
A Statistical Learning with Generative Priors

So far, we have assumed L to be strongly convex in (1), see Assumption 1 and Theorem 1. In this
section, we relax this assumption on L in the context of statistical learning with generative priors, thus
extending Theorem 1 to applications such as compressive sensing. We also provide the corresponding
generalization error in this section.

Here, we follow the standard setup in learning theory Mohri et al. [2018]. Consider the probability
space (X, χ), where X ⊂ Rd is a compact set, equipped with the Borel sigma algebra, and χ is
the corresponding probability measure. To learn an unknown parameter w\ ∈ Rd, consider the
optimization program

min
w∈Rp

L(w), L(w) := Ex∼χl(w, x), (15)

where L : Rp → R is the differentiable population risk and l : Rd×Rp → R is the corresponding loss
function. We also assume that Program (15) has a unique solution w\ ∈ Rp. The probability measure
χ above is itself often unknown and we instead have access to m samples drawn independently from
χ, namely, {xi}mi=1 ∼ χ. This allows us to form the empirical loss

Lm(w) :=
1

m

m∑
i=1

l(w, xi). (16)

Often, m� p and to avoid an ill-posed problem, we must leverage any inherent structure in w\. In
this work, we consider a differentiable map G : Rs → Rd and we assume that w\ ∈ G(Rs). That is,
there exists z\ ∈ Rs such that w\ = G(z\). While not necessary, we limit ourselves in this section to
the important case where G corresponds to a neural network, see Section 1.

To learn w\ with the generative prior w\ = G(z\), we propose to solve the program

minimize
w,z

Lm(w) +R(w) +H(z)

subject to w = G(z),
(17)

where R : Rp → R and H : Rs → R are convex but not necessarily smooth. Depending on the
specific problem at hand, the regularizers R and H allow us to impose additional structure on w and
z, such as sparsity or set inclusion. Throughout, we again require that the proximal maps [Parikh
et al., 2014] for R and H can be computed efficiently, as detailed in Section 2.

Let us now state our assumptions, some of which differ from Section 3.

Assumption 4. Convexity / strong smoothness of loss: We assume that l(·, ·) is convex in both of
its arguments. Moreover, we assume that l(w, ·) is strongly smooth, namely, there exists σl ≥ 0 such
that for every x, x′ ∈ X

Dl(x, x
′;w) ≤ σl

2
‖x− x′‖22, (18)

where Dl stands for the Bregman divergence associated with l(w, ·),

Dl(x, x
′;w) = l(w, x′)− l(w, x)− 〈x′ − x,∇xl(w, x)〉.

Assumption 5. Strong convexity / smoothness of the population risk: We assume that the popu-
lation risk L defined as

L(w) := Ex∼χl(w, x), (19)

is both strongly convex and smooth, i.e., there exist 0 < ζL ≤ σL such that

ζL
2
‖w − w′‖2 ≤ DL(w,w′) ≤ σL

2
‖w − w′‖2,

DL(w,w′) = L(w′)− L(w)− 〈w′ − w,∇L(w)〉, (20)

for every w,w′ ∈ Rd. In the following we denote by w\ the minimizer of (19). In view of our
assumption, such minimizer is unique.
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Assumptions 4 and 5 are standard in statistical learning Mohri et al. [2018]. For example, in linear
regression, we might take

l(w, x) =
1

2
|〈w − w\, x〉|2,

Lm(w) =
1

2m

m∑
i=1

|〈w − w\, xi〉|2,

for which both Assumptions 4 and 5 are met. Lastly, we require that the Assumptions 2 and 3 on G
hold in this section, see and Proposition 1 for when these assumptions hold for generative priors.

As a consequence of Assumption 4, we have that Lm is convex. We additionally require Lm to be
strongly convex and smooth in the following restricted sense. Even though Lm is random because
of its dependence on the random training data {xi}mi=1, we ensure later in this section that the next
condition is indeed met with high probability when m is large enough.
Definition 1. Restricted strong convexity / smoothness of empirical loss: We say that Lm is
strongly convex and smooth on the set W ⊂ Rp if there exist 0 < µL ≤ νL and µL, νL ≥ 0 such that

DLm(w,w′) ≥ µL
2
‖w′ − w‖22 − µL,

DLm(w,w′) ≤ νL
2
‖w′ − w‖22 + νL, (21)

DLm(w,w′) := Lm(w′)− Lm(w)− 〈w′ − w,∇Lm(w)〉,

for every w,w′ ∈W .

Under the above assumptions, a result similar to Theorem 1 holds, which we state without proof.
Theorem 2. (guarantees for Algorithm 1) Suppose that Assumptions 2-5 hold. Let (w∗, z∗) be a
solution of program (1) and let λ∗ be a corresponding optimal dual variable. Let also {wt, zt, λt}t≥0

denote the output sequence of Algorithm 1. Suppose that Lm satisfies the restricted strong convexity
and smoothness in Definition 1 for a set W ⊂ Rp that contains a solution w∗ of (1) and all the
iterates {wt}t≥0 of Algorithm 1.1 Suppose also that the primal step sizes α, β in Algorithm 1 satisfy

α ≤ 1

νρ
, β ≤ 1

ξρ + 2ατ2
ρ

. σ0 ≤ σ0,ρ, (22)

Then it holds that

‖wt − w∗‖22
α

+
‖zt − z∗‖22

β
≤ 2(1− ηρ)t∆0 +

ηρ
ρ
, (23)

‖wt −G(zt)‖22 ≤
4(1− ηρ)t∆0

ρ
+
η̃ρ
ρ2
, (24)

for every iteration t. Above, ∆0 = Lρ(w0, z0, λ0)−Lρ(w∗, z∗, λ∗) is the initialization error, see (2).
The convergence rate 1− ηρ ∈ (0, 1) and the quantities νρ, ξρ, τρ, σ0,ρ, ηρ, η̃ρ above depend on the
parameters in the Assumptions 2-5 and on λ0, σ0.

The remarks after Theorem 1 apply here too.

A.1 Generalization Error

Building upon the optimization guarantee in Theorem 4, our next result in this section is Theorem 4,
which quantifies the convergence of the iterates {wt}t≥0 of Algorithm 1 to the true parameter w\.

In other words, Theorem 4 below controls the generalization error of (1), namely, the error incurred
by using the empirical risk Lm in lieu of the population risk L. Indeed, Theorem 1 is silent about
‖wt − w\‖2. We address this shortcoming with the following result, proved in Section G of the
supplementary material.

1If necessary, the inclusion {wt}t≥0 ⊂W might be enforced by adding the indicator function of the convex
hull of W to R in (1), similar to Agarwal et al. [2010].
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Lemma 3. Let R = 1W be the indicator function on W ⊂ Rp and set H = 0 in (1).2 Suppose that
w∗ belongs to the relative interior of W . Then it holds that

‖w\ − w∗‖2 ≤
1

ζL
max
w∈W

‖∇Lm(w)−∇L(w)‖2. (25)

Before bounding the right-hand side of (25), we remark that it is possible to extend Lemma 3 to the
case where the regularizer R is a decomposable norm, along the lines of Negahban et al. [2012]. We
will however not pursue this direction in the present work. Next note that (23) and Lemma 3 together
imply that

‖wt − w\‖22
α2

≤
(
‖wt − w∗‖2

α
+
‖w∗ − w\‖2

β

)2

(triangle inequality)

≤ 2‖wt − w∗‖22
α2

+
2‖w∗ − w\‖22

β2
((a+ b)2 ≤ 2a2 + 2b2)

≤ 4(1− ηρ)t∆0 +
2ηρ
ρ

+
2

ζ2
L

max
w∈W

‖∇Lm(w)−∇L(w)‖22. (26)

According to Theorem 1, the right-hand side of (26) depends on µL, µL, νL, νL, which were in-
troduced in Definition 1. Note that µL, µL, νL, νL and the right-hand side of (25) are all random
variables because they depend on Lm and thus on the randomly drawn training data {xi}mi=1. To
address this issue, we apply a basic result in statistical learning theory as follows. For every w ∈ Rp
and every pair x, x′ ∈ X, we use Assumption 4 to write that

‖∇l(w, x)−∇l(w, x′)‖2 ≤ σl‖x− x′‖2 (see (18))
≤ σldiam(X), (27)

where diam(X) denotes the diameter of the compact set X. Note also that

E{xi}i∇Lm(w) = ∇L(w), ∀w ∈W, (28)

where the expectation is over the training data {xi}i. Then, for ε > 0 and except with a probability
of at most e−ε, it holds that

‖∇Lm(w)−∇L(w)‖2

≤ 2RW (x1, · · · , xm) + 3σldiam(X)

√
ε+ 2

2m

=: Υm,W (ε), (29)

for every w ∈W [Mohri et al., 2018]. Above,

RW (x1, · · · , xm) = EE

[
max
w∈W

∥∥∥∥∥ 1

m

m∑
i=1

ei∇wl(w, xi)

∥∥∥∥∥
2

]
, (30)

is the empirical Rademacher complexity and E = {ei}i is a Rademacher sequence, namely, a
sequence of independent random variables taking±1 with equal probabilities. We can now revisit (26)
and write that

‖wt − w\‖22 ≤ 4α2(1− ηρ)t∆0 +
2α2ηρ
ρ

+
2α2Υ2

m,W (ε)

ζ2
L

, (31)

which holds except with a probability of at most e−ε. In addition, for every w,w′ ∈ W , we may
write that

‖∇Lm(w)−∇Lm(w′)‖2
≤ ‖∇L(w)−∇L(w′)‖2 + ‖∇Lm(w)−∇L(w)‖2

+ ‖∇Lm(w′)−∇L(w′)‖2 (triangle inequality)

≤ σL‖w − w′‖2 + 2Υm,W (ε), (see (20,29)) (32)

2To be complete, 1W (w) = 0 if w ∈W and 1W (w) =∞ otherwise.
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except with a probability of at most e−ε. Likewise, for every w,w′ ∈W , we have that

‖∇Lm(w)−∇Lm(w′)‖2
≥ ‖∇Lm(w)−∇Lm(w)‖2 − ‖∇Lm(w)−∇L(w)‖2
− ‖∇Lm(w′)−∇L(w′)‖2 (triangle inequality)

≥ ζL‖w − w′‖2 − 2Υm,W (ε), (see (20,29 )) (33)

except with a probability of at most e−ε. Therefore, Lm satisfies the restricted strong convexity and
smoothness in Definition 1 with

µL = σL, νL = ζL,

µL = ζL = 2Υm,W (ε). (34)

Our findings in this section are summarized below.
Theorem 4. (generalization error) Suppose that Assumptions 2-5 hold and recall that the training
samples {xi}mi=1 are drawn independently from the probability space (X, χ) for a compact set
X ⊂ Rd with diameter diam(X).

For a set W ⊂ Rp, let R = 1W be the indicator function on W , and set H ≡ 0 in (1). Suppose
that solution w∗ of (1) belongs to the relative interior of W . For ε > 0, evaluate the quantities in
Theorem 2 with

µL = σL, νL = ζL,

µL = ζL = 4RW (x1, · · · , xm)

+ 6σl diam(X)

√
ε+ 2

2m
, (35)

whereRW (x1, · · · , xm) in the empirical Rademacher complexity defined in (30). If the requirements
on the step sizes in (22) hold, we then have that

‖wt − w\‖22 ≤ 4α2(1− ηρ)t∆0 +
2α2ηρ
ρ

+
8α2

ζ2
L

RW (x1, · · · , xm)2

+
18α2σ2

l diam(X)2(ε+ 2)

m
, (36)

except with a probability of at most e−ε.

Most of the remarks about Theorem 1 also apply to Theorem 4 and we note that ‖wt − w\‖2 reduces
by increasing the number of training samples m, before asymptotically reaching the generalization
error

2ψρ +
8

ζ2
L

RW (x1, · · · , xm)2. (37)

Computing the Rademacher complexity above for specific choices of the network structure and loss
is itself potentially a complicated task, which we will not pursue by the virtue of the generality of our
results so far. The key technical challenge there is computing the corresponding entropy integral,
which involves estimating the covering numbers of the set W Mohri et al. [2018]. One last takeaway
point from the statistical accuracy in (37) is the following. If

ηρ = O(ρ · RW (x1, · · · , xm)2/ζ2
L), (38)

the asymptotic optimization error in Theorem 1 does not play an important role in determining the
generalization error above. In words, if (38) holds, then Algorithm 1 converges to the ball of statistical
accuracy around w\. Here, O stands for the standard Big-O notation.

B Proof of Proposition 1

The feedforward network G = GΞ : Rs → Rd is a composition of linear maps and entry-wise
applications of the activation functions, and hence is also of class C1. Its Jacobian DG : Rs → Rd×s
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is thus a continuous function and its restriction to the compact subsetD ⊆ Rs is Lipschitz-continuous.
Therefore, there exists νG ≥ 0 such that

‖DG(z′)−DG(z)‖2 ≤ νG‖z
′ − z‖, ∀z, z′ ∈ D.

From standard arguments it then follows that Assumption 2 holds in the sense that

‖G(z′)−G(z)−DG(z)(z′ − z)‖2 =

∥∥∥∥∫ 1

0

(DG(tz′ + (1− t)z)−DG(z))(z′ − z)dt
∥∥∥∥

2

≤
∫ 1

0

‖DG(tz′ + (1− t)z)−DG(z)‖2‖z
′ − z‖2dt

≤ νG
∫ 1

0

t‖z′ − z‖2dt =
νG
2
‖z′ − z‖22,

for every z, z′ ∈ Rs.
In order to show that Assumption 3 (near-isometry) also holds, we will require the following simple
fact:
Lemma 5. Let G : D ⊆ Rs → Rd have a left inverse H : G(D) ⊆ Rd → Rs which is Lipschitz-
continuous with constant ιG > 0. Then it holds that

1

ιG
‖z′ − z‖ ≤ ‖G(z′)−G(z)‖, ∀z′, z ∈ D.

Proof.
‖z′ − z‖ = ‖H(G(z′))−H(G(z))‖ ≤ ιG‖G(z′)−G(z)‖.

We now proceed to show that Assumption 3 holds. We suppose G is of the form

G(z) = ωkWk(ωk−1Wk−1 . . . (ω1W1z) . . .),

for weight matrices {Wk}k. First note that, by the compactness of the domain of G, the values of
the hidden layers are always contained in a product of compact intervals, and so we can replace
ωi by its restriction to such sets. Each ωi is continuous, defined on a product of intervals, and is
stricly increasing so that they have a continuous left inverse ω−1

i [Garling, 2014, Proposition 6.4.5].
The assumption of non-decreasing layer sizes implies that the Wi are tall matrices of dimensions
(mi, ni) with mi ≥ ni, whose columns are almost surely linearly independent after an arbitrarily
small perturbation. In such case they have a left matrix inverse W−1

i , which as a bounded linear map,
is continuous. It then follows that G has a continuous left inverse of the form

G−1 = W−1
1 ◦ ω−1

1 . . .W−1
k ◦ ω−1

k ,

which is a continuous mapping and is defined on G(D) which by continuity of G is compact, hence
G−1 is Lipschitz-continuous. The result then follows by the Lipschitz continuity of the map G
(restricted to the compact domain D) and Lemma 5.

C Proof of Theorem 1

It is convenient throughout the supplementary material to use a slightly different notation for La-
grangian, compared to the body of the paper. To improve the readability of the proof, let us list here
the assumptions on the empirical loss L and prior G that are used throughout this proof. For every
iteration t, we assume that

L(wt)− L(w∗)− 〈wt − w∗,∇L(w∗)〉

≥ µL
2
‖wt − w∗‖22, (strong convexity of L) (39)

L(wt+1)− L(wt)− 〈wt+1 − wt,∇L(wt)〉

≤ νL
2
‖wt+1 − wt‖22, (strong smoothness of L) (40)
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‖G(z′)−G(z)−DG(z) · (z′ − z)‖2
≤ νG

2
‖z′ − z‖22, (strong smoothness of G) (41)

ιG‖z′ − z‖2 ≤ ‖G(z′)−G(z)‖2 ≤ κG‖z′ − z‖2, (near-isometry of G) (42)

‖DG(z) · (z′ − z)‖2 ≤ κG‖z′ − z‖2, (Lipschitz continuty of G) (43)

For the sake of brevity, let us set

v = (w, z) ∈ Rp+s,

Lρ(v, λ) := Lρ(w, z, λ) := L(w) +R(w) +H(z) + 〈w −G(z), λ〉

+
ρ

2
‖w −G(z)‖22, (augmented Lagrangian) (44)

L′ρ(v, λ) := L′ρ(w, z, λ) = L(w) + 〈w −G(z), λ〉+
ρ

2
‖w −G(z)‖22, (45)

A(v) = A(w, z) := w −G(z). (feasibility gap) (46)

Let also v∗ = (w∗, z∗) be a solution of (1) and let λ∗ be a corresponding optimal dual variable. The
first-order necessary optimality conditions for (1) are{

−∇vL′ρ(v∗, λ∗) ∈ ∂R(w∗)× ∂H(z∗),

w∗ = G(z∗),
(47)

where ∂R(w∗) and ∂H(z∗) are the subdifferentials of R and H , respectively, at w∗ and z∗. Through-
out the proof, we will also often use the notation

∆t := Lρ(vt, λt)− Lρ(v∗, λ∗), (48)

∆′t := L′ρ(vt, λt)− L′ρ(v∗, λ∗), (49)

δt := ‖wt − w∗‖2, δ′t := ‖zt − z∗‖2, (50)

At := A(vt) = wt −G(zt). (51)

In particular, with this new notation, the dual update can be rewritten as

λt+1 = λt + σt+1At+1. (see Algorithm 1) (52)

First, in Appendix D, we control the smoothness of L′ρ over the trajectory of the algorithm.
Lemma 6. For every iteration t, it holds that

L′ρ(wt+1, zt+1, λt)− L′ρ(wt, zt+1, λt)− 〈wt+1 − wt,∇wL′ρ(wt, zt+1, λt)〉

≤ νρ
2
‖wt+1 − wt‖22, (53)

L′ρ(wt, zt+1λt)− L′ρ(wt, zt, λt)− 〈zt+1 − zt,∇zL′ρ(wt, zt, λt)〉

≤ ξρ
2
‖zt+1 − zt‖22, (54)

‖∇wL′ρ(wt, zt+1, λt)−∇wL′ρ(wt, zt, λt)‖2 ≤ τρ‖zt+1 − zt‖22, (55)

where

νρ := νL + ρ. (56)

ξρ := νG(λmax + ρmax
i
‖Ai‖2) + 2ρκ2

G, (57)

τρ := ρκG. (58)
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Second, in the following result we ensure that Lρ and L′ρ are sufficiently regular along the trajectory
of our algorithm, see Appendix E for the proof.
Lemma 7. For every iteration t, it holds that

∆t ≥
µρδ

2
t

2
+
µ′ρδ
′2
t

2
− µρ, (59)

∆′t + 〈v∗ − vt,∇vL′ρ(vt)〉 ≤
ωρδ

2
t

2
+
ω′ρδ

′2
t

2
, (60)

where

µρ := µL − 2ρ, µ′ρ :=
ρι2G
2
− νG‖λ∗‖2, (61)

µρ :=
3

ρ

(
λ2

max + ‖λ∗‖22
)
, (62)

ωρ := 0, ω′ρ :=
νG
2

(λmax + ρ) . (63)

Having listed all the necessary technical lemmas above, we now proceed to prove Theorem 1. Using
the smoothness of L′ρ, established in Lemma 6, we argue that

L′ρ(vt+1, λt+1)

= L(wt+1) + 〈At+1, λt+1〉+
ρ

2
‖At+1‖22 (see (45))

= L(wt+1) + 〈At+1, λt〉+
(ρ

2
+ σt+1

)
‖At+1‖22 (see (52))

= L′ρ(wt+1, zt+1, λt) + σt+1‖At+1‖22 (see (44))

≤ L′ρ(wt, zt+1, λt) + 〈wt+1 − wt,∇wL′ρ(wt, zt+1, λt)〉+
νρ
2
‖wt+1 − wt‖22

+ νρ + σt+1‖At+1‖22 (see (53))

≤ L′ρ(wt, zt+1, λt) + 〈wt+1 − wt,∇wL′ρ(wt, zt+1, λt)〉+
1

2α
‖wt+1 − wt‖22

+ νρ + σt+1‖At+1‖22, (64)

where the last line above holds if the step size α satisfies

α ≤ 1

νρ
. (65)

According to Algorithm 1, we can equivalently write the w updates as

wt+1 = arg min
w

〈
w − wt,∇wL′ρ(wt, zt+1, λt)

〉
+

1

2α
‖w − wt‖22 +R(w). (66)

In particular, consider above the choice of w = θw∗ + (1− θ)wt for θ ∈ [0, 1] to be set later. We
can then bound the last line of (64) as

L′ρ(vt+1, λt+1) +R(wt+1)

= L′ρ(wt, zt+1, λt) + min
w
〈w − wt,∇wL′ρ(wt, zt+1, λt)〉

+
1

2α
‖w − wt‖22 +R(w) + σt+1‖At+1‖22 (see (64,66))

≤ L′ρ(wt, zt+1, λt) + θ〈w∗ − wt,∇wL′ρ(wt, zt+1, λt)〉+
θ2δ2

t

2α

+ θR(w∗) + (1− θ)R(wt) + σt+1‖At+1‖22 (convexity of R)

= L′ρ(wt, zt+1, λt) + θ〈w∗ − wt,∇wL′ρ(wt, zt, λt)〉+
θ2δ2

t

2α
+ θ〈w∗ − wt,∇wL′ρ(wt, zt+1, λt)−∇wL′ρ(wt, zt, λt)〉
+ θR(w∗) + (1− θ)R(wt) + σt+1‖At+1‖22. (67)
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The last inner product above can be controlled as

θ〈w∗ − wt,∇wL′ρ(wt, zt+1, λt)−∇wL′ρ(wt, zt, λt)〉

≤ θ2δ2
t

2α
+
α

2
‖∇wL′ρ(wt, zt+1, λt)−∇wL′ρ(wt, zt, λt)‖22 (2〈a, b〉 ≤ ‖a‖22 + ‖b‖22 and (50))

≤ θ2δ2
t

2α
+ ατ2

ρ‖zt+1 − zt‖22, (see (55)) (68)

which, after substituting in (67), yields that

L′ρ(vt+1, λt+1) +R(wt+1)

≤ L′ρ(wt, zt+1, λt) + θ〈w∗ − wt,∇wL′ρ(wt, zt, λt)〉+
θ2δ2

t

α

+ ατ2
ρ‖zt+1 − zt‖22 + θR(w∗) + (1− θ)R(wt) + σt+1‖At+1‖22. (69)

Regarding the right-hand side above, the smoothness of L′ρ in Lemma 6 allows us to write that

L′ρ(wt, zt+1, λt) + ατ2
ρ‖zt+1 − zt‖22

≤ L′ρ(wt, zt, λt) + 〈zt+1 − zt,∇zL′ρ(wt, zt, λt)〉

+

(
ξρ
2

+ ατ2
ρ

)
‖zt+1 − zt‖22. (see (54)) (70)

If we assume that the primal step sizes α, β satisfy

ξρ
2

+ ατ2
ρ ≤

1

2β
, (71)

we can simplify (70) as

L′ρ(wt, zt+1, λt) + ατ2
ρ‖zt+1 − zt‖22

≤ L′ρ(wt, zt, λt) + 〈zt+1 − zt,∇zL′ρ(wt, zt, λt)〉+
1

2β
‖zt+1 − zt‖22. (see (71)) (72)

From Algorithm 1, recall the equivalent expression of the z updates as

zt+1 = arg min
z
〈z − zt,∇zL′ρ(wt, zt, λt)〉+

1

2β
‖z − zt‖22 +H(z), (73)

and consider the choice of z = θz∗ + (1 − θ)zt above, with θ ∈ [0, 1] to be set later. Combining
(72,73) leads us to

L′ρ(wt, zt+1, λt) + ατ2
ρ‖zt+1 − zt‖22 +H(zt+1)

= L′ρ(wt, zt, λt) + min
z
〈z − zt,∇zL′ρ(wt, zt, λt)〉+

1

2β
‖z − zt‖22 +H(z) (see (72,73))

≤ L′ρ(wt, zt, λt) + θ〈z∗ − zt,∇zL′ρ(wt, zt, λt)〉+
θ2δ

′2
t

2β
+H(θz∗ + (1− θ)zt)

≤ L′ρ(wt, zt, λt) + θ〈z∗ − zt,∇zL′ρ(wt, zt, λt)〉+
θ2δ

′2
t

2β

+ θH(z∗) + (1− θ)H(zt). (convexity of H) (74)
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By combining (69,74), we reach

Lρ(vt+1, λt+1)

= L′ρ(vt+1, λt+1) +R(wt+1) +H(zt+1) (see (44,45))

≤ L′ρ(wt, zt+1, λt) + θ〈w∗ − wt,∇wL′ρ(wt, zt, λt)〉+
θ2δ2

t

α
+ ατ2

ρ‖zt+1 − zt‖22
+ θR(w∗) + (1− θ)R(wt) +H(zt+1) + σt+1‖At+1‖22 (see (69))

≤ L′ρ(vt, λt) + θ〈v∗ − vt,∇zL′ρ(vt, λt)〉+
θ2δ2

t

α
+
θ2δ

′2
t

2β

+ θR(z∗) + (1− θ)R(zt) + θH(z∗) + (1− θ)H(zt)

+ σt+1‖At+1‖22 (see (74))

= Lρ(vt, λt) + θ〈v∗ − vt,∇zL′ρ(vt, λt)〉+
θ2δ2

t

α
+
θ2δ

′2
t

2β

+ θ(R(z∗) +H(z∗)−R(zt)−H(zt)) + σt+1‖At+1‖22 (see (44,45))

≤ Lρ(vt, λt) + θ

(
ωρδ

2
t

2
+
ω′ρδ

′2
t

2
−∆′t

)
+
θ2δ2

t

α
+
θ2δ

′2
t

2β

+ θ(R(z∗) +H(z∗)−R(zt)−H(zt)) + σt+1‖At+1‖22 (see (60))

= Lρ(vt, λt) + θ

(
ωρδ

2
t

2
+
ω′ρδ

′2
t

2
−∆t

)
+
θ2δ2

t

α
+
θ2δ

′2
t

2β

+ σt+1‖At+1‖22 (see (44,45)) (75)

After recalling (48) and by subtracting Lρ(v∗, λ∗) from both sides, (75) immediately implies that

∆t+1 ≤ ∆t +
ωρδ

2
t

2
+
ω′ρδ

′2
t

2
+ θ (ωρ −∆t) +

θ2δ2
t

α
+
θ2δ

′2
t

2β

+ σt+1‖At+1‖22, (see (48,75)) (76)

where we also used the assumption that θ ≤ 1 above. To remove the feasibility gap ‖At+1‖2 from
the right-hand side above, we write that

‖At+1‖2 = ‖wt+1 −G(zt+1)‖2 (see (51))
= ‖wt+1 − w∗ − (G(zt+1)−G(z∗))‖2 ((w∗, z∗) is a solution of (1))
≤ ‖wt+1 − w∗‖2 + ‖G(zt+1)−G(z∗)‖2 (triangle inequality)
≤ ‖wt+1 − w∗‖2 + κG‖zt+1 − z∗‖2 (see (42))

= δt+1 + κGδ
′
t+1, (see (50)) (77)

which, after substituting in (76), yields that

∆t+1 ≤ ∆t +
ωρδ

2
t

2
+
ω′ρδ

′2
t

2
+ θ (ωρ −∆t) +

θ2δ2
t

α
+
θ2δ

′2
t

2β
+ 2σt+1δ

2
t+1 + 2σt+1κ

2
Gδ
′2
t+1

(see (77) and (a+ b)2 ≤ 2a2 + 2b2)

≤ ∆t +
ωρδ

2
t

2
+
ω′ρδ

′2
t

2
+ θ (ωρ −∆t) +

θ2δ2
t

α
+
θ2δ

′2
t

2β
+ 2σ0δ

2
t+1 + 2σ0κ

2
Gδ
′2
t+1.

. (σt+1 ≤ σ0 in Algorithm 1) (78)

For every iteration t, suppose that

δ2
t

α
+
δ
′2
t

β
≥ ηρ ≥

µρ

min
(
αµρ

4 ,
βµ′

ρ

2

)
−
√

max
(
α
2 (ωρ + 4σ0), β(ω′ρ + 4σ0κ2

G)
) , (79)
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for ηρ to be set later. Consequently, it holds that

∆t

2δ2t
α +

δ′2t
β

≥
µρδ

2
t

2 +
µ′
ρδ

′2
t

2 − µρ
2δ2t
α +

δ′2t
β

(see (59))

≥ min

(
αµρ

4
,
βµ′ρ

2

)
−

µρ
2δ2t
α + δ′2

β

≥ min

(
αµρ

4
,
βµ′ρ

2

)
−
µρ
ηρ

(see (79))

≥
√

max
(α

2
(ωρ + 4σ0) , β(ω′ρ + 4σ0κ2

G)
)
. (see (79)) (80)

We now set

θ̂t := min

√√√√ ∆2
t(

2δ2t
α +

δ′2t
β

)2 −max
(α

2
(ωρ + 4σ0) , β

(
ω′ρ + 4σ0κ2

G

))
, 1

 , (81)

which is well-defined, as verified in (80). From (80,81), it also immediately follows that

θ̂t ∈ [0, 1], ∀t, (82)

∆t ≥ 0, ∀t, (83)

which we will use later on in the proof. Consider first the case where θ̂t < 1. To study the choice of
θ = θ̂t in (76), we will need the bound

− θ̂t∆t + θ̂2
t

(
δ2
t

α
+
δ′2t
2β

)
= −

√√√√ ∆4
t(

2δ2t
α +

δ′2t
β

)2 −∆2
t max

(α
2

(ωρ + 4σ0) , β
(
ω′ρ + 4σ0κ2

G

))

+
∆2
t

4δ2t
α +

2δ′2t
β

−max
(α

2
(ωρ + 4σ0) , β

(
ω′ρ + 4σ0κ

2
G

))(δ2
t

α
+
δ′2t
2β

)
(see (83))

≤ − ∆2
t

4δ2t
α + 2δ′2

β

+ ∆t

√
max

(α
2

(ωρ + 4σ0) , β
(
ω′ρ + 4σ0κ2

G

))
−max

(α
2

(ωρ + 4σ0) , β
(
ω′ρ + 4σ0κ

2
G

))(δ2
t

α
+
δ′2t
2β

)
, (84)

where the inequality above uses
√
a− b ≥

√
a−
√
b. Substituting (84) back into (78), we reach

∆t+1 ≤ ∆t −
∆2
t

4δ2t
α + 2δ′2

β

+ ∆t

√
max

(α
2

(ωρ + 4σ0) , β
(
ω′ρ + 4σ0κ2

G

))
(see (78,84))

≤ ∆t −
(

min

(
αµρ

4
,
βµ′ρ

2

)
−
µρ
ηρ

)
∆t

2

+ ∆t

√
max

(α
2

(ωρ + 4σ0) , β
(
ω′ρ + 4σ0κ2

G

))
(see third line of (80) and (83))

≤
(

1−min

(
αµρ

8
,
βµ′ρ

4

)
+

µρ
2ηρ

+

√
max

(α
2

(ωρ + 4σ0) , β
(
ω′ρ + 4σ0κ2

G

)))
∆t

=: ηρ,1∆t, if ∆t <
δ2
t

α
+
δ′2t
β
. (85)
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Next consider the case where θ̂t = 1. With the choice of θ = θ̂t = 1 in (78), we find that

∆t+1 ≤
(
ωρ
2

+
1

α
+ ρ

)
δ2
t +

(
ω′ρ
2

+
1

2β
+ ρκ2

G

)
δ′2t (see (78))

≤ 1

2

(
1 + max

(α
2

(ωρ + 4σ0), β(ω′ρ + 4σ0κ
2
G)
))
·
(

2δ2
t

α
+
δ′2t
β

)
≤ 1

2

√
1 + max

(α
2

(ωρ + 4σ0), β(ω′ρ + 4σ0κ2
G)
)

∆t (see (81))

=: ηρ,2∆t, if ∆t ≥
δ2
t

α
+
δ′2t
β
. (86)

To simplify the above expressions, let us assume that√
max

(α
2

(ωρ + 4σ0), β(ω′ρ + 4σ0κ2
G)
)
≤ min

(
αµρ
16

,
βµ′ρ

8

)
≤ 1

2
, (87)

from which it follows that

max(ηρ,1, ηρ,2) ≤ 1−min

(
αµρ
16

,
βµ′ρ

8

)
+

µρ
2ηρ

≤ 1−min

(
αµρ
32

,
βµ′ρ
16

)
=: 1− ηρ ∈ [0, 1), (88)

where the second line above holds if

ηρ ≥
µρ

min
(
αµρ
16 ,

βµ′
ρ

8

) . (89)

Then, by unfolding (85,86), we reach

∆t ≤ (1− ηρ)t∆0. (90)

Moreover, by combining (59,90), we can bound the error, namely,

δ2
t

α
+
δ′2t
β
≤ max(αµρ, βµ

′
ρ)
(
µρδ

2
t + µ′ρδ

′2
t

)
≤ µρδ2

t + µ′ρδ
′2
t (see (65,71), Lemmas 6 and 7)

≤ 2(∆t + µρ) (see (59))

≤ 2(1− ηρ)t∆0 +
2µρ
ηρ

≤ 2(1− ηρ)t∆0 +
2µρ

min
(
αµρ
16 ,

βµ′
ρ

8

) (see (88))

=: 2(1− ηρ)t∆0 +
ηρ
ρ
. (this choice of ηρ satisfies (79,89)). (91)

It remains to bound the feasibility gap ‖At‖2, see (51). Instead of (77), we consider the following
alternative approach to bound ‖At‖2. Using definition of ∆t in (48), we write that

∆t = Lρ(vt, λt)− Lρ(v∗, λ∗) (see (48))
= Lρ(vt, λt)− Lρ(vt, λ∗) + Lρ(vt, λ∗)− Lρ(v∗, λ∗)

= 〈At, λt − λ∗〉+ L(vt, λ
∗)− L(v∗, λ∗) +

ρ

2
‖At‖22, (92)

where

L(v, λ) = L(w, z, λ) := L(w) +R(w) +H(z) + 〈w −G(z), λ〉. (93)
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It is not difficult to verify that L(v∗, λ∗) = Lρ(v∗, λ∗) is the optimal value of problem (1) and that
L(vt, λ

∗) ≥ L(v∗, λ∗), from which it follows that

∆t ≥ 〈At, λt − λ∗〉+
ρ

2
‖At‖22 (see (92))

≥ −ρ
4
‖At‖22 −

1

ρ
‖λt − λ∗‖22 +

ρ

2
‖At‖22 (Holder’s inequality and 2ab ≤ a2 + b2)

≥ −2

ρ
‖λt‖22 −

2

ρ
‖λ∗‖22 +

ρ

4
‖At‖22 ((a+ b)2 ≤ 2a2 + 2b2)

≥ −2λ2
max

ρ
− 2‖λ∗‖22

ρ
+
ρ

4
‖At‖22, (see (100)) (94)

which, in turn, implies that

‖At‖22 ≤
4

ρ

(
∆t +

2λ2
max

ρ
+

2‖λ∗‖22
ρ

)
(see (94))

≤ 4

ρ

(
(1− ηρ)t∆0 +

2(ηρ,1 + ηρ,2)

ηρ
+

2λ2
max

ρ
+

2‖λ∗‖22
ρ

)
(see (90))

≤ 4

ρ

(
(1− ηρ)t∆0 +

ηρ + 2λ2
max + 2‖λ∗‖22
ρ

)
(see (91))

=:
4(1− ηρ)t∆0

ρ
+
η̃ρ
ρ2
. (95)

This completes the proof of Theorem 1.

Let us also inspect the special case where µL � ρ & 1 and ι2G � νG, where ≈ and & suppress any
universal constants and dependence on the dual optimal variable λ∗, for the sake of simplicity. From
Lemmas 6 and 7, it is easy to verify that

νρ ≈ νL, ξρ ≈ ρκ2
G, τρ = ρκG,

µρ ≈ µL, µ′ρ ≈ ρι2G, µρ ≈ ρ−1, ω′ρ ≈ ρνG. (96)

We can then take

α ≈ 1

νL
, (see (65))

β ≈ 1

ξρ
≈ 1

ρκ2
G

, (see (71))

ηρ ≈ min

(
µL
νL
,
ι2G
κ2
G

)
, (see (88))

ηρ ≈
ρµρ

min
(
αµρ, βµ′ρ

) ≈ max

(
νL
µL

,
κ2
G

ι2G

)
, (see (91))

η̃ρ ≈ ηρ ≈ max

(
νL
µL

,
κ2
G

ι2G

)
. (see (95)) (97)

Lastly, for (87) to hold, it suffices that

σ0 . ρmin

(
µ2
L

ν2
L

,
ι4G
κ4
G

)
=: σ0,ρ. (98)
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D Proof of Lemma 6

To prove (53), we write that

L′ρ(wt+1, zt+1, λt)− L′ρ(wt, zt+1, λt)− 〈wt+1 − wt,∇wL′ρ(wt, zt+1, λt)〉
= L(wt+1)− L(wt)− 〈wt+1 − wt,∇wL(wt)〉

+
ρ

2
‖wt+1 −G(zt+1)‖22 −

ρ

2
‖wt −G(zt+1)‖22 − 2ρ〈wt+1 − wt, wt −G(zt+1)〉 (see (45))

≤ νL
2
‖wt+1 − wt‖22 + νL +

ρ

2
‖wt+1 − wt‖22 (see (40))

=:
νρ
2
‖wt+1 − wt‖22 + νρ. (99)

To prove (54), let us first control the dual sequence {λt}t by writing that

‖λt‖2 = ‖λ0 +

t∑
i=1

σiAi‖2 (see (52))

≤ ‖λ0‖2 +
t∑
i=1

σi‖Ai‖2 (triangle inequality)

≤ ‖λ0‖2 +

t∑
t′=1

σ0

i log2(i+ 1)

≤ ‖λ0‖2 + cσ0

=: λmax, (100)

where

c ≥
∞∑
t=1

1

t log2(t+ 1)
. (101)

We now write that

L′ρ(wt, zt+1, λt)− L′ρ(wt, zt, λt)− 〈zt+1 − zt,∇zL′ρ(wt, zt, λt)
= −〈G(zt+1)−G(zt)−DG(zt)(zt+1 − zt), λt〉

+
ρ

2
‖wt −G(zt+1)‖22 −

ρ

2
‖wt −G(zt)‖22

+ ρ〈DG(zt)(zt+1 − zt), wt −G(zt)〉. (see (45)) (102)

To bound the first inner product on the right-hand side above, we write that

〈G(zt+1)−G(zt)−DG(zt)(zt+1 − zt), λt〉
≤ ‖G(zt+1)−G(zt)−DG(zt)(zt+1 − zt)‖2 · ‖λt‖2 (Cauchy-Shwartz’s inequality)

≤ νGλmax

2
‖zt+1 − zt‖22 (see (41,100)) (103)

The remaining component on the right-hand side of (102) can be bounded as

‖wt −G(zt+1)‖22 − ‖wt −G(zt)‖22 + 2〈DG(zt)(zt+1 − zt), wt −G(zt)〉
= ‖wt −G(zt+1)‖22 − ‖wt −G(zt)‖22 + 2〈G(zt+1)−G(zt), wt −G(zt)〉
− 2〈G(zt+1)−G(zt)−DG(zt)(zt+1 − zt), wt −G(zt)〉

= ‖G(zt+1)−G(zt)‖22
+ 2〈G(zt+1)−G(zt)−DG(zt)(zt+1 − zt), wt −G(zt)〉

≤ ‖G(zt+1)−G(zt)‖22
+ 2‖G(zt+1)−G(zt)−DG(zt)(zt+1 − zt)‖2 · ‖wt −G(zt)‖2 (Cauchy-Shwartz’s inequality)

≤ κ2
G‖zt+1 − zt‖22 + νG‖zt+1 − zt‖22‖wt −G(zt)‖2 (see (41,42))

≤ κ2
G‖zt+1 − zt‖22 + νG‖zt+1 − zt‖22 max

i
‖Ai‖2. (see (51)) (104)
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Substituting the bounds in (103,104) back into (102), we find that

L′ρ(wt, zt+1, λt)− L′ρ(wt, zt, λt)− 〈zt+1 − zt,∇zL′ρ(wt, zt, λt)

≤ 1

2

(
νG(λmax + ρmax

i
‖Ai‖2) + ρκ2

G

)
‖zt+1 − zt‖22

=:
ξρ
2
‖zt+1 − zt‖22 + ξρ, (105)

which proves (54). To prove (55), we write that

‖∇wL′ρ(wt, zt+1, λt)−∇wL′ρ(wt, zt, λt)‖2
= ρ‖G(zt+1)−G(zt)‖2 (see (45))
≤ ρκG‖zt+1 − zt‖2 (see (42))
=: τρ‖zt+1 − zt‖2 + τρ. (106)

This completes the proof of Lemma 6.

E Proof of Lemma 7

For future reference, we record that

〈vt − v∗,∇vL′ρ(v∗)〉
= 〈wt − w∗,∇wL′ρ(v∗)〉+ 〈zt − z∗,∇zL′ρ(v∗)〉 (v = (w, z))

= 〈wt − w∗,∇L(w∗) + λ∗ + ρ(w∗ −G(z∗)〉 − 〈DG(z∗)(zt − z∗), λ∗ + ρ(w∗ −G(z∗))〉 (see (45))
= 〈wt − w∗,∇L(w∗) + λ∗〉 − 〈DG(z∗)(zt − z∗), λ∗〉, (see (47)) (107)

where the last line above uses the feasibility of v∗ in (1). To prove (59), we use the definition of Lρ
in (44) to write that

Lρ(vt, λt)− Lρ(v∗, λ∗)
= L′ρ(vt, λt)− L′ρ(v∗, λ∗) +R(wt)−R(w∗) + L(zt)− L(z∗) (see (44,45))

≥ L′ρ(vt, λt)− L′ρ(v∗, λ∗)− 〈vt − v∗,∇vL′ρ(v∗, λ∗)〉 (see (47))

= L(wt)− L(w∗)− 〈wt − w∗,∇L(u∗)〉

+ 〈At, λt〉 − 〈wt − w∗ −DG(z∗)(zt − z∗), λ∗〉+
ρ

2
‖At‖22 (see (107))

≥ µLδ
2
t

2
+ 〈At, λt − λ∗〉+

ρ

2
‖At‖22

+ 〈G(zt)−G(z∗)−DG(z∗)(zt − z∗k), λ∗〉 (see (39,50))

≥ µLδ
2
t

2
+ 〈At, λt − λ∗〉+

ρ

2
‖At‖22 −

νGδ
′2
t

2
‖λ∗‖2. (see (41,50)) (108)

To control the terms involving At in the last line above, we write that

〈At, λt − λ∗〉+
ρ

2
‖At‖22

=
ρ

2

∥∥∥∥At − λt − λ∗

ρ

∥∥∥∥2

2

− ‖λt − λ
∗‖22

2ρ

=
ρ

2

∥∥∥∥wt − w∗ − (G(zt)−G(z∗))− λt − λ∗

ρ

∥∥∥∥2

2

− ‖λt − λ
∗‖22

2ρ
(see (47,51))

≥ ρ

4
‖G(zt)−G(z∗)‖22 − ρδ2

t −
3‖λt − λ∗‖22

2ρ

(
‖a− b− c‖22 ≥

‖a‖22
2
− 2‖b‖22 − 2‖c‖22

)
≥ ρι2Gδ

′2
t

4
− ρδ2

t −
3‖λt − λ∗‖22

2ρ
(see (50,42))

≥ ρι2Gδ
′2
t

4
− ρδ2

t −
3

ρ
(λ2

max + ‖λ∗‖22), ((a+ b)2 ≤ 2a2 + 2b2 and (100)) (109)
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which, after substituting in (108), yields that

Lρ(vt, λt)− Lρ(v∗, λ∗)

≥ µL − 2ρ

2
δ2
t +

1

2

(
ρι2G
2
− νG‖λ∗‖2

)
δ′2t −

3

ρ

(
λ2

max + ‖λ∗‖22
)

≥ µρδ
2
t

2
+
µ′ρδ
′2
t

2
− µρ, (110)

where

µρ := µL − 2ρ, µ′ρ :=
ρι2G
2
− νG‖λ∗‖2, (111)

µρ :=
3

ρ

(
λ2

max + ‖λ∗‖22
)
. (112)

This proves (59). To prove (60), we use the definition of L′ρ in (45) to write that

L′ρ(v∗, λ∗)− L′ρ(vt, λt)− 〈v∗ − vt,∇vL′ρ(vt, λt)〉
= L(w∗)− L(wt)− 〈w∗ − wt,∇L(wt)〉
− 〈At +DA(vt)(v

∗ − vt), λt〉

− ρ

2
〈At + 2DA(vt)(v

∗ − vt), At〉, (see (45)) (113)

where

DA(v) = [ Id −DG(z) ] , (114)

is the Jacobian of the map A. The second inner product on the right-hand side of (113) can be
bounded as

− 〈At +DA(vt)(v
∗ − vt), λt〉

= −〈wt −G(zt) + (w∗ − wt)−DG(zt)(z
∗ − zt), λt〉 (see (51,114))

= −〈G(z∗)−G(zt)−DG(zt)(z
∗ − zt), λt〉 (w∗ = G(z∗))

≥ −νGδ
′2
t

2
‖λt‖2 (see (41,50))

≥ −νGδ
′2
t

2
λmax. (see (100)) (115)

To control the last inner product on the right-hand side of (113), we write that

− ρ

2
〈At + 2DA(vt)(v

∗ − vt), At〉

=
ρ

2
‖At‖22 − ρ〈At +DA(vt)(v

∗ − vt), At〉

≥ −ρ‖At +DA(vt)(v
∗ − vt)‖2‖At‖2 (Holder’s inequality)

= −ρ‖(w∗ −G(z∗))− (wt −G(zt))− (w∗ − wt) +DG(zt)(z
∗ − zt)‖2 (see (51,114) and w∗ = G(z∗))

= −ρ‖G(z∗)−G(zt)−DG(zt)(z
∗ − zt)‖2

≥ −ρνG
2
‖z∗ − zt‖22 (see (41))

= −ρνGδ
′2
t

2
. (see (50)) (116)

By substituting the bounds in (115,116) back into (113) and also using the convexity of L, we reach

L′ρ(v∗, λ∗)− L′ρ(vt, λt)− 〈v∗ − vt,∇vL′ρ(vt, λt)〉

≥ −νG
2

(λmax + ρ) δ′2t . (117)

This proves (60), thus completing the proof of Lemma 7.
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F Relation with Gradient Descent

Throughout this section, we set R ≡ 0 and H ≡ 0 in problem (1) and consider the updates in
Algorithm 2, namely,

zt+1 = zt − β∇zLρ(wt, zt, λt),
wt+1 ∈ argmin

w
Lρ(w, zt+1, λt),

λt+1 = λt + σt+1(wt+1 −G(zt+1)).

(118)

From (2), recall that Lρ(w, z, λ) is convex in w and the second step in (118) is therefore often easy to
implement with any over-the-shelf standard convex solver. Recalling (2), note also that the optimality
condition for wt+1 in (118) is

wt+1 −G(zt) = −1

ρ
(∇Lm(wt+1) + λt). (119)

Using (2) again, we also write that

∇zLρ(wt+1, zt, λt)

= −DG(zt)
>(λt + ρ(wt+1 −G(zt))

= −DG(zt)
>(λt − λt−1 −∇Lm(wt))

= −DG(zt)
>(σt(wt −G(zt))−∇L(wt)), (120)

where the last two lines above follow from (119,118), respectively. Substituting back into the z
update in (118), we reach

zt+1 = zt + βσtDG(zt)
>(wt −G(zt))− β∇L(wt) (see (118,120)), (121)

from which it follows that

‖zt+1 − (zt − β∇L(G(zt)))‖2
≤ βσt‖DG(zt)

>(wt −G(zt))‖2 + β‖∇L(wt)−∇L(G(zt))‖2 (see (121))
≤ β (σtκG + νL) ‖wt −G(zt)‖2. (see Assumptions 1 and 3) (122)

That is, as the feasibility gap vanishes in (24) in Theorem 1, the updates of Algorithm 2 match those
of GD.

G Proof of Lemma 3

Recall that R = 1W and H ≡ 0 for this proof. Using the optimality of w∗ ∈ relint(W ) in (17), we
can write that

‖∇L(w∗)‖2 ≤ ‖∇Lm(w∗)‖2 + ‖∇Lm(w∗)−∇L(w∗)‖2 (triangle inequality)
= ‖∇Lm(w∗)−∇L(w∗)‖2 (∇Lm(w∗) = 0)

≤ max
w∈W

‖∇Lm(w)−∇L(w)‖2. (123)

On the other hand, using the strong convexity of L in (20), we can write that

‖w\ − w∗‖2 ≤
1

ζL
‖∇L(w\)−∇L(w∗)‖2 (see (20))

=
1

ζL
‖∇L(w∗)‖ (∇L(w\) = 0)

≤ 1

ζL
max
w∈W

‖∇Lm(w)−∇L(w)‖2, (see (123)) (124)

which completes the proof of Lemma 3.
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H Experimental Setup Details

H.1 Per-Iteration Computational Complexity

The gradient of the function

h(z) =
1

2
‖AG(z)− b‖22 (125)

follows the formula
∇h(z) = ∇G(z)A>(AG(z)− b) (126)

which involves one forward pass through the network G, in order to compute G(z), as well as one
backward pass to compute∇G(z), and finally matrix-vector products to compute the final result.

On the other hand our ADMM first computes the iterate zt+1 with gradient descent on the augmented
lagrangian (2) as

zt+1 = zt − β∇zLρ(wt, zt, λt) = −∇G(zt)λ
>
t − ρ∇G(zt)(wt −G(zt))

> (127)

which involves one forward and one backward pass on the network G, as well as matrix-vector
products. Then we perform the exact minimization procedure on the w variable, which requires
recomputing G(z) on the new iterate zt+1, involving one forward pass through the network, as well
as the matrix-vector operations as described before. Recomputing the quantity wt+1 −G(zt+1) is
immediate upon which the dual stepsize σt+1 can be computed at negligible cost. Finally the dual
variable update reads as

λt+1 = λt + σ(wt+1 −G(zt+1)) (128)

which involves only scalar products and vector additions of values already computed. All in all each
GD iteration involves one forward and one backward pass, while ADMM computes two forward
and one backward pass. Both algorithms require a few additional matrix-vector operations of
similar complexity. For networks with multiple large layers, as usually encountered in practice, the
complexity per iteration can then be estimated as the number of forward and backward passes, which
are of similar complexity.

H.2 Parameter Tuning

We run a grid search for the gradient descent (GD) algorithm In order to do so we fix a number of
iterations and compare the average objective function over a batch of 100 random images and choose
the best performing parameters. We repeat the tuning in all possible escenarios in the experiments.
The results figures 4 - 5 (GD, Compressive sensing setup).
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Figure 4: Performance of GD on the compressive sensing task for different step sizes. MNIST dataset.
156 (top) and 313 (bottom) linear measurements.

H.3 Fast Exact Augmented Lagrangian Minimization with Respect to Primal Variable w

In the compressive sensing setup, the augmented lagrangian takes the form

Lρ(w, z, λ) :=
1

2
‖Aw − b‖22 + 〈λ,w −G(z)〉+

ρ

2
‖w −G(z)‖22 (129)
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Figure 5: Performance of GD on the compressive sensing task for different step sizes. CelebA dataset.
2457 (top) and 4915 (bottom) linear measurements.

with respect to w, this is a strongly convex function which admits a unique minimizer given by the
first order optimality condition

∇wLρ(w, z, λ) = A>(Aw − b) + λ+ ρ(w −G(z)) = 0 (130)

with solution
w∗ = (A>A+ ρI)−1(−λ+G(z) +A>b) (131)

Given the SVD of A = USV > we have A>A = V DV >, where D corresponds to the diagonal
matrix with the eigenvalues of ATA. We then have that A>A+ ρI = V (D + ρI)V > so that

w∗ = V (D + ρI)V >(−λ+G(z) +A>b) (132)

which involves only a fixed number of matrix-vector products per-iteration.

H.4 Per-Iteration Computational Complexity

The gradient of the function

h(z) =
1

2
‖AG(z)− b‖22 (133)

follows the formula
∇h(z) = ∇G(z)A>(AG(z)− b) (134)

which involves one forward pass through the network G, in order to compute G(z), as well as one
backward pass to compute∇G(z), and finally matrix-vector products to compute the final result.

On the other hand our ADMM first computes the iterate zt+1 with gradient descent on the augmented
lagrangian (129)

zt+1 = zt − β∇zLρ(wt, zt, λt) = −∇G(zt)λ
>
t − ρ∇G(zt)(wt −G(zt))

> (135)

which involves one forward and one backward pass on the network G, as well as matrix-vector
products. Then we perform the exact minimization procedure on the w variable, as described in
H.3, which requires recomputing G(z) on the new iterate zt+1, involving one forward pass through
the network, as well as the matrix-vector operations as described before. Recomputing the quantity
wt+1 −G(zt+1) is immediate upon which the dual stepsize σt+1 can be computed at negligible cost.
Finally the dual variable update reads as

λt+1 = λt + σ(wt+1 −G(zt+1)) (136)

which involves only scalar products and vector additions of values already computed. All in all each
GD iteration involves one forward and one backward pass, while ADMM computes two forward
and one backward pass. Both algorithms require a few additional matrix-vector operations of
similar complexity. For networks with multiple large layers, as usually encountered in practice, the
complexity per iteration can then be estimated as the number of forward and backward passes, which
are of similar complexity.
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I Pseudocode for Algorithm 2

Algorithm 2 Multi-scale Linearized ADMM
Input: Differentiable L, proximal-friendly convex regularizers R and H , differentiable prior G,
penalty weight ρ > 0, primal step sizes α, β > 0, initial dual step size σ0 > 0, primal initialization
w0 and z0, dual initialization λ0, stopping threshold τc > 0, iterations parameter n.

1 z0,0 ← z0, w0,0 ← w0

2 for k=0,. . . , K do
3 ρk ← ρ2k, αk ← α2−k, βk ← β2−k

4 z0 ← z0,k, w0 ← w0,k

5 for t = 0, 1, . . . , 2kn do
6 zt+1 ← PβkH (zt − βk∇zLρk(wt, zt, λt)) (primal updates)
7 wt+1 ← PαkR (wt − αk∇wLρ(wt, zt+1, λt))

8 σt+1 ← min

(
σ0,

σ0

‖wt+1 −G(zt+1)‖2t log2(t+ 1)

)
(dual step size)

9 λt+1 ← λt + σt+1(wt+1 −G(zt+1)) (dual update)

10 s←
‖zt+1 − zt‖22

αk
+
‖wt+1 − wt‖22

βk
+ σt‖wt −G(zt)‖22 ≤ τc (stopping criterion)

11 if s ≤ τc then return (wt+1, zt+1)

12 (w0,k+1, z0,k+1)← (wt+1, zt+1)

13
return (w0,K+1, z0,K+1)
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