
A Appendix376

A.1 Proof of Theorem 1377

Theorem 1. For any sample S = (x1, . . . , xm), the empirical Rademacher complexity of a hypothesis378

set H is defined by R̂S(H) = Eσ

[
suph∈H

∑m
i=1 σih(xi)

]
, where, σis, i ∈ [m], are independent379

uniformly distributed random variables taking values in {−1, 1}. The following upper bound holds380

for the empirical Rademacher complexity ofHn,λ,q:381

R̂S(Hn,λ,q) ≤ λ
√

(4n+ 2) log2(d+ 2) log(m+ 1)

m
,

where d is input data dimension.382

Proof. For the purpose of this proof, letHn be the family of binary decision trees with leaf values383

wj ∈ {−1,+1}. We use the regularization in the family Hn,λ,q and the connection to the family384

Hn in the proof below. Additionally, let r ≥ 1 such that 1
r + 1

q = 1, meaning that the r−norm is385

the dual to the q−norm. To aid the presentation in the proof, we are going to define a vector σ̂ s.t.386

[σ̂]j =
∑
xi∈leafj σi, the j-th coordinate of which contains the sum of the Rademacher variables that387

correspond to the sample points that fall within j-th leaf of a tree h.388

R̂S(Hn,λ,q) =
1

m
E
σ

[
sup

h∈Hn,λ,q

[ m∑
n=1

σnh(xn)

]]
(12)

=
1

m
E
σ

[
sup

h∈Hn,λ,q

[
σ̂ ·w

]]
(13)

≤ 1

m
E
σ

[
sup

h∈Hn,λ,q
‖σ̂‖r‖w‖q

]
(14)

≤ λ

m
E
σ

[
sup
h∈Hn

‖σ̂‖r
]

(15)

≤ λ

m
E
σ

[
sup
h∈Hn

‖σ̂‖1
]

(16)

=
λ

m
E
σ

[
sup
h∈Hn

n∑
i=1

|[σ̂]i|
]

(17)

=
λ

m
E
σ

[
sup
h∈Hn

∑
l∈leaves(h)

∣∣ m∑
i=1

σi1{xi∈l}
∣∣] (18)

≤ λ

m
E
σ

[
sup

h∈Hn,sl∈{+1,−1}

∑
l∈leaves(h)

sl

m∑
i=1

σi1{xi∈l}

]
(19)

=
λ

m
E
σ

[
sup

h∈Hn,sl∈{+1,−1}

m∑
i=1

σi
∑

l∈leaves(h)

sl1{xi∈l}

]
(20)

≤ λ
√

(4n+ 2) log2(d+ 2) log(m+ 1)

m
(21)

Where n is the number of internal nodes, and d is the input data dimension. The inequality (14) is a389

direct application of the Hölder’s inequality for dual norms. The inequality (16) uses ‖ · ‖r ≤ ‖ · ‖1.390

The equality (18) directly follows from the definition of σ̂. The last inequality (21) follows from the391

fact that the VC-dimension of binary classification trees can be bounded by (2n + 1) log2(d + 2)392

Mohri et al. [2012] and a direct application of Massart’s lemma Massart and Picard [2007].393

11



A.2 Proof of Theorem 2394

Theorem 2. Fix ρ > 0. Let Hk = Hnk,λk,qk , where (nk), (λk) are sequences of constraints on395

the number of internal nodes n and the leaf vector norm ‖w‖q. Define F = conv(∪Kk=1Hk). Then,396

for any δ > 0, with probability at least 1− δ over the draw of a sample S of size m, the following397

inequality holds for all f =
∑T
t=1 αtht ∈ F :398

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtλIt

√
(4nIt + 2) log2(d+ 2) log(m+ 1)

m
+ C(m,K),

where It is the index of the subclass selected at time t and C(m,K) = O

(√
log(K)
ρ2m log

[
ρ2m

log(K)

])
.399

Proof. For this proof we are going to make use of the generalization bounds for broad families of400

real-valued functions given in Theorem 1 of [Cortes et al., 2014]. Adapted to our notation, it states401

that for any f from a family of real-valued functions F that is equal to the convex hull of ∪Kk=1Hk,402

for any δ > 0 with probability at least 1 − δ over the choice of sample S ∼ Dm, the following403

generalization bound holds:404

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtRm(Ht) +
2

ρ

√
logK

m
+

√⌈
4

ρ2
log

(
ρm2

logK

)⌉
logK

m
+

log( 2
δ )

2m
.

where αt is are the weights that represent f in the convex hull of ∪Kk=1Hk, that is f =
∑T
t=1 αtht405

s.t. α = [α1, . . . , αT ] is in the simplex ∆. This bound is directly applicable to the Regularized406

Gradient Boosting that we define, since at each boosting round, the algorithm selects a base predictor407

ht ∈ Ht, and multiplies it by a coefficient αt. Thus, after T boosting rounds, we will have obtained408

an ensemble f such that f =
∑T
t=1 αtht ∈ conv(∪Kk=1Hk) and α directly in the simplex ∆.409

Applying the Rademacher complexity bound on the regularized families of regression treesHn,λ,q410

that we derived in Theorem 1 and noting that411

2

ρ

√
logK

m
+

√⌈
4

ρ2
log

(
ρm2

logK

)⌉
logK

m
+

log( 2
δ )

2m
= O

(√
log(K)

ρ2m
log
[ ρ2m

log(K)

])
(22)

We obtain the expression for the bound in Theorem 2.412

A.3 Proof of Lemma 3413

Lemma 3. Assume that Φ(y, h) is differentiable with respect to the second argument, and that ∂Φ
∂h414

CΦ(y)-Lipschitz with respect to the second argument, for any fixed value y of the first argument. for415

all k ∈ [0,K], define L′k(α) = ∂L
∂αk

. Then, L′k(α) is Lipschitz-continuous with the corresponding416

Lipschitz constants Ck bounded as follows:417

Ck ≤
1

m

m∑
i=1

h2
k(xi)CΦ(yi). (23)

Proof. The k-th derivative of L(α) is equal to (except αk = 0):418

L′k(α) =
1

m

m∑
i=1

∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
hk(xi) + ck, (24)

where ck = βλk

√
(4nk+2) log2(d+2) log(m+1)

m . Let ek be the k-th standard basis vector, then419
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∣∣∣∣L′k(α)− L′k(α + δek)

∣∣∣∣ =

∣∣∣∣ 1

m

m∑
i=1

hk(xi)

[
∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
− ∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi) + δhk(xi)

)]∣∣∣∣
≤ 1

m

m∑
i=1

|hk(xi)|
∣∣∣∣∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
− ∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi) + δhk(xi)

)∣∣∣∣
=

1

m

m∑
i=1

|hk(xi)|
∣∣∣∣∂Φ

∂h

(
yi, f

)
− ∂Φ

∂h

(
yi, f + δhk(xi)

)∣∣∣∣
≤ 1

m

m∑
i=1

|hk(xi)|CΦ(yi)
∣∣hk(xi)

∣∣|δ|
=

1

m

m∑
i=1

h2
k(xi)CΦ(yi)|δ|

Thus, L′k(α) is Lipschitz-continuous with the corresponding Lipschitz constant bounded by420
1
m

∑m
i=1 h

2
k(xi)CΦ(yi).421

422

A.4 Proof of Lemma 4423

Lemma 4. . For each k ∈ [0,K] let Hnk,λk,2 be the family of regularized regression trees with424

‖w‖2 ≤ λk and the number of internal nodes bounded by nk. The regularized objective L(α) as425

in Equation 7 has Lipschitz-continuous derivatives with the coordinate-wise Lipschitz constants Ck426

bounded as follows:427

Ck ≤ λk
[

max
1≤i≤m

CΦ(yi)

]
. (25)

Proof. For a sample S and a fixed tree h let ηl be the number of sample points falling within the leaf428

l.429

Ck ≤
1

m

[
max

1≤i≤m
CΦ(yi)

] m∑
i=1

h2
k(xi)

≤ 1

m

[
max

1≤i≤m
CΦ(yi)

] ∑
l∈leaves(hk)

ηlw
2
l

≤ 1

m

[
max

1≤i≤m
CΦ(yi)

]
‖w‖2 max

l∈leaves(hk)
ηl

≤ ‖w‖2
[

max
1≤i≤m

CΦ(yi)

]
≤ λk

[
max

1≤i≤m
CΦ(yi)

]

This results in the coordinate sampling distribution for the Randomized Coordinate Descent.430

pk =
λk∑K
j=1 λj

(26)

431
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Table 2: Dataset statistics

sonar cancer diabetes ocr17 ocr49 mnist17 mnist49
Examples 208 699 768 2000 2000 15170 13782
Features 60 9 8 196 196 400 400

A.5 Descriptive statistics of the UCI datasets432

Note that mnist17 and mnist49 refer to the original 20-by-20 pixel datasets, where only two digits433

(1,7 and 4,9 respectively) were sampled. The cancer dataset refers to the breastcancer dataset in the434

UCI repository.435
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