
Appendices

Algorithmic Representation of EOOpt-ε

The outline of EOOpt-ε is summarized in Algorithm 2. Here C(τk) =
∑T

t=0 γ
tc(k)

t is a loss in the
trajectory k and c(k)

t is a cost at the t-th turn in k. PPOCUpdateParams returns the updated parameters
on the basis of given trajectories and parameters. This functions is identical to the advantage
estimation and parameter update part of Algorithm 1 in Klissarov et al. [16].

Algorithm 2 EOOpt-ε

Input: θπω,0, θβω,0, θπΩ,0, Niter,Nepi, ε,Ω
1: for iteration i = 0, 1, ...,Niter do
2: for k = 0, 1, ...,Nepi do
3: sample model parameters pk ∼ P
4: sample a trajectory τk = {st, ωt, at, ct, st+1}

T−1
t=0 from parameterized MDPs〈

S , A,C, γ,Tpk ,P0

〉
using option policies (πω, βω, and πΩ) with θπω,i, θβω,i, and θπΩ,i.

5: end for
6: compute Qε = upper ε percentile of {C(τk)}Nepi

k=0
7: select sub-set T = {τk |C(τk) ≥ Qε}

8: θπω,i+1, θβω,i+1, θπΩ,i+1 ← PPOCUpdateParams(T, θπω,i, θβω,i, θπΩ,i)
9: end for

Decompositionability of EC,p [max(0,C − v)] with Respect to p

Corollary 1 (Decompositionability of EC,p [max(0,C − v)] with Respect to p).

EC,p [max(0,C − v)] =
∑

p

P(p)EC
[
max(0,C − v) | p

]
.

Proof. By letting P (C, p) be a joint distribution of the loss and the model parameter and P (C | p) be
the conditional distribution of the loss, EC,p [max(0,C − v)] can be transformed as

EC,p [max(0,C − v)] =
∑
C

∑
p

P (C, p) max(0,C − v)

=
∑

p

P(p)
∑
C

P (C | p) max(0,C − v)

=
∑

p

P(p)EC
[
max(0,C − v) | p

]
. (20)

�

Derivation of Option Policy Gradient Theorems for Soft Robust Loss

Here, we derive option policy gradient theorems for soft robust loss
∑

p P(p)EC
[
C | p

]
, where

EC
[
C | p

]
is the expected loss on the general class of parameterized MDPs 〈S , A,C, γ,Tp,P0〉

10, in
which the transition probability is parameterized by p ∈ P. In addition, P(p) is a distribution of p.
For convenience, in the latter part, we use P(s′ ∈ S | s ∈ S , a ∈ A, p) to refer to the parameterized
transition function (i.e., Tp). We make the rectangularity assumption on P and P(p). That is, P is

10 For derivation on the general case, we consider the general class of parameterized MDPs, to which the
parameterized MDP in Section 2 and the augmented parameterized MDP in Section 3.1 belong.

12

assumed to be structured as a Cartesian product
⊗

s∈S Ps, and P is also assumed to be structured as a
Cartesian product

⊗
s∈S Ps(ps ∈ Ps) 11.

To prepare for the derivation, we define functions and variables. First, considering the definition of
value functions in Bacon et al. [1], we define value functions in (the general class of) the parameterized
MDP:

QΩ(s, ω, ps) =
∑

a

πω(a | s)Qω(s, ω, a, ps), (21)

Qω(s, ω, a, ps) = C(s, a) + γ
∑

s′
P
(
s′ | s, a, ps

)
Qβ

(
s′, ω, ps

)
, (22)

Qβ(s, ω, ps) = (1 − βω(s))QΩ(s, ω, ps) + βω(s)VΩ(s, ps), (23)

VΩ(s, ps) =
∑
ω

πΩ(ω | s)QΩ(s, ω, ps). (24)

Note that by fixing ps to a constant value, these value functions can be seen as identical to those in
Bacon et al. [1].

Second, for convenience, we define the discounted probabilities to (st+1, ωt+1) from (st, ωt):

P(1)
γ (st+1, ωt+1 | st, ωt) =

∑
a

πω(a | st)γ
∑
pst

Pst (pst)P
(
st+1 | st, a, pst

)
· ((1 − βω(st+1))1(ωt+1 = ωt) + βω(st+1)πΩ(ωt+1|st+1)) , (25)

P(k)
γ (st+k, ωt+k | st, ωt) =

∑
st+1

∑
ωt+1

P(1)
γ (st+1, ωt+1 | st, ωt)P(k−1)

γ (st+k, ωt+k | st+1, ωt+1). (26)

Similar discounted probabilities are also introduced in Bacon et al. [1]. Ours (Eq. 25 and Eq. 26)
are different from theirs in that the transition function is averaged over the model parameter (i.e.,∑

pst
Pst (pst)P(st+1 | st, a, pst) = Eps

[
P(s′ | s, a, ps)

]
).

In addition, by using the rectangularity assumption on P(p), we introduce the equation which
represents the state-wise independence of the model parameter distribution12:∑

pst∈Pst

Pst (pst)
∑
st+1

P
(

st+1 | st, at, pst

)
QΩ(st+1, ωt, pst)

=
∑
st+1

∑
pst

Pst (pst)P
(

st+1 | st, at, pst

)
 ∑

pst+1∈Pst+1

Pst+1

(
pst+1

)
QΩ

(
st+1, ωt, pst+1

) . (27)

Now, we start the derivation of option policy gradient theorems for soft robust loss. We derive the
gradient theorem in a similar manner to Bacon et al. [1].

Theorem 1 (Policy over options gradient theorem for soft robust loss). Given a set of options with a
stochastic policy over options πΩ that are differentiable in their parameters θπΩ

, the gradient of the
soft robust loss with respect to θπΩ

and initial condition (s0, ω0) is:∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπΩ

=
∑

s

dΩ(s | s0, ω0)
∑
ω

∂πΩ(ω|s)
∂θπΩ

QΩ(s, ω),

where dΩ(s | s0, ω0) is a discounted weighting of option pairs along trajectories from (s0, ω0):
dΩ(s | s0, ω0) =

∑∞
k=0 P

(k)
γ (s | s0, ω0), and QΩ(s, ω) is the average option value function: QΩ(s, ω) =∑

ps
Ps(ps)QΩ(s, ω, ps). By letting Eps

[
P(s′ | s, a, ps)

]
be a transition probability, the trajectories

can be regarded as ones generated from the general class of the average parameterized MDPs〈
S , A,C, γ,Eps

[
P(s′ | s, a, ps)

]
,P0

〉
.

11More explicitly, P and P(p) are defined as
⊗∞

t∈0

⊗
s∈S Ps,t and

⊗∞

t∈0

⊗
s∈S Ps,t(ps,t ∈ Ps,t), where Ps,t = Ps

and Ps,t(ps ∈ Ps,t) = Ps(ps ∈ Ps), respectively.
12This state-wise independence is essentially the same as that introduced in the proof of Proposition 3.2 in

Derman et al. [9].

13

Proof. The gradient of Eq. 21 and Eq. 23 with respect to θπΩ
can be transformed as

∂QΩ(s, ω, ps)
∂θπΩ

=
∑

a

πω(a | s)
∑

s′
γP(s′ | s, a, ps)

∂Qβ(ω, s′, ps)
∂θπΩ

, (28)

∂Qβ(s, ω, ps)
∂θπΩ

= (1 − βω(s′))
∂QΩ(s′, ω, ps)

∂θπΩ

+ ββ(s′)
∂VΩ(s′, ps)

∂θπΩ

= (1 − βω(s′))
∂QΩ(s′, ω, ps)

∂θπΩ

+ βω(s′)
∑
ω′

∂πΩ(ω′|s′)
∂θπΩ

QΩ(s′, ω′, ps)

+ βω(s′)
∑
ω′

πΩ(ω′|s′)
∂QΩ(s′, ω′, ps)

∂θπΩ

= βω(s′)
∑
ω′

∂πΩ(ω′|s′)
∂θπΩ

QΩ(s′, ω′, ps)

+
∑
ω′

(
(1 − βω(s′))1(ω′ = ω) + βω(s′)πΩ(ω′|s′)

) ∂QΩ(s′, ω′, ps)
∂θπΩ

. (29)

By substituting Eq. 29 into Eq. 28, a recursive expression of the gradient of the value functions is
acquired as

∂QΩ(s, ω, ps)
∂θπΩ

=
∑

a

πω(a | s)
∑

s′
γP(s′ | s, a, ps)βω(s′)

∑
ω′

∂πΩ(ω′|s′)
∂θ∂θπΩ

QΩ(s′, ω′, ps)

+
∑

s′

∑
ω′

∑
a

πω(a | s)γP(s′ | s, a, ps)
(
(1 − βω(s′))1(ω′ = ω) + βω(s′)πΩ(ω′|s′)

) ∂QΩ(s′, ω′, ps)
∂θπΩ

.

(30)

By using Eq. 27, the gradient of soft robust loss style value functions can also be recursively expressed
as

∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπΩ

=
∑

ps

Ps(ps)
∑

a

πω(a | s)
∑

s′
γP(s′ | s, a, ps)βω(s′)

∑
ω′

∂πΩ(ω′|s′)
∂θπΩ

QΩ(s′, ω′, ps)

+
∑

ps

Ps(ps)
∑

s′

∑
ω′

∑
a

πω(a | s)γP(s′ | s, a, ps)
(
(1 − βω(s′))1(ω′ = ω) + βω(s′)πΩ(ω′|s′)

)
·
∂QΩ(s′, ω′, ps)

∂θπΩ

=
∑

a

πω(a | s)
∑

s′
γ
∑

ps

Ps(ps)P(s′ | s, a, ps)βω(s′)
∑
ω′

∂πΩ(ω′|s′)
∂θπΩ

QΩ(s′, ω′)

+
∑

s′

∑
ω′

∑
a

πω(a | s)γ
∑

ps

Ps(ps)P(s′ | s, a, ps)
(
(1 − βω(s′))1(ω′ = ω) + βω(s′)πΩ(ω′|s′)

)
·
∑
ps′

Ps′ (ps′)
∂QΩ(s′, ω′, ps′)

∂θπΩ

. (31)

14

By using Eq. 25 and Eq. 26, Eq. 31 can be transformed as∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπΩ

=
∑

a

πω(a | s)
∑

s′
γ
∑

ps

Ps(ps)P(s′ | s, a, ps)βω(s′)
∑
ω′

∂πΩ(ω′|s′)
∂θπΩ

QΩ(s′, ω′)

+
∑

s′

∑
ω′

P(1)
γ (s′, ω′ | s, ω)

∑
ps′

Ps′ (ps′)
∂QΩ(s′, ω′, ps′)

∂θπΩ

=

∞∑
k=0

∑
s′′

∑
s′

∑
ω′

P(k)
γ (s′, ω′ | s, ω)

∑
a

πω′ (a | s′)γ
∑
ps′

Ps′ (ps′)P(s′′ | s′, a, ps′)βω′ (s′′)︸ ︷︷ ︸
P(k)
γ (s′′ |s,ω)

·
∑
ω′′

∂πΩ(ω′′|s′′)
∂θπΩ

QΩ(s′′, ω′′). (32)

The gradient of the expected discounted soft robust loss with respect to θπΩ
is then∑

ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπΩ

=

∞∑
k=0

∑
s

P(k)
γ (s | s0, ω0)

∑
ω

∂πΩ(ω|s)
∂θπΩ

QΩ(s, ω)

=
∑

s

dΩ(s | s0, ω0)
∑
ω

∂πΩ(ω|s)
∂θπΩ

QΩ(s, ω). (33)

�

Theorem 2 (Intra-option policy gradient theorem for soft robust loss). Given a set of options with
stochastic intra-option policies πω that are differentiable in their parameters θπω , the gradient of soft
robust loss with respect to θπω and initial condition (s0, ω0) is:∑

ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπω
=

∑
s

∑
ω

dΩ(s, ω | s0, ω0)
∑

a

∂πω(a | s)
∂θπω

Qω(s, ω, a), (34)

where dΩ(s, ω | s0, ω0) is a discounted weighting of state option pairs along trajectories from
(s0, ω0): dΩ(s, ω | s0, ω0) =

∑∞
t=0 γ

tP(k)
γ (s, ω | s0, ω0), and Qω(s, ω, a) is the average value function

of actions in the context of a state-option pair over the model parameter distribution: Qω(s, ω, a) =∑
ps
Ps(ps)Qω(s, ω, a, ps). By letting Eps

[
P(s′ | s, a, ps)

]
be a transition probability, the trajectories

can be regarded as ones generated from the general class of the average parameterized MDPs
〈S , A,C, γ,Eps

[
P(s′ | s, a, ps)

]
,P0〉.

Proof. The gradient of Eq. 22 with respect to θπω can be recursively written as

∂QΩ(s, ω, ps)
∂θπω

=
∑

a

∂πω(a | s)
∂θπω

Qω(s, ω, a, ps)

+
∑

a

πω(a | s)γ
∑

s′
P(s | s, a, ps)

∑
ω′

(
βω(s′)πΩ(ω′ | s′) + (1 − βω(s′)1(ω′ = ω))

)
·
∂QΩ(s′, ω′, ps)

∂θπω
. (35)

By using Eq. 27, the gradient of the soft robust style value function can be recursively expressed as∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπω
=

∑
a

∂πω(a | s)
∂θπω

∑
ps

Ps(ps)Qω(s, ω, a, ps)

+
∑

a

πω(a | s)
∑

s′
γ
∑

ps

Ps(ps)P(s | s, a, ps)
∑
ω′

(
βω(s′)πΩ(ω′ | s′) + (1 − βω(s′)1(ω′ = ω))

)
·
∑
ps′

Ps′ (ps′)
∂QΩ(s′, ω′, ps′)

∂θπω
. (36)

15

By using Eq. 25 and Eq. 26, Eq. 36 can be transformed as∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπω
=

∑
a

∂πω(a | s)
∂θπω

∑
ps

Ps(ps)Qω(s, ω, a, ps)

+
∑

s′

∑
ω′

P(1)
γ (s′, ω′ | s, ω)

∑
ps′

Ps′ (ps′)
∂QΩ(s′, ω′, ps′)

∂θπω

=

∞∑
k=0

∑
s′

∑
ω′

P(k)
γ (s′, ω′ | s, ω)

∑
a

∂πω(a | s′)
∂θπω

·
∑
ps′

Ps′ (ps′)Qω(s′, ω′, a, ps′)

=

∞∑
k=0

∑
s′

∑
ω′

P(k)
γ (s′, ω′ | s, ω)

∑
a

∂πω(a | s′)
∂θπω

Qω(s′, ω′, a). (37)

The gradient of the expected discounted soft robust loss with respect to θπω is then∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θπω
=

∞∑
k=0

∑
s

∑
ω

P(k)
γ (s, ω | s0, ω0)

∑
a

∂πω(a | s)
∂θπω

Qω(s, ω, a)

=
∑

s

∑
ω

dΩ(s, ω | s0, ω0)
∑

a

∂πω(a | s)
∂θπω

Qω(s, ω, a). (38)

�

Theorem 3 (Termination function gradient theorem for soft robust loss). Given a set of options with
stochastic termination functions βω that are differentiable in their parameters θβω , the gradient of the
expected soft robust loss with respect θβω is:∑

ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θβω
=

∑
s

∑
ω

dΩ(s, ω | s0, ω0)
∂βω(s)
∂θβω

(
VΩ(s) − QΩ(s, ω)

)
, (39)

where dΩ(s, ω | s0, ω0) is a discounted weighting of state option pairs along trajectories from
(s0, ω0): dΩ(s, ω | s0, ω0) =

∑∞
t=0 γ

tP(k)
γ (s, ω | s0, ω0). In addition, QΩ(s, ω) is the value func-

tion of options in the context of a state, which is averaged over the model parameter distribution:
QΩ(s, ω) =

∑
ps
Ps(ps)QΩ(s, ω, ps), and VΩ(s) is the value function averaged over the model pa-

rameter distribution: VΩ(s) =
∑

ps
Ps(ps)VΩ(s, ps). By letting Eps

[
P(s′ | s, a, ps)

]
as a transition

probability, the trajectories can be regarded as ones generated from the general class of the average
parameterized MDPs 〈S , A,C, γ,Eps

[
P(s′ | s, a, ps)

]
,P0〉.

Proof. The gradient of Eq. 24 with respect to θβω can be written as follows:

∂QΩ(s, ω, ps)
∂θβω

=
∑

a

πω(a | s)
∑

s′
γP(s′ | s, a, ps)

∂Qβ(ω, s′, ps)
∂θβω

. (40)

In addition, the gradient of Eq. 23 with respect to θβω can be written as

∂Qβ(ω, s, ps)
∂θβω

= −
∂βω(s)
θθβω

QΩ(s, ω, ps) + (1 − βω(s))
∂QΩ(s, ω, p)

∂θβω
+
∂βω(s)
∂θβω

VΩ(s, p)

+ βω(s)
∂VΩ(s, ps)
∂θβω

=
∂βω(s′)
∂θβω

(VΩ(s, ps) − QΩ(s, ω, ps))

+
∑
ω′

(
(1 − βω(s))1(ω′ = ω) + βω(s)πΩ(ω′ | s)

) ∂QΩ(s, ω′, ps)
∂θβω

. (41)

16

By substituting Eq. 41 into Eq. 40, a recursive expression of the gradient can be written as

∂QΩ(s, ω, ps)
∂θβω

=
∑

a

πω(a | s)
∑

s′
γPs(s′ | s, a, ps)

∂βω(s′)
∂θβω

(
VΩ(s′, ps) − QΩ(s′, ω, ps)

)
+

∑
a

πω(a | s)
∑

s′
γP(s′ | s, a, ps)

∑
ω′

(
(1 − βω(s′))1(ω′ = ω) + βω(s′)πΩ(ω′ | s′)

) ∂QΩ(s′, ω′, ps)
∂θβω

.

(42)

By using Eq. 27, the gradient of soft robust loss style value functions can also be recursively expressed
as∑

ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θβω
=

∑
a

πω(a | s)
∑

s′
γ
∑

ps

Ps(ps)P(s′ | s, a, ps)
∂βω(s′)
∂θβω

(
VΩ(s′) − QΩ(s′, ω)

)
+

∑
a

πω(a | s)
∑

s′
γ
∑

ps

Ps(ps)Ps′ (s′ | s, a, ps)
∑
ω′

(
(1 − βω(s′))1(ω′ = ω) + βω(s′)πΩ(ω′ | s′)

)
·
∑
ps′

Ps′ (ps′)
∂QΩ(s′, ω′, ps′)

∂θβω
. (43)

By using Eq. 26, Eq. 43 can be transformed as∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θβω
=

∑
a

πω(a | s)
∑

s′
γ
∑

ps

P(ps)Ps(s′ | s, a, ps)
∂βω(s′)
∂θβω

(
VΩ(s′) − QΩ(s′, ω)

)
+

∑
s′

∑
ω′

P(1)
γ (s′, ω′ | s, ω)

∑
ps′

P(ps′)
∂QΩ(s′, ω′, ps′)

∂θβω

=

∞∑
k=0

∑
s′

∑
ω′

P(k)
γ (s′, ω′ | s, ω)

∑
a

πω(a | s′)
∑
s′′
γ
∑
ps′

Ps(ps′)P(s′′ | s′, a, ps′)

·
∂βω′ (s′′)
∂θβω

(
VΩ(s′′) − QΩ(s′′, ω′)

)
=

∞∑
k=0

∑
s′′

∑
ω′

∑
s′
P(k)
γ (s′, ω′ | s, ω) ·

∑
a

πω(a | s′)γ
∑
ps′

Ps(ps′)P(s′′ | s′, a, ps′)︸ ︷︷ ︸
P(k)
γ (s′′,ω′ |s,ω)

·
∂βω′ (s′′)
∂θβω

(
VΩ(s′′) − QΩ(s′′, ω′)

)
. (44)

The gradient of the expected discounted soft robust loss with respect to θβω is then∑
ps

Ps(ps)
∂QΩ(s, ω, ps)

∂θβω
=

∞∑
k=0

∑
s

∑
ω

P(k)
γ (s, ω | s0, ω0)

∂βω(s)
∂θβω

(
VΩ(s) − QΩ(s, ω)

)
=

∑
s

∑
ω

dΩ(s, ω | s0, ω0)
∂βω(s)
∂θβω

(
VΩ(s) − QΩ(s, ω)

)
. (45)

�

In addition, we derive a corollary for the derivation of the gradient of λ and v.

Corollary 2 (Relation between the soft robust loss over parameterized MDPs and the loss on an
average parameterized MDP).

EC,p [C] = EC
[
C | p

]
. (46)

17

Proof. For proof, considering the definition of value functions in Bacon et al. [1], we define value func-
tions on (the general class of) an average parameterized MDP

〈
S , A,C, γ,Eps

[
P(s′ | s, a, ps)

]
,P0

〉
:

QΩ(s, ω) =
∑

a

πω(a | s)Qω(s, ω, a), (47)

Qω(s, ω, a) = C(s, a) + γ
∑

s′
Eps

[
P
(
s′ | s, a, ps

)]
Qβ

(
s′, ω

)
, (48)

Qβ(s, ω) = (1 − βω(s))QΩ(s, ω) + βω(s)VΩ(s), (49)

VΩ(s) =
∑
ω

πΩ(ω | s)QΩ(s, ω). (50)

Note that, by regarding Eps

[
P (s′ | s, a, ps)

]
as a transition functions, the definition of value functions

become identical to those in Bacon et al. [1].

By using Eq. 50, the loss at the average parameterized MDP can be written as

EC
[
C | p

]
= VΩ(s0). (51)

In addition, with Eq. 24, the soft robust loss can be written as

EC,p [C] =
∑
ps0

Ps0 (ps0)VΩ(s0, ps0). (52)

In the following part, we prove
∑

ps0
Ps0 (ps0)VΩ(s0, ps0) = VΩ(s0) by backward induction.

The case at the terminal state T :∑
psT

PsT (psT)VΩ(sT , psT) =
∑
psT

PsT (psT)
∑
ω

πΩ(ω | sT)QΩ(sT , ω, psT)

=
∑
psT

PsT (psT)
∑
ω

πΩ(ω | sT)
∑

a

πω(a | sT)C(sT , a)

=
∑
ω

πΩ(ω | sT)
∑

a

πω(a | sT)C(sT , a). (53)

VΩ(sT) =
∑
ω

πΩ(ω | sT)QΩ(sT , ω)

=
∑
ω

πΩ(ω | sT)
∑

a

πω(a | sT)C(sT , a). (54)

From Eq. 53 and Eq. 54, it is clear that
∑

psT
PsT (psT)VΩ(sT , p) = VΩ(sT), and∑

psT
PsT (psT)QΩ(sT , ω, psT) = QΩ(sT , ω).

The case at the state in t − 1, while assuming that
∑

pst
Pst (pst)VΩ(st, pst) = VΩ(st) and∑

pst
Pst (pst)QΩ(st, ω, pst) = QΩ(st, ω):

By substituting Eq.21, Eq.22, and Eq.23, VΩ(st−1, p) can be expanded:

VΩ(st−1, pst−1) =
∑
ω

πΩ(ω | st−1)QΩ(st−1, ω, pst−1)

=
∑
ω

πΩ(ω | st−1)
∑

a

πω(a | st−1)

·

C(st−1, a) + γ
∑

st

P
(
st | st−1, a, pst−1

) (
(1 − βω(st))QΩ(st, ω, pst−1) + βω(st)VΩ(st, pst−1)

) . (55)

18

By using the rectangularity assumption on P(p), the expectation of Eq. 55 can be transformed into∑
pst−1

Pst−1 (pst−1)VΩ(st−1, pt−1) =
∑
pst−1

Pst−1 (pst−1)
∑
ω

πΩ(ω | st−1)QΩ(st−1, ω, pt−1)

=
∑
ω

πΩ(ω | st−1)
∑

a

πω(a | st−1)

·

C(st−1, a) + γ
∑

st

∑
pst−1

Pst−1 (pst−1)P
(
st | st−1, a, pst−1

) ((1 − βω(st))
∑

pt
Pst (pst)QΩ(st, ω, pst)

+βω(st)
∑

pt
Pst (pst)VΩ(st, pst)

) .
(56)

By applying the assumption on value functions at t and letting
∑

pst−1
Pst−1 (pst−1)P

(
st | s, a, pst−1

)
be

Epst−1

[
P
(
st | st−1, a, pst−1

)]
, Eq. 56 can be further transformed into∑

ω

πΩ(ω | st−1)
∑

a

πω(a | st−1)

·

C(st−1, a) + γ
∑

st

Est−1

[
P
(
st | st−1, a, pst−1

)] (
(1 − βω(st))QΩ(st, ω) + βω(st)VΩ(st)

)︸ ︷︷ ︸
Qβ(st ,ω)

︸ ︷︷ ︸
Qω(st−1,ω,a)

=
∑
ω

πΩ(ω | st−1)QΩ(st−1, ω) = VΩ(st−1). (57)

From Eq. 56 and Eq. 57, it is clear that
∑

pst−1
Pst−1 (pst−1)VΩ(st−1, pst−1) = VΩ(st−1),

and
∑

pst−1
Pst−1 (pst−1)QΩ(st−1, ω, pst−1) = QΩ(st−1, ω).

Finally, by letting t = 1, we obtain
∑

ps0
Ps0 (ps0)VΩ(s0, ps0) = VΩ(s0).

�

Parameter Distributions for Our Experiment in Section 4

Table 1: Parameter distributions for our experiment.
µ and σ are the mean and standard deviation for
a Gaussian distribution, respectively. In addition,
high and low are the upper and lower bounds of
model parameters, respectively.

Half-Cheetah µ σ low high
torso mass 7.0 3.0 1.0 13.0
ground friction 1.6 0.8 0.1 3.1
joint damping 6.0 2.5 1.0 11.0
Walker2D µ σ low high
torso mass 6.0 1.5 3.0 9.0
ground friction 1.9 0.4 0.9 2.9
HopperIceBlock µ σ low high
ground friction 1.05 0.475 0.1 2.0

Table 2: Parameter distributions for our experi-
ment. value is a possible model parameter value
and P(value) is the probability for each of values.

Half-Cheetah value P(value)
Torso mass 1.0 0.9

13.0 0.1
Ground friction 0.1 0.9

3.1 0.1
Joint damping 1.0 0.9

11.0 0.1
Walker2D value P(value)
Torso mass 3.0 0.9

9.0 0.1
Ground friction 0.9 0.9

2.9 0.1
HopperIceBlock value P(value)
Ground friction 0.1 0.1

2.0 0.9

19

The Values of ζ and The Numbers of Successful Learning Trials in Our
Experiment in Section 4

Table 3: The values of ζ for OC3 in Section 4.
Half-Cheetah-cont Walker2D-cont HopperIceBlock-cont Half-Cheetah-disc Walker2D-disc HopperIceBlock-disc

−106.1 −1169.9 −441.3 214.9 −905.1 −331.7

Table 4: The numbers of successful learning trials in which the options produced by OC3 satisfy the CVaR
constraints. The values in the brackets are the total numbers of learning trials in each environment.

Half-Cheetah-cont Walker2D-cont HopperIceBlock-cont Half-Cheetah-disc Walker2D-disc HopperIceBlock-disc
36 (36) 35 (36) 35 (36) 36 (36) 35 (36) 36 (36)

The Performance of Methods in Environments with Different Model
Parameter Values

In Section 4, we elucidated the answers to questions from the viewpoint of the average-case loss (i.e.,
Eq. 1) and the worst-case loss (i.e., CVaR). Since the average-case loss and the worst-case loss are
summarized scores, readers may want to know about these scores in more detail. For this, we evaluate
the options, which are learned in Section 4, by varying model parameter values. The performance
(cumulative rewards13) of each method is shown in Figures 4 and 5. In the following paragraphs, we
rediscuss Q2 and Q3 on the basis of these results.

Regarding Q2, we compare the performances of OC3 and SoftRobust, in the environments with the
worst-case model parameter value. From Figures 4 and 5, we can see that OC3 performs almost
the same or even better than SoftRobust, in the environments with the worst-case model parameter
value. For example, in Walker2D with a continuous model parameter distribution (b in Figure
4), the minimum performance of OC3 is at Ground friction = 9.0. This minimum performance is
significantly better than that of SoftRobust (the performance at Torso mass = 9). For another example,
in HopperIceBlock with the discrete distribution (c in Figure 5), minimum performances of all the
methods are at Ground friction = 0.1. Here, the minimum performance of OC3 is significantly higher
than that of SoftRobust.

Examples of the motion trajectories (Figure 6) indicate that SoftRobust tends to ignore rare cases
in learning options, whereas OC3 considers them. SoftRobust produces option policies that cause
a hopper to run with its torso overly bent forward. Although the policies enable the hopper to
easily jump over the box in the ordinary case (ground friction = 2.0), they cause the hopper to
slip and fall in the rare case (ground friction = 0.1). This illustrates that SoftRobust does not
sufficiently consider the rare case while learning options. On the other hand, OC3 produces option
policies that lead the hopper to move by waggling its foot while keeping its torso vertical against
the ground. In the ordinary case, the hopper hops up, lands on the box, and then passes through
the box by slipping on it. In the rare case, the hopper stops its movement when it reaches the
place near the box, without hopping onto it. This behaviour prevents the hopper from slipping and
falling in the rare case. Further examples are shown in the video at the following link: https:
//drive.google.com/open?id=1DRmIaK5VomCey70rKD_5DgX2Jm_1rFlo

Regarding Q3, we compare the performance of OC3 with that of the worst-case methods (WorstCase
and EOOpt-0.1) in the ordinary case. For performance in environments with a continuous distribution,
we compare their performances on model parameter values that appeared frequently in the learning
phase (i.e., performance around the center point in Figure 4). From this viewpoint, we can see that
OC3 performs significantly better than the worst-case methods. For example, in HopperIceBlock,
OC3 performs significantly better around Ground friction = 1.05 than WorstCase and EOOpt-0.1.
For performance in environments with discrete distributions, we compare the performances of the
methods in the frequent cases. From the comparison, we can see that OC3 perform better than the

13This is equal to the negative of the loss.

20

https://drive.google.com/open?id=1DRmIaK5VomCey70rKD_5DgX2Jm_1rFlo
https://drive.google.com/open?id=1DRmIaK5VomCey70rKD_5DgX2Jm_1rFlo

(a) Half-Cheetah

(b) Walker2D (c) HopperIceBlock

Figure 4: Comparison of methods in environments with different model parameter values. In each figure, the
vertical axis represents performance (the negative of the loss) of each method and the horizontal axis represents
the model parameter value. Each score is averaged over 36 trials with different initial random seeds, and the 95%
confidence interval is attached to the score. In option learning, the model parameter values are probabilistically
generated by continuous distributions shown in Table 1. Therefore, in each figure, the value of the model
parameter which is closer to the center point appears more frequently.

worst-case methods in all cases. For example, in HopperIceBlock, OC3 performs significantly better
at Ground friction = 2 than WorstCase and EOOpt-0.1.

Additionally, we conduct an experimental evaluation with the condition that model parameter distribu-
tion and parameter value ranges in the test phase are different from those in the training phase. In the
training phase, the option policies 14 are learned in environments with continuous model parameter
distribution (Half-Cheetah-cont, Walker2D-cont, and HopperIceBlock-cont), which is truncated
Gaussian distribution with the parameters shown in Table 1. In the test phase, the model param-
eter distribution is changed to uniform distribution. The range of the distribution is determined
as

[
(high + low)/2 − scale factor · (high − low)/2, (high + low)/2 + scale factor · (high − low)/2

]
,

where low and high are ones in Table 1 and scale factor is non-negative real number to scale
the value range 15. We evaluate the learned options with varying the scale factor. The results (Fi-
grue 7) shows that the performance of OC3 is better than that of SoftRobust when the scale factor is
large (i.e., when the model parameter distibution is highly uncertain).

14Here, we compare ones learned by OC3 and SoftRobust.
15If the model parameter values sampled from the distribution are invalid (i.e., negative or zero), these are

replaced by the value 0.0001.

21

(a) Half-Cheetah

(b) Walker2D (c) HopperIceBlock

Figure 5: Comparison of methods in environments with different model parameter values. In each figure, the
vertical axis represents the performance (the negative of the loss) of each method and the horizontal axis
represents the model parameter value. Each score is averaged over 36 trials with different initial random seeds,
and the 95% confidence interval is attached to the score. In option learning, the model parameter values are
probabilistically generated by discrete distributions shown in Table 2. For Half-Cheetah and Walker2D, the
model parameter values on the left side of each figure appear more frequently while learning options. In addition,
for HopperIceBlock, the model parameter values on the right side of the figure appears more frequently while
learning options.

22

(a) SoftRobust at friction= 0.1 (b) SoftRobust at friction= 2.0

(c) OC3 at friction= 0.1 (d) OC3 at friction= 2.0

Figure 6: Example motion trajectories generated by SoftRobust and OC3 in the HopperIceBlock environment
with the discrete model parameter distribution.

(a) Half-Cheetah-cont (b) Walker2D-cont (c) HopperIceBlock-cont

Figure 7: The performance of SoftRobust and OC3 in environments with uniform model parameter distribution.
In each figure, the vertical axis represents the performance (the negative of the loss) of each method and the
horizontal axis represents the scale factor for the range of the uniform distribution. Each score is averaged over
36 trials with different initial random seeds, and the 95% confidence interval is attached to the score.

23

