Appendix for A Model to Search for Synthesizable

Molecules

A Appendix

A.1 Generation Benchmarks on ZINC

We also ran the baselines for the generation task on the ZINC dataset [[rwin et al., | 2012]. The results

are shown in Table[Il

Table 1: Table showing generation results for the baseline models when trained on ZINC dataset [Irwin
et al., 2012]. The first four result columns show the validity, uniqueness, novelty and normalized
quality (all as %, higher better) of the molecules generated from decoding from 20k random samples
from the prior p(z). Quality is the proportion of molecules that pass the quality filters proposed in
Brown et al.|[2019, §3.3], normalized such that the score on the USPTO derived training dataset (used
in the main paper) is 100. FCD is the Fréchet ChemNet Distance [Preuer et al.,|2018|], capturing a
notion of distance between the generated molecules and the USPTO derived training dataset used in

the main paper.

Model Name Validity Uniqueness Novelty Quality FCD
AAE [Kadurin et al.|[2017, [Polykovskiy et al., 2018] 87.64 100.00 99.99 96.12 7.27
CGVAE [Liu et al.l 2018] 100.00 95.39 96.54 4348 1530
CVAE [Gomez-Bombarelli et al., 2018] 0.31 40.98 2459 12854 40.10
GVAE [Kusner et al.[|2017]] 3.66 85.23 95.08 38.86 27.31
LSTM [Segler et al., [2017] 95.71 99.98 99.93 108.68 7.99

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A.2 Further Random Walk Examples and Rationales for Expert Annotation

Rationales for expert labels in Figure 9 in the main text. Denoted using letters for letters for
rows and numbers for columns. A3: Unstable, enol; A5: unstable, aminal; B2: reactive, radical; B4:
unstable ring system; B5: toxic, reactive sulfur-chloride bond, unstable ring system; B6: unstable
ring system; B7: unstable ring system; B9: toxic: thioketone.

Starting molecules | unstabl

2018

CVAE

(Gomez-Bormoarel ot .

o)

(Kusner ot o,

53
3

reactants

. = - P e N N 4
PO G r G et R o R

Molecule Chef Molecule Chef

products

Figure 1: Another example random walk in latent space. See §4.4 of main paper for further details.
The rationals for the labels are (using letters for letters for rows and numbers for columns): Al:
Unstable, gemthiolol; A7: unstable, gem-aminohydroxyl; B3: corrosive, acyl fluoride BS: corrosive,
acyl fluoride; B6: corrosive, acyl chloride; B7: corrosive, acyl chloride; B9: corrosive, acyl bromide

CVAE
(@émez-Bombareli et al, 2018)

(Kusner etal, 2017)

GVAE

reactants

products

Molecule Chef Molecule Chef

Figure 2: Another example random walk in latent space. See §4.4 of main paper for further details.
The rationals for the labels are (using letters for letters for rows and numbers for columns): Al: toxic,
explosive, hydrazine, three consecutive aliphatic nitrogens; A2: toxic, hydrazine; A3: toxic, unstable,
hydrazine, hemithioacetal; A4: toxic, hydrazine; A5: unstable, could be oxidized to 1,3,4-triazol,
potentially also toxic due to N-N bond/hydrazine; A6: unstable, three-membered ring is antiaromatic;
AT: toxic, hydrazine; A8: toxic, explosive, hydrazine, three consecutive aliphatic nitrogens. B4:
unstable, hemiacetal; BS-B8: unstable, unfavorable ring systems

A.3 Further Retrosynthesis Results

In this section we first provide more retrosynthesis examples before also describing an extra exper-
iment in which we try to assess how well the retrosynthesis pipeline is at finding molecules with
similar properties, even if not reconstructing the correct reactants themselves.

A.3.1 Further Examples

oS

predicted reactants

o

predicted reactants

I \ " \ L

I . : I p

B Y10 ! Xy l - ! Lj .

| o 0 Y0 L T

I ! I !

1 products : 1 products :

' i ' i

I ! I]

| T !] A —+

1) i 1 __\ | J\f(

I QO i ! ~

reactants re?ctams

\s_______ \s___ e O

USPTO Dataset predicted product USPTO Dataset predicted product
(@) (b)

- oo \\ predicted reactants e == \\ predicted reactants

' W\ (] ' L

I ; I 2.0 . o, i

| [j 1 | 1

' “ I © ' i

I ! I o

1 products I 1 products I "

' i ' I

! |) ! | ~

| | I 0

l. , , | o

I i '

| SO oY

- ___f:f:”“ (Y !

== USPTO Dataset __USPTO Dataset

predicted product predicted product

(©) (d

Figure 3: Further examples of the predicted reactants associated with a given product for prod-
uct molecules not in MOLECULE CHEF’s training dataset, however with reactants belonging to
MOLECULE CHEF’s vocabulary (ie Reachable Dataset).

,—F_____\ ,'_______\

pred/cred reactants predicted reactants

\ \

' " (] ' L]
I © ! i - ; o
e | F@f@ o 1 ' ~
T I s
I B o |
: : products : : products :
! o | - |

O | N ¢ |
! g%m I a0 ! /@ i .
I Y) @ I b\ Ké I I
1 IQ | /@q ‘4A3 | |
\ 1 reactants I L /e?ctmts’

N ——
USPTO Dataset

s ——
predicted product USPTO Dataset predicted product

(@ (b)

Figure 4: Further examples of the predicted reactants associated with a given product for prod-
uct molecules not in MOLECULE CHEF’s training dataset, with at least one reactants not part of
MOLECULE CHEF’s vocabulary (ie Unreachable Dataset).

A.3.2 ChemNet Distances between Products and their Reconstructions

We also consider an experiment for which we analyze the Euclidean distance between the ChemNet
embeddings of the product and the reconstructed product (found by feeding the original product
through our retrosynthesis pipeline and then the Molecular Transformer). ChemNet embeddings are
used when calculating the FCD score [Preuer et al., 2018|] between molecule distributions, and so
hopefully capture various properties of the molecule [Mayr et al.,|2018|]. Whilst learning MOLECULE
CHEF we include a NN regressor from the latent space to the associated ChemNet embeddings, for
which the MSE loss is minimized during training.

To try to establish an idea of how randomly chosen pairs of molecules in our dataset differ from
each other, when measured using this metric, we provide a distribution of the distances of random
pairs. This distribution is formed by taking each of the molecules in our dataset (consisting of all the
reactants and their associated products) and matching it up with another randomly chosen molecule
from this set, before measuring the Euclidean distance between the embeddings of each of these
pairs.

The results are shown in Figure 5] We see that the distribution of distances between the products and
their reconstructions has greater mass on smaller distances compared to the random pairs baseline.

matched pairs —— random pairs matched pairs —— random pairs
0.3
0.3
0.2
0.2
0.1 0.1
0.0 0.0
0 5 10 0.0 25 50 75 100 125

Euclidean distance between ChemNet embeddings

(a) When evaluated on the portion of USPTO
test set reactions for which both reactants are
present in the MOLECULE CHEF’s vocabulary.

Euclidean distance between ChemNet embeddings

(b) When evaluated on the portion of USPTO
test set reactions for which at least one reac-
tant is not present in the MOLECULE CHEF’s

vocabulary.

Figure 5: KDE plot showing the distribution of the Euclidean distances between the ChemNet
embeddings [Preuer et al., 2018 of our product and reconstructed product.

A.4 Details about our Dataset

In this section we provide further details about the molecules used in training our model and the
baselines. We also describe details of the molecules used in the retrosynthesis experiments.

For MOLECULE CHEF’s vocabulary we use reactants that occur at least 15 times in the USPTO train
dataset, as processed and split by [Jin et al.|[2017]]. This dataset uses reactions collected by [Lowe
[2012] from USPTO patents. In total we have 4344 reactants, and a training set of 34426 unique
reactant bags for which these reactants co-occur. Each reactant bag is associated with a product.

For the baselines we train on these reactants and the associated products. This results in
a dataset of approximately 37000 unique molecules, containing a wide variety of heavy el-
ements: { ’Al’, °B’, ’Br’, °C’, °Cl’, ’Cr’, ’Cu’, ’F’, °I’, ’K’, °Li’, ’Mg’,
7Mn7, 7N7, 7Na7’ 707, 7P’, 7S7, 7Se7’ 7Si7, 7Sn7’)Zn7 } .

Some examples of the molecules found in the dataset are shown in Figure [6] Note that the large
number of heavy atoms present, as well as the small overall dataset size, makes a challenging learning
task compared to when using some of the more common benchmark datasets used elsewhere (such as
ZINC [Irwin et al.,[2012]).

We use examples from the USPTO test dataset when performing the retrosynthesis experiments.
However, we first filter out any reactions for which the exact same reactant/product multisets tuple is

" "
e ° " <
~ LN " cH
. O T Lty P
He) o | | e N o 3
~ > \ |
o o | | NP H o
We—cn O e o W o .
3 ° @
" N
H H e . = He W
O L IO A i
| | He SoH o o N He "
HC cH No | |
N d " 1
c ud o = " (=
" o Saon "
e ,

Figure 6: Examples of molecules found in the dataset we use for training the baselines. This is a subset
of the molecules found in USPTO [Lowe, [2012]]. It consists of the reactants that the MOLECULE
CHEF can produce along with their corresponding products. It contains complex molecules with
challenging structures to learn.

also present in the training data for MOLECULE CHEIﬂ Then we split the resultant dataset into two
subsets. The first, which we refer to as the reachable dataset, contains only reactants in MOLECULE
CHEF’s vocabulary. The second, which we refer to as the unreachable dataset contains reactions with
at least one reactant not in the vocabulary.

A.5 Implementation Details
Details of MOLECULE CHEF’s architecture and parameters

An overview of MOLECULE CHEF’s architrecture can be seen in Figure[7] The encoder takes in
a multiset of reactants and outputs the parameters of a Gaussian distribution over z. The decoder
maps from the latent space to a multiset of reactant molecules. Both of these networks rely in turn on
vector representations of molecules computed by a graph neural network. We provide details of these
networks’ architectures below as well as training details. Further information can be found in our
code available at https://github.com/john-bradshaw/molecule-chef.

Computing vector representations of molecular graphs using graph neural networks For
computing the vector representation of molecular graphs we used Gated Graph Neural Networks [Li
et al.,[2016]], with the same network shared in both the encoder and decoder. We run these networks
for 4 propagation steps and the node representations have a dimension of 101. We initialise the
node reprsentations with the atom features shown in Table 2| The final step’s node representation is
projected down to a dimension of 50 by using a learnt linear projection. Graph level representations
are formed from these node representations by performing a weighted sum.

! After canonicalisation and the removal of reagents, the USPTO train and test dataset has some reactions
present in both sets.

https://github.com/john-bradshaw/molecule-chef

4\;,“ | e /#JN [y *‘ | e reaction predictor
EOOO0 OEO0O0 2 0O008 .
% r —OH

generate reactant bag
t

H X
probability

latent space RNN
cell

. w,
m reaction predictor

latent space multiset of reactants multiset of products

encoder
order-invariant
i combination %—Br
o

w1

reactant bag reactant

latent space embedding embedding

Figure 7: Overview of MOLECULE CHEF showing how the encoder and decoder fit together.

Table 2: Atom features we use as input to the GGNN. These are calculated using RDKit.

Feature Description

Atom type 72 possible elements in total, one hot
Degree One hot (0, 1,2, 3,4,5,6,7, 10)

Explicit Valence One hot (0, 1,2, 3,4,5,6,7, 8, 10, 12, 14)
Hybridization One hot (SP, SP2, SP3, Other)

H count integer

Electronegativity float

Atomic number integer

Part of an aromatic ring boolean

Encoder The encoder sums the vector representations of the molecules present in the reactant
multiset to get a 50 dimensional vector representation of the entire multiset. This representation is
fed through a single hidden layer NN (with a hidden layer size of 200) to parameterise the mean and
diagonal of the covariance matrix of a 25 dimensional multivariate-Gaussian distribution over z.

Decoder The decoder maps from the the latent space, z, to a multiset of reactants. It does this
through a sequential process, selecting one reactant at a time using a gated recurrent unit (GRU) [[Cho
et al.| 2014]] RNN. The parameters used for this GRU are shown in Table@ The initial hidden state
of the RNN is set using the result from a learnt linear projection of z. The final output of the GRU is
fed through a single hidden layer NN (with a hidden size of 128) to form a final output vector. The
dot product of this final output vector is formed with each of the possible reactant embeddings as
well as the HALT embedding to form logits for the next output of the decoder. The embedding of the
reactant selected is fed back in as input into the RNN at the next step.

Table 3: Parameters for GRU used in decoder

Parameter Value
GRU hidden size 50
GRU number of layers 2

GRU maximum number of steps 5

Property Predictor In §3.2 of the main paper we discuss how we also can train a property predictor
from the latent space to a property of interest such as the QED, while traing the WAE. For the
QED property predictor NN we use a fully connected network with two hidden layers, both with
dimensionality of 40. The loss from this network is added to the WAE loss when training the model
for the local optimization and retrosynthesis tasks.

Training We train the WAE (and property predictor when applicable) for 100 epochs. We use the
Adam optimizer [Kingma and Bal 2015]], with an initial learning rate of 0.001. We decay the learning
rate by a factor of 10 every 40 epochs.

Implementation Details for the Baselines in Section 4.1 of Main Paper

For the baselines in the generation section in the main paper we use the following implementations:

e CGVAE [Liu et al., 2018]): https://github.com/microsoft/
constrained-graph-variational-autoencoder

e LSTM [Segler et al| 2017], : https://github.com/BenevolentAI/guacamol_
baselines

e AAE [Kadurin et al.,, 2017, [Polykovskiy et al, 2018]: https://github.com/
molecularsets/moses/tree/master/moses/aae

o GVAE [Kusner et al.,[2017]]: https://github.com/mkusner/grammarVAE
o CVAE [Gomez-Bombarelli et al., 2018]]: https://github.com/mkusner/grammarVAE

The LSTM baseline implementation follows |Segler et al.| [2017]], which has as its alphabet a list of all
individual element symbols, plus special characters used in SMILES strings. This differs from the
alphabet used by the decoder in the Molecular Transformer [Schwaller et al.l 2019], which instead
extracts “bracketed” atoms directly from the training set; this means that a portion of a SMILES
string such as [OH+] or [NH2-] would be represented as a single symbol, rather than as a sequence
of five symbols. A regular expression can be used to extract a list of all such sequences from the
training data. Effectively, this makes the trade off of increasing the alphabet size (from 47 to 203
items), while reducing the chance of making syntax errors or suggesting invalid charges. In practice
we found very little qualitative or quantitative difference in the performance of the LSTM model for
the two alphabets; for sake of consistency with MOLECULE CHEF we report the baseline using the
larger alphabet.

For the CGVAE we decide to include element-charge-valence triplets that occur at least 10 times over
all the molecules in the training data. At generation time we pick one starting node at random.

Other Details

The majority of the experiments for MOLECULE CHEF were run on a NVIDIA Tesla K80 GPU. For
running the Molecular Transformer and CGVAE, we used NVIDIA P100 and P40 GPUs, as the latter
in particular required a large memory GPU for training on the larger datasets.

For MOLECULE CHEF we have not tried a wide range of hyperparameters. For the latent dimension-
ality we initially tried a dimension of 100 before trying and sticking with 25. Initially, we did not
anneal the learning rate but found slightly improved performance by annealing it by a factor of 10
after 40 epochs. These changes were made after considering the reconstruction error of the model on
the validation set (the validation dataset of USPTO restricted to the reactants in MOLECULE CHEF’S
vocabulary).

https://github.com/microsoft/constrained-graph-variational-autoencoder
https://github.com/microsoft/constrained-graph-variational-autoencoder
https://github.com/BenevolentAI/guacamol_baselines
https://github.com/BenevolentAI/guacamol_baselines
https://github.com/molecularsets/moses/tree/master/moses/aae
https://github.com/molecularsets/moses/tree/master/moses/aae
https://github.com/mkusner/grammarVAE
https://github.com/mkusner/grammarVAE

References

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):
1096-1108, 2019. doi: 10.1021/acs.jcim.8b00839.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724—1734, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https:
//www.aclweb.org/anthology/D14-1179|

Rafael Gémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernandez-Lobato, Ben-
jamin Sdnchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P
Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a Data-Driven continuous
representation of molecules. ACS Cent Sci, 4(2):268-276, February 2018.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. ZINC: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757-1768, 2012.

Wengong Jin, Connor W Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction
outcomes with Weisfeiler-Lehman network. In Advances in Neural Information Processing Systems,
2017.

Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen, Kuzma
Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep adversarial
autoencoders for new molecule development in oncology. Oncotarget, 8(7):10883, 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Matt J Kusner, Brooks Paige, and José Miguel Herndndez-Lobato. Grammar variational autoencoder.
In International Conference on Machine Learning, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. International Conference on Learning Representations, 2016.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained graph
variational autoencoders for molecule design. In Advances in neural information processing
systems, 2018.

Daniel Mark Lowe. Extraction of chemical structures and reactions from the literature. PhD thesis,
University of Cambridge, 2012.

Andreas Mayr, Giinter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jorg K. Wegner, Hugo
Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine
learning methods for drug target prediction on chembl. Chem. Sci., 9:5441-5451, 2018. doi:
10.1039/C8SC00148K. URL http://dx.doi.org/10.1039/C8SCO0148K.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, Artur Kadurin, Sergey Nikolenko, Alan Aspuru-Guzik, and Alex Zhavoronkov. Molecular
Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. arXiv preprint
arXiv:1811.12823,2018.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Giinter Klambauer. Fréchet
chemnet distance: A metric for generative models for molecules in drug discovery. Journal of
Chemical Information and Modeling, 58(9):1736-1741, 2018. doi: 10.1021/acs.jcim.8b00234.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas
Bekas, and Alpha A. Lee. Molecular transformer: A model for uncertainty-calibrated chemical
reaction prediction. ACS Central Science, 5(9):1572-1583, 2019. doi: 10.1021/acscentsci.9b00576.

https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://dx.doi.org/10.1039/C8SC00148K

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 4(1):
120-131, 2017.

	Appendix
	Generation Benchmarks on ZINC
	Further Random Walk Examples and Rationales for Expert Annotation
	Further Retrosynthesis Results
	Further Examples
	ChemNet Distances between Products and their Reconstructions

	Details about our Dataset
	Implementation Details

