω), by the Taylor series expansion around ω = 0, we
have that for ω ∈ Ω,

f(ω) = 1 +

s−1∑
i=1

f (i)(0)
wi

i!
+ f (s)(u)

∣∣∣
0<u<ω

ωs

s!
,

for some u ∈ (0, ω). Here without loss of generality we supposed that ω is non-negative (otherwise,
we could write ω < u < 0). As f ∈ B̄s(r; Ω), its i-th derivative f (i) is uniformly bounded by r on
Ω for any i = 0, . . . , s. So we can discretize the interval [−r,+r] and approximate the value of the
f (i) terms by the quantized value.

Let us discretize the interval [−r,+r] with resolutions ε1, . . . , εs, to be determined, and call the
resulting sets U1, . . . Us, i.e., Ui = {−r,−r+ εi,−r+ 2εi, . . . , r− εi}. The set Ui has Ni = |Ui| =
2r
εi

elements. We construct f ′(ω) (for ω ∈ Ω) as

f ′(ω) = 1 +

s∑
i=1

ai
ωi

i!
,

8 The definition of the Cs-norm of a function f by Giné and Nickl [2015] is ‖f‖∞ + ‖f (s)‖, which is upper
bounded by our definition (37) (see Section 4.3.3 of their book). Therefore, the function space Bs

b (r; Ω) is a
subset of the function space defined with their norm, which is {f ∈ Cs(Ω) : ‖f‖∞ + ‖f (s)‖ ≤ r}. So their
covering number is an upper bound on the covering number of the function space we are interested in.
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with ai ∈ Ui (for i = 1, . . . , s) being selected so that |ai − f (i)(0)| ≤ εi (for i = 1, . . . , s− 1) and
|as − f (s)(u)| ≤ εs, which exist by the construction of Ui. We use f̄ ′ as the extension of f ′ from Ω
to R.

Both functions f ′ and f̄ ′ can be identified by an element of the product set U1 × · · · × Us, so the
number of distinct f ′ and f̄ ′ constructed this way is the number of elements in the product set
|U1 × · · · × Us| = N1 × · · · ×Ns. We can provide an explicit number on the size of this set as soon
as we decide on ε1, . . . , εs.

Let us verify that this set provides a covering for B̄s(r; Ω) w.r.t. d∞,1 and d1,1, with a resolution that
depends on ε1, . . . , εs. The difference between f and f̄ ′ at any ω ∈ Ω is

f(ω)− f̄ ′(ω) =

s−1∑
i=1

(f (i)(0)− ai)
wi

i!
+

(
f (s)(u)

∣∣∣
0<u<ω

− as
)
ωs

s!
.

As the value of f and f̄ ′ outside Ω is zero, we can decompose the d∞,1(f, f̄ ′) distance as follows:

d∞,1(f, f̄ ′) = sup
ω∈R

∣∣∣∣f(ω)− f̄ ′(ω)

ω

∣∣∣∣ = sup
ω∈Ω

∣∣∣∣f(ω)− f ′(ω)

ω

∣∣∣∣+ sup
ω∈R−Ω

∣∣∣∣0− 0

ω

∣∣∣∣
= sup
ω∈Ω

∣∣∣∣∣
s−1∑
i=1

(f (i)(0)− ai)
wi−1

i!
+

(
f (s)(u)

∣∣∣
0<u<ω

− as
)
ωs−1

s!

∣∣∣∣∣
≤

s∑
i=1

εi
bi−1

i!
.

Likewise, we can decompose the d1,1(f, f̄ ′) distance as follows:

d∞,1(f, f̄ ′) =

∫ +∞

−∞

∣∣∣∣f(ω)− f̄ ′(ω)

ω

∣∣∣∣ dω =

∫ +b

−b

∣∣∣∣f(ω)− f̄ ′(ω)

ω

∣∣∣∣dω +

∫
R−Ω

∣∣∣∣0− 0

ω

∣∣∣∣dω
=

∫ +b

−b

∣∣∣∣∣
s−1∑
i=1

(f (i)(0)− ai)
wi−1

i!
+

(
f (s)(u)

∣∣∣
0<u<ω

− as
)
ωs−1

s!

∣∣∣∣∣dω
≤

s∑
i=1

εi
i!

∫ +b

−b
|ω|i−1dω

≤
s∑
i=1

εi
2bi

i× i!
.

By choosing εi = ε
ebi−1 (for the d∞,1 case) and εi = ε

2eibi (for the d1,1 case), we obtain that

d∞,1(f, f̄ ′), d1,1(f, f̄ ′) ≤ ε

e

s∑
i=1

1

i!
≤ ε.

This shows that f̄ ′ provides an ε-covering for B̄s(r; Ω) w.r.t. d∞,1 and d1,1. To count the number of
elements in this covering set, note that for the d∞,1 case, we have Ni = |Ui| = 2r

εi
= 2erbi−1

ε , and as
a result, the total number of elements of the product set U1 × · · · × Us is

N1 × · · · ×Ns =

(
2er

ε

)s
b
s(s−1)

2 .

Similarly, for the d1,1 case, we have Ni = |Ui| = 2r
εi

= 4erbi

ε , and

N1 × · · · ×Ns = s!

(
4er

ε

)s
b
s(s+1)

2 .

Taking the logarithm of both sides provides the desired result.
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To provide a covering number for Fsb,r, we have to specify a distance between functions in Fsb,r. We
provide results for two different types of distances. The first is for Lp-based norms, and the other is
for d∞,1 and d1,1 (10).

Given two VCF Ṽ1, Ṽ2 ∈ Ṽ , and p, q ∈ [1,∞], we define

∥∥∥Ṽ1 − Ṽ2

∥∥∥
Lq,p

=


q

√∑
x∈X

∥∥∥Ṽ1(·;x)− Ṽ2(·;x)
∥∥∥q
p
, 1 ≤ q <∞

maxx∈X

∥∥∥Ṽ1(·;x)− Ṽ2(·;x)
∥∥∥
p
. q =∞

With these definition, and equipped with Propositions 17 and 18, we are ready to state and prove our
result.

Theorem 19. Consider the function space (38). (Part I) For any 1 ≤ p ≤ ∞, q ∈ {p,∞} and b ≥ 1,
the covering number of Fsb,r satisfies

logN
(
ε,Fsb,r, Lq,p

)
≤ cb1+ 1

sp

(r
ε

) 1
s ×

{
|X |, q =∞
|X |1+ 1

sp . q = p

for a constant c > 0 that depends only on s and p.

(Part II) It also holds that for any 0 < ε < r,

logN
(
ε,Fsb,r, d∞,1

)
≤ |X | s log

(
2erb

s−1
2

ε

)
,

logN
(
ε,Fsb,r, d1,1

)
≤ |X | s log

(
4ersb

s+1
2

ε

)
.

Proof. We decompose a function Ṽ ∈ Fsb,r into |X | functions, each of which can be constructed
based on a member of Bsb (r) (first part) or B̄sb (r) (second part). We then relate the covering number
of Fsb,r to the covering of Bsb (r) or B̄sb (r).

We let Ω = (−b, b). Recall that given a function f : Ω→ C, we denote the extension of its domain
to R by f̄ (41). We decompose a function Ṽ ∈ Fsb,r into |X |-functions

Ṽ (ω;x) =
∑
xi∈X

I{x = xi}f̄xi(ω).

For the first part of the result, f̄xi is an extension of a member of a subset of Bsb (r) that is 1-bounded
and is equal to 1 at ω = 0, i.e., fx ∈ Bsb (r) ∩ { f : ω → C : |f(ω)| ≤ 1, f(0) = 0 } for all x ∈ X .
For the second part, f̄xi is a member of B̄sb (r).

Let us focus on the first part. Consider an ε-covering set Nε of Bsb (r) w.r.t. Lp(Ω), which entails
that for any f ∈ Bsb (r), we can find f ′ ∈ Nε such that ‖f − f ′‖Lp(Ω) ≤ ε. Consider the product
set N×ε =

∏
xi∈X Nε constructed from each of the |X | covering sets. Any function Ṽ (ω;x) =∑

xi∈X I{x = xi}f̄xi(ω) ∈ Fsb,r can be approximated by Ṽ ′(ω;x) =
∑
xi∈X I{x = xi}f̄ ′xi(ω),

with f̄ ′xi being an extension of f ′xi ∈ Nε and f ′xi itself is selected to satisfy
∥∥fxi − f ′xi∥∥p ≤ ε (which

exists by the definition of the covering set). The function Ṽ ′ is close to Ṽ , in the ‖·‖L∞,p-norm,
because ∥∥∥Ṽ − Ṽ ′∥∥∥

L∞,p
=

∥∥∥∥∥∑
xi∈X

I{x = xi}
(
f̄xi(ω)− f̄ ′xi(ω)

)∥∥∥∥∥
L∞,p

= max
x∈X

∥∥f̄x − f̄ ′x∥∥Lp(R)

= max
x∈X
‖fx − f ′x‖Lp(Ω) ≤ ε. (43)
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This shows that our choice of Ṽ ′ is ε-close to Ṽ w.r.t. L∞,p. Likewise for 1 ≤ p <∞, we have∥∥∥Ṽ − Ṽ ′∥∥∥
p,p

=

∥∥∥∥∥∑
xi∈X

I{x = xi}
(
f̄xi(ω)− f̄ ′xi(ω)

)∥∥∥∥∥
p,p

= p

√√√√√∑
x∈X

∥∥∥∥∥∑
xi∈X

I{x = xi}
(
f̄xi − f̄ ′xi

)∥∥∥∥∥
p

Lp(R)

= p

√∑
x∈X
‖fx − f ′x‖

p
Lp(Ω) ≤

p
√
|X | ε. (44)

This shows that our choice of Ṽ ′ is p
√
|X |ε-close to Ṽ w.r.t. Lp,p.

The selected functions (f ′x1
, . . . , f ′x|X|) belong to the product space N×ε , which has |Nε||X | members.

The upper bounds (43) and (44) show that this provides an ε-covering of Fsb,r w.r.t. L∞,p and a
p
√
|X |ε-covering of Fsb,r w.r.t. Lp,p.

To complete the proof of this part, we use Proposition 17, which shows that one can find an ε-covering

of Bsb (r) w.r.t. Lp(Ω) with log |Nε| ≤ cb1+ 1
sp
(
r
ε

) 1
s , with an appropriate choice of ε for each case.

The proof of the second part of the result is similar too. We construct an ε-cover Nε of B̄sb (r) w.r.t.
d∞,1 (or d∞,1), which entails that for any f̄ ∈ B̄sb (r), we can find f̄ ′ ∈ Nε such that d∞,1(f̄ , f̄ ′) ≤ ε
(or d1,1(f̄ , f̄ ′) ≤ ε).
The product set N×ε =

∏
xi∈X Nε is an ε-covering set for Fsb,r w.r.t. d∞,1 (or d∞,1). To see this,

we first notice that any function Ṽ ∈ Fsb,r can be written as Ṽ =
∑
xi∈X I{x = xi}f̄xi(ω) with

f̄xi ∈ B̄rb (s). The function Ṽ can be approximated by Ṽ ′(ω;x) =
∑
xi∈X I{x = xi}f̄ ′xi(ω) with

(f̄ ′x1
, . . . , f̄ ′x|X|) ∈ N

×
ε . This is because for each xi, by the definition of the covering set, one can

find a f̄ ′xi ∈ Nε such that d∞,1(f̄xi , f̄
′
xi) ≤ ε (or d1,1(f̄xi , f̄

′
xi) ≤ ε) , and hence

d∞,1(Ṽ , Ṽ ′) = max
x∈X

sup
ω∈R

∣∣∣∣∣
∑
xi∈X I{x = xi}

(
f̄xi(ω)− f̄ ′xi(ω)

)
ω

∣∣∣∣∣
= max

x∈X
d∞,1

(
f̄x, f̄

′
x

)
≤ ε,

d1,1(Ṽ , Ṽ ′) = max
x∈X

∫ ∣∣∣∣∣
∑
xi∈X I{x = xi}

(
f̄xi(ω)− f̄ ′xi(ω)

)
ω

∣∣∣∣∣
= max

x∈X
d1,1

(
f̄x, f̄

′
x

)
≤ ε.

The result follows by noticing that the number of elements of N×ε is |Nε||X | and then evoking
Proposition 18 to provide an upper bound on |Nε|.

The behaviour of these two different covering numbers crucially depends on the choice of the distance.
For the Lq,p distance, the behaviour as a function of ε is O(ε−

1
s ). This is the usual behaviour of

the s-times differentiable functions over a bounded subset of R. This is not surprising as Fsb,r is a
product space of smoothness class over a bounded frequency domain defined over |X | states.

The covering number behaviour w.r.t. d∞,1 and d1,1, however, is a different story. Its behaviour as
a function of ε is not polynomial, but logarithmic O(log( 1

ε )), hence has a much slower increase as
ε decreases. In other words, measured according to these distances, the function space Fsb,r is not

very complex. One intuition is that the distances d∞,1(Ṽ1, Ṽ2) = supx supω |
Ṽ1(ω;x)−Ṽ2(ω;x)

ω | and

d1,1(Ṽ1, Ṽ2) = supx
∫
| Ṽ1(ω;x)−Ṽ2(ω;x)

ω |dω between two VCFs Ṽ1 and Ṽ2 are less sensitive to high
frequency differences between them as the difference is dampened by the ω in the denominator.

This result alone does not necessarily imply a faster convergence rate for the estimation error term
of solving the regression problem (18). One has to study the estimation error more closely to see
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whether or not the covering number appearing in the analysis is in fact w.r.t. d∞,1 or d1,1 (or Lq,p or
some other distance). It is in fact likely that the choice of the covering number depends on the choice
of w(ω) in (18). This is a topic of future research.

Finally, we remark that the extension of this result to more general state spaces such as a subset of
Rd requires making assumptions not only on the reward distributionRπ(·|x) at each state x (which
we have already done by assuming that it is β-smooth and has certain moment conditions), but also
on how the reward distribution changes as a function of state, e.g., it belongs to a certain smoothness
class. This is similar to assumptions required in the analysis of conventional RL methods for large
state spaces, e.g., smoothness of the value function [Farahmand, 2011, Farahmand et al., 2016]. That
type of analysis is possible to extend to our case too, but we postpone it to a future study.
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