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A Statement of theorems used and for completion

Theorem A.1 (Banach Fixed Point Theorem, 2.1 [2]). Let (X, d) be a complete metric space, then
each contraction map T : X → X has unique fixed point.

Theorem A.2 (Center-Stable Manifold Theorem, III.7 [5]). Let x∗ be a fixed point for the Cr local
diffeomorphism g : X → X . Suppose that E = Es ⊕ Eu, where Es is the span of the eigenvectors
corresponding to eigenvalues of magnitude less than or equal to one ofDg(x∗), and Eu is the span of
the eigenvectors corresponding to eigenvalues of magnitude greater than one of Dg(x∗)1. Then there
exists a Cr embedded disk W cs

loc of dimension dim(Es) that is tangent to Es at x∗ called the local
stable center manifold. Moreover, there exists a neighborhoodB of x∗, such that g(W cs

loc)∩B ⊂W cs
loc,

and ∩∞k=0g
−k(B) ⊂W cs

loc.

B Lyapunov-Perron Method

The Lyapunov-Perron method has been developed by A.M. Lyapunov and O. Perron for the proof of
the existence of stable and unstable manifolds of hyperbolic equilibrium points of ODEs. It uses the
integral equation formulation of the differential equation and constructs the invariant manifold as
a fixed point of an operator that is derived from this integral equation. The following case for time
homogeneous ODEs can be found in Section 2.7, [4]. Let F : Rd → Rd be of C1 with F (0) = 0,
consider the ODE

dx

dt
= F (x),

whose linear approximation at 0 is
dx

dt
= Ax + η(x).

By a change of coordinate system, A is assumed to be decomposed to stable-unstable blocks
respectively. Consider the operator T defined as follows:

Tu(t,x0) = U(t)x0 +

∫ t

0

U(t− s)η(u(s,x0))ds−
∫ ∞
t

V (t− s)η(u(s,x0))ds

1Jacobian of function g.
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where x0 is the initial point, U(t) and V (t) are integral operators from the block decomposition of A.
The stable manifold is the fixed point of T following from the Banach fixed point theorem.

C Missing Proofs

C.1 Proof of Theorem 4.1

Proof. Denote A (m,n) = (I − αmH) ... (I − αnH) for m ≥ n, and A (m,n) = I if m < n.
Then the dynamical system can be written as

xk+1 = A (k, 0)x0 +

k∑
i=0

A (k, i+ 1) η (i, xi) . (1)

Since H is diagonal, the matrix A (m,n) has the form of(
B(m,n)

C(m,n)

)
whereBk andCk are diagonal as well and corresponding to stable and unstable subspaces of I−αkH
at 0. Using the same notation of denoting A (m,n), we denote

B (m,n) = Bm · ... ·Bn
and

C (m,n) = Cm · ... · Cn.
Let v be a vector, we denote v+ the stable component of v and v− the unstable component of v. Then
the solution (1) can be written in terms of stable and unstable components as

x+k+1 = B (k, 0)x+0 +

k∑
i=0

B (k, i+ 1) η+ (i, xi)

and

x−k+1 = C (k, 0)x−0 +

k∑
i=0

C (k, i+ 1) η− (i, xi) .

If xk+1 → 0 as k → ∞, then x−k+1 → 0 as k → ∞. So we let k → ∞, the following limit must
holds:

lim
k

(
C (k, 0)x−0 +

k∑
i=0

C (k, i+ 1) η− (i, xi)

)
= 0.

Then we can solve x−0 in limit:

x−0 = lim
k

(
C−10 · ... · C−1k x−1k+1 −

[
C−0 η

− (0, x0) + · · ·+ C−10 · ... · C−1k η− (k, xk)
] )
,

and then by taking limit as k →∞,

x−0 = −
∞∑
i=1

C(i− 1, 0)−1η− (i− 1, xi−1) , (2)

where C(m,n)−1 denotes the inverse of C(m,n).
So the initial condition x0, if written as a column vector, has the form of

x0 =

(
x+0

−
∑∞
i=1 C(i− 1, 0)−1η− (i− 1, xi−1) .

)
Written as a column vecto, the solution of the dynamical system is of the form of(

x+k+1

x−k+1

)
=

(
B (k, 0)x+0 +

∑k
i=0B (k, i+ 1) η+ (i, xi)

C (k, 0)x−0 +
∑k
i=0 C (k, i+ 1) η− (i, xi) .

)
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Plugging the equation (2) back to the above expression, we have

xk+1 =

(
B (k, 0)x+0

−
∑k
i=0 C (k, i+ 1) η− (i, xi)−

∑∞
i=0 C(k + 1 + i, k + 1)−1η− (k + 1 + i, xk+1+i)

)
(3)

+

( ∑k
i=0B (k, i+ 1) η+ (i, xi)∑k
i=0 C (k, i+ 1) η− (i, xi)

)
(4)

=

(
B (k, 0)x+0 +

∑k
i=0B (k, i+ 1) η+ (i, xi)

−
∑∞
i=0 C(k + 1 + i, k + 1)−1η− (k + 1 + i, xk+1+i) .

)
(5)

Denote B(δ) ⊂ Rd the ball around 0 with Euclidean radius δ. Denote

`0(B(δ)) = {{un}n∈N ⊂ B(δ) : lim
n→∞

un = 0}

the metric space of sequences whose entries are in B(δ), with metric defined as

d(u, v) := sup
n≥0
{‖un − vn‖}. (6)

for any u = {un}n∈N and v = {vn}n∈N in the ball B(δ). Then `0(B(δ)) is a complete metric space
Reason is as follows:
Let u1 = {u1j}j∈N, u2 = {u2j}j∈N,..., ui = {uij}j∈N,... be a sequence of sequences in `0(B(δ)).
Suppose {ui}i∈N is Cauchy with respect to the metric defined by 6,i.e. given any ε > 0, there exists
integer L > 0, such that

d(un, um) = sup
j≥0
{‖unj − umj‖} < ε

for all n,m > L. This means that for each j, there exists a point u∗j ∈ B(δ) such that limi→∞ uij =
u∗j . And then we denote the limit sequence as u∗ = {u∗j}j∈N. Furthermore, letting m→∞, we
have that

‖unj − u∗j‖ < ε

for all n > L. Fixing n and letting j →∞, we have u∗j → 0 since unj → 0. And this shows that
u∗ ∈ `0(B(δ)).

Define the operator T for each sequence x = {xn}n∈N ⊂ Rd to be

(Tx)k+1 =

(
B (k, 0)x+0 +

∑k
i=0B (k, i+ 1) η+ (i, xi)

−
∑∞
i=0 C(k + 1 + i, k + 1)−1η− (k + 1 + i, xk+1+i) .

)
(7)

for k ≥ 0 and (Tx)0 = x0.
Next we prove that T is a contraction map when choosing sequence in a small enough neighborhood
around 0.
Take B(δ) a small enough neighborhood around 0 such that the Lipschitz condition is satisfied. Let
u = {un}n∈N ⊂ B(δ) and v = {vn}n∈N ⊂ B(δ). Then we have

(Tu− Tv)k+1 = (Tu)k+1 − (Tv)k+1 (8)

=

(
B (k, 0)u+0 +

∑k
i=0B (k, i+ 1) η+ (i, ui)

−
∑∞
i=0 C(k + 1 + i, k + 1)−1η− (k + 1 + i, uk+1+i)

)
(9)

−
(

B (k, 0) v+0 +
∑k
i=0B (k, i+ 1) η+ (i, vi)

−
∑∞
i=0 C(k + 1 + i, k + 1)−1η− (k + 1 + i, vk+1+i)

)
(10)

=

(
B (k, 0) (u+0 − v

+
0 ) +

∑k
i=0B (k, i+ 1) (η+(i, ui)− η+ (i, vi))

−
∑∞
i=0 C(k + 1 + i, k + 1)−1(η−(k + 1 + i, uk+1+i)− η− (k + 1 + i, vk+1+i)).

)
(11)
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Use spectrum norm ‖·‖ for matrices, we have

|(Tu− Tv)k+1| ≤ ‖B(k, 0)‖
∣∣u+0 − v+0 ∣∣+

k∑
i=0

‖B(k, i+ 1)‖
∥∥η+(i, ui)− η+(i, vi)

∥∥ (12)

+

∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ ∥∥η−(k + 1 + i, uk+1+i)− η−(k + 1 + i, vk+1+i)

∥∥
(13)

(by Lipschitz assumption (6)) (14)

≤ ‖B(k, 0)‖
∥∥u+0 − v+0 ∥∥ +

k∑
i=0

‖B(k, i+ 1)‖ αiε ‖ui − vi‖ (15)

+

∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ αk+1+iε ‖uk+1+i − vk+1+i‖ (16)

≤ ‖B(k, 0)‖ d(u, v) +

k∑
i=0

‖B(k, i+ 1)‖ αiεd(u, v) (17)

+

∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ αk+1+iεd(u, v) (18)

= ‖B(k, 0)‖ d(u, v) +

k∑
i=0

αiε ‖B(k, i+ 1)‖ d(u, v) (19)

+

∞∑
i=0

αk+1+iε
∥∥C(k + 1 + i, k + 1)−1

∥∥ d(u, v) (20)

= ‖B(k, 0)‖ d(u, v) + εd(u, v)

(
k∑
i=0

αi ‖B(k, i+ 1)‖

)
(21)

+ εd(u, v)

( ∞∑
i=0

αk+1+i

∥∥C(k + 1 + i, k + 1)−1
∥∥) (22)

Next we proceed to prove that

‖B(k, 0)‖ + ε

(
k∑
i=0

αi ‖B(k, i+ 1)‖

)
+ ε

( ∞∑
i=0

αk+1+i

∥∥C(k + 1 + i, k + 1)−1
∥∥)

can be taken less than 1 so that T is a contraction map on `0(B(δ)).

Lemma C.1.

Rk =

∞∑
i=0

αk+1+i

∥∥C(k + 1 + i, k + 1)−1
∥∥

is a convergent series for each k ∈ N+. Moreover, there exists a constant K2 > 0 such that Rk ≤ K2

for all k ∈ N+.

Proof. Denote λ the least negative eigenvalue, then the spectrum norm of C(k + 1 + i, k + 1)−1 is

∥∥C(k + 1 + i, k + 1)−1
∥∥ =

k+1+i∏
j=k+1

(1− αjλ)−1.
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Since the sequence αi is chosen to be small, we have

Rk =

∞∑
i=0

αk+1+i

∥∥C(k + 1 + i, k + 1)−1
∥∥ (23)

≤ αk
∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ (24)

= αk

∞∑
i=0

k+1+i∏
j=k+1

(1− αjλ)−1. (25)

Using the inequality 1 + x ≤ ex, we have

(1− αjλ)−1 =
1

1− αjλ
= 1 +

αjλ

1− αjλ
≤ exp

(
αjλ

1− αjλ

)
and

k+1+i∏
j=k+1

(1− αjλ)−1 ≤ exp

k+1+i∑
j=k+1

αjλ

1− αjλ

 ,

and thus

Rk ≤ αk
∞∑
i=0

exp

k+1+i∑
j=k+1

αjλ

1− αjλ

 . (26)

Since by assumption, αj ∈ Ω
(

1
jp

)
and λ < 0, so 1 − αjλ is positive and bounded, i.e. 1 <

1− αjλ < c. And then the following inequalities hold:

αj
1− αjλ

≥ 1

1− αjλ
· 1

jp
≥ 1

c
· 1

jp
.

Multiplying by the negative number λ, we have

αjλ

1− αjλ
≤ λ

c
· 1

jp
.

Combining with the inequality 26, we obtain

Rk ≤ αk
∞∑
i=0

exp

k+1+i∑
j=k+1

αjλ

1− αjλ

 ≤ αk ∞∑
i=0

exp

λ
c

k+1+i∑
j=k+1

1

jp

 .

By definition of definite integral, we notice that

k+1+i∑
j=k+1

1

jp
>

∫ k+2+i

k+1

1

tp
dt (27)

=
1

1− p
(k + 2 + i)1−p − 1

1− p
(k + 1)1−p. (28)

Since λ < 0,
λ

c

k+1+i∑
j=k+1

1

jp
<

λ

c(1− p)
(k + 2 + i)1−p − λ

c(1− p)
(k + 1)1−p

so we have

exp

λ
c

k+1+i∑
j=k+1

1

jp

 < exp

(
λ

c(1− p)
(k + 2 + i)1−p − λ

c(1− p)
(k + 1)1−p

)
(29)

= exp

(
λ

c(1− p)
(k + 2 + i)1−p

)
· exp

(
− λ

c(1− p)
(k + 1)1−p

)
. (30)
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So for each fixed k, we have that

Rk ≤ αk
∞∑
i=0

exp

λ
c

k+1+i∑
j=k+1

1

jp

 (31)

< αk exp

(
− λ

c(1− p)
(k + 1)1−p

)
·
∞∑
i=0

exp

(
λ

c(1− p)
(k + 2 + i)1−p

)
. (32)

The series
∞∑
i=0

exp

(
λ

c(1− p)
(k + 2 + i)1−p

)
(33)

has the same convergence as the integral∫ ∞
k

exp
(
−t1−p

)
dt.

Notice that∫ ∞
k

exp
(
−t1−p

)
dt =

∫ ∞
k1−p

exp(−u)
1

1− p
u

1
1−p−1du (34)

=
1

1− p

∫ ∞
k1−p

exp(−u)u
1

1−p−1du (35)

=
1

1− p
Γ

(
1

1− p
, k1−p

)
, (the incomplete Gamma function) (36)

which implies that
∫∞
k

exp(−t1−p)dt converges, so does the series 33.
Since the incomplete Gamma function Γ(s, x) has the property

Γ(s, x)

xs−1e−x
→ 1 as x→∞,

let s = 1
1−p and x = k1−p so that xs−1 = (k1−p)

1
1−p−1 = kp, we have that

1

kp
ek

1−p

Γ

(
1

1− p
, k1−p

)
=

Γ( 1
1−p , k

1−p)

kpe−k1−p → 1

as k →∞. This implies that Rk is bounded as k →∞.

Lemma C.2. The sequence

Sk =

k∑
i=0

αi ‖B(k, i+ 1)‖

is uniformly bounded for all k ∈ N, i.e. there exists positive number K1 such that Sk ≤ K1

Proof. Since B(k, i+ 1) is diagonal, denote λ the least positive eigenvalue of H , by definition of
B(k, i+ 1), we have that

‖B(k, i+ 1)‖ = (1− αkλ) · · · (1− αi+1λ).

Then
Sk = α0(1− αkλ) · · · (1− α1λ) + ...+ αk.

Notice that
Sk+1 = (1− αk+1λ)Sk + αk+1.

Consider the difference between Sk+1 and Sk, we have

Sk+1 − Sk = (1− αk+1λ)Sk + αk+1 − Sk (37)
= Sk − αk+1λSk + αk+1 − Sk (38)
= αk+1(1− λSk). (39)

We observe the following facts:
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1. If Sk = 1
λ , then Sk = Sk+1 ≡ 1

λ .

2. If Sk > 1
λ , or equivalently 1 − λSk < 0, then Sk+1 − Sk < 0, and Sk decreases until

Sk1 <
1
λ for some k1 ∈ N.

3. If Sk < 1
λ , or equivalently 1 − λSk > 0, then Sk+1 − Sk > 0, and Sk increases until

Sk >
1
λ .

So Sk decreases or increases to 1
λ (meaning that Sk is bounded), or Sk oscillates around 1

λ . Suppose
that Sk < 1

λ and Sk+1 >
1
λ , we have that

Sk+1 ≤ Sk + αk+1 ≤
1

λ
+

1

λ
=

2

λ

when k is large so that αk < 1
λ . Then in conclusion, Sk is bounded, and the proof completes.

Next result shows that T maps a sequence converging to 0 to another sequence converging to 0. And
this is a prerequisite for T to be a well defined map on the complete metric space `0(B(δ)) to itself.

Lemma C.3. Suppose x = {xk}k∈N and limk→∞ xk = 0. Then limk→∞(Tx)k+1 = 0

Proof. Denote (Tx)+k+1 and (Tx)−k+1 the stable and unstable component of (Tx)k+1 respectively.
We prove limk→∞(Tx)+k+1 = 0 and limk→∞(Tx)−k+1 = 0 separately.

1. limk→∞(Tx)+k+1 = 0:
According to the definition of T in 7,

(Tx)+k+1 = B(k, 0)x+0 +

k∑
i=0

B(k, i+ 1)η+(i, xi).

Since ‖B(k, 0)‖ → 0 as k →∞, it is enough to show that

k∑
i=0

B(k, i+ 1)η+(i, xi)→ 0

as k →∞. From the Lipschitz condition on η, we have that∥∥∥∥∥
k∑
i=0

B(k, i+ 1)η+(i, xi(x0))

∥∥∥∥∥ ≤ ε
k∑
i=0

‖B(k, i+ 1)‖ · αi ‖xi‖ (40)

= ε ((1− αkλ) · · · (1− α1λ)α0 ‖x0‖ + · · · (1− αkλ)αk−1 ‖xk−1‖ + αk ‖xk‖) .
(41)

Denote the sum above as

Sk = (1− αkλ) · · · (1− α1λ)α0 ‖x0‖ + · · · (1− αkλ)αk−1 ‖xk−1‖ + αk ‖xk‖ .

Notice that
Sk+1 = (1− αk+1λ)Sk + αk+1 ‖xk+1‖ ,

and then
Sk+1 − Sk = αk+1(‖xk+1‖ − λSk).

From the proof of Lemma C.2, we know that Sk is bounded, and thus |Sk+1 − Sk| → 0 as k →∞.
Similar to proof of C.2, we have the following observation:

1. If Sk+1 − Sk > 0, then |xk+1| − λSk > 0, or Sk <
|xk|
λ ;

2. If Sk+1 − Sk < 0, then |xk+1| − λSk < 0, or Sk >
|xk|
λ ;

3. If Sk+1 − Sk = 0, then Sk = constant.
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So the sequence Sk is either

1. decreasing but Sk >
‖xk‖
λ ,

2. oscillating around ‖xk‖
λ .

If Sk is of case 1, then limk Sk exists. Suppose that this limit is positive, but since we have
∑
αk =∞

and
Sk+1 = Sk + αk+1(‖xk+1‖ − λSk)

implying that Sk → ∞. So we conclude that limk Sk = 0, contradicting to the fact that limk Sk
exists. So the limk Sk must be 0 if Sk is of case 1.
If Sk is of case 2, then immediately lim inf Sk = 0. Suppose that lim supSk > 0. Since Sk
decreases whenever Sk >

‖xk‖
λ and Sk increases whenever Sk <

‖xk‖
λ , we can find a subsequence

Skm , with Skm−1 < Skm , converging to lim supSk as m → ∞. But this is impossible since
Skm−1 <

‖xk‖
λ and then Skm−1 → 0 as m → ∞, which means limm |Skm−1 − Skm | is positive,

contradicting to the fact that limk |Sk − Sk+1| = 0. And thus, we have lim supk Sk = 0, meaning
that limk Sk = 0.
So we conclude that either in case 1 or 2, the limit limk Sk = 0, which completes the proof of part 1.

2. limk→∞(Tx)−k+1 = 0:
According to the equation 7,

(Tx)−k+1 = −
∞∑
i=0

C(k + 1 + i, k + 1)−1η−(k + 1 + i, xk+1+i).

And from the Lipschitz condition of on η, we have that∥∥(Tx)−k+1

∥∥ ≤ ∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ ∥∥η−(k + 1 + i, xk+1+i)

∥∥ (42)

≤
∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ ‖η(k + 1 + i, xk+1+i)‖ (43)

≤
∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ εαk+1+i ‖xk+1+i‖ (44)

≤
∞∑
i=0

∥∥C(k + 1 + i, k + 1)−1
∥∥ εαk+1+i sup

n>k
‖xn‖ (45)

≤ sup
n>k
|xn| ·K2 (Lemma C.1) (46)

Since {xn} converges to 0 as n→∞, supn>k |xn| → 0 as k →∞. And this completes the proof of
part 2.

Lemma C.4. There exists a real number δ > 0 such that the operator T given by equation 7

T : `0(B(δ))→ `0(B(δ))

is a contraction map.

Proof. From Lemma C.1 and Lemma C.2, we know that in equation (22),

k∑
i=0

αi ‖B(k, i+ 1)‖ ≤ K1 (47)

and
∞∑
i=0

αk+1+i

∥∥C(k + 1 + i, k + 1)−1
∥∥ ≤ K2. (48)
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Since B(k, 0) is on the stable subspace and whose norm is calculated by

‖B(k, 0)‖ =

k∏
i=0

(1− αiλ)

where λ > 0, we have
‖B(k, 0)‖ ≤ ‖B(0, 0)‖ = 1− α0λ < 1.

Then we can choose small positive ε so that

ε <
α0λ

K1 +K2
.

Define the constant K to be
K := 1− α0λ+ ε (K1 +K2) , (49)

and by the choice of ε, we know that K < 1. Let δ > 0 be the radius corresponding to ε so that the
Lipschitz condition is satisfied.
Combining 22, 47 and 48, we have that

‖(Tu− Tv)k+1‖ ≤ (‖B(k, 0)‖ + ε(K1 +K2)) d(u, v) ≤ Kd(u, v).

Since above k is taken arbitrarily, we conclude that

‖Tu− Tv‖ ≤ Kd(u, v).

So T is a contraction map.

And since `0(B(δ)) is a complete metric space, according to Banach fixed point theorem, there exists
a unique sequence, denoted as x = {xn}n∈N, such that

Tx = x

with initial condition satisfying

(x+0 , x
−
0 ) = (x+0 ,−

∞∑
i=0

C(k + 1 + i, k + 1)−1η− (k + 1 + i, xk+1+i)). (50)

If we consider the sequence x as a sequence of functions with the initial condition as the variable, the
general term xn is written as xn(x0), then the equation (50) is written as

(x+0 , x
−
0 ) =

(
x+0 ,−

∞∑
i=0

C(k + 1 + i, k + 1)−1η−
(
k + 1 + i, xk+1+i(x

+
0 , x

−
0 )
))

.

This means that if the some initial condition x0 goes to 0 through the discrete time process {xn(x0)},
its stable and unstable component must satisfy following relation:

x−0 = −
∞∑
i=0

C(k + 1 + i, k + 1)−1η−
(
k + 1 + i, xk+1+i(x

+
0 , x

−
0 )
)
.

Denote

Φ(x+0 , x
−
0 ) = −

∞∑
i=0

C(k + 1 + i, k + 1)−1η−
(
k + 1 + i, xk+1+i(x

+
0 , x

−
0 )
)

and the equation x−0 = Φ(x+0 , x
−
0 ) defines an implicit function x−0 = ϕ(x+0 ) by the uniqueness of

Banach fixed point. Next we will show that ϕ is differentiable with respect to x+0 . Since it is enough
to show the function Φ(x+0 , x

−
0 ) is differentiable with respect to x+0 . And it is enough to show that

each xn(x0), if considered as a function of initial condition x0, is differentiable with respect to x+0 .

Lemma C.5. The solution xn(x+0 , x
−
0 ) is of C1 with respect to x+0 provided η(n, x) is of C1.

9



Proof. It is equivalent to show that ∂xn

∂x0,j
, j = 1, .., d, where d is the dimension of stable vector space,

exist and are continuous for small |x0|.
Let P+ and P− be the projection operators to the stable and unstable subspaces respectively, then
the solution (with initial condition x0) of the dynamical system can be written as

xk+1(x0) =A(k, 0)P+x0 +

k∑
i=0

A(k, i+ 1)P+η(i, xi(x0)) (51)

−
∞∑
i=0

A(k + 1 + i, k + 1)−1P−η(k + 1 + i, xk+1+i(x0)). (52)

Let h be a scalar and ej be the jth standard basis. Denote

q(n, x0, h) =
xn(x0 + hej)− xn(x0)

h
.

Notice the following identity holds:

η(n, xn(x0 + hej))− η(n, xn(x0))

h
=
η(n, xn(x0 + hej))− η(n, xn(x0))

h
(53)

+Dη(n, xn(x0))q(n, x0, h) (54)
−Dη(n, xn(x0))q(n, x0, h). (55)

Plugging above identity to 51, we can compute the difference quotient q(k + 1, x0, h) =
xk+1(x0+hej)−xk+1(x0)

h

q(k + 1, x0, h) = A(k, 0)P+

(
(x0 + hej)− x0

h

)
(56)

+

k∑
i=0

A(k, i+ 1)P+

(
η(i, xi(x0 + hej))− η(i, xi(x0))

h

)
(57)

−
∞∑
i=0

A(k + 1 + i, k + 1)−1P−
(
η(k + 1 + i, xk+1+i(x0 + hej))− η(k + 1 + i, xk+1+i(x0))

h

)
(58)

= A(k, 0)P+ej +

k∑
i=0

A(k, i+ 1)P+ (Dη(i, xi(x0))q(i, x0, h) + ∆i) (59)

−
∞∑
i=0

A(k + 1 + i, k + 1)−1P− (Dη(k + 1 + i, xk+1+i(x0))q(k + 1 + i, x0, h) + ∆k+1+i) ,

(60)

where

∆n =
η(n, xn(x0 + hej))− η(n, xn(x0))

h
−Dη(n, xn(x0))q(n, x0, h).

Since for the solution x(n, x0), x(n, x0)→ 0 as n→∞, and ‖η(n, x)− η(n, x̄)‖ ≤ ε ‖x− x̄‖, we
have that

‖Dη(n, xn(x0))‖ ≤ εd.
Given δ > 0, |h| can be chosen small that by the mean value theorem and the continuity of Dη, we
have

‖∆n‖ ≤
1

h
‖Dη(n, x′)‖ · ‖xn(x0 + hej)− xn(x0)‖ + ‖Dη(n, xn(x0))‖ · ‖q(n, x0, h)‖ (61)

= (‖Dη(n, x′n)‖ + ‖Dη(n, xn(x0))‖) · ‖q(n, x0, h)‖ (62)
≤ δ ‖q(n, x0, h)‖ , (63)

where x′n is a point on the line segment joining xn(x0 + hej) and xn(x0). Since

‖η(i, xi(x0 + hej))− η(i, xi(x0))‖
|h|

≤ αiε

10



so ‖q(n, x0, h)‖ is bounded, denoted as

‖q(n, x0, h)‖ ≤M.

And then ‖∆n‖ ≤ δM . Define the operator as

ψ(k + 1, x0) =A(k, 0)P+ej +

k∑
i=0

A(k, i+ 1)P+Dη(i, xi(x0))ψ(i, x0) (64)

−
∞∑
i=0

A(k + 1 + i, k + 1)−1P−Dη(k + 1 + i, xk+1+i(x0))ψ(k + 1 + i, x0).

(65)

Consider the difference

q − ψ (66)

=

k∑
i=0

A(k, i+ 1)P+ (Dη(i, xi(x0)) (q(i, x0, h)− ψ(i, x0)) + ∆i) (67)

−
∞∑
i=0

A(k + 1 + i, k + 1)−1P− (Dη(k + 1 + i, xk+1+i(x0)) (q(k + 1 + i, x0, h)− ψ(k + 1 + i, x0)) + ∆k+1+i) .

(68)

Notice that the part of infinite sum converges to 0 as k →∞, one can choose k large enough so that
the norm of the infinite sum to be small, and then we have for any small ε′ > 0, the sup ‖q − ψ‖
satisfies

sup ‖q − ψ‖ ≤
k∑
i=0

∥∥A(k, i+ 1)P+ (Dη(i, xi(x0)) (q(i, x0, h)− ψ(i, x0)) + ∆i)
∥∥ + ε′ (69)

≤ K ′εd sup ‖q − ψ‖ +K ′′δ. (70)

Where K ′′ is the bound from that |∆i| → 0 as i→∞. One choose neighborhood small enough so
that K ′εd < 1

2 and then we have
sup ‖q − ψ‖ < K ′′δ.

Since δ → 0 as h → 0, so sup ‖q − ψ‖ → 0 as h → 0. And this means that the partial derivative
∂xn

∂ξi
exists and equals to ψ.

In the end we prove that
⋂∞
k=0 g̃

−1(k, 0, U) ⊂ V (0) and this can be done by contradiction. Assume
that there is an initial point x0 not in V (0) that generates a sequence {xk}k∈N such that xk ∈ U as
k →∞. Since x−k+1 = Ck+1x

−
k + η−(k, xk), we have that∥∥x−k+1

∥∥ =
∥∥Ck+1x

−
k + η−(k, xk)

∥∥ ≥ ∣∣∥∥Ck+1x
−
k

∥∥ − ∥∥η−(k, xk)
∥∥∣∣ .

Since ‖η−(k, xk)‖ → 0 as k →∞ due to αk, and
∥∥Ck+1x

−
k

∥∥ →∞ as k →∞ by assumption that
x−k is bounded away from 0. But this contradicts to the assumption x−k+1 is bounded in U . The proof
completes.

C.2 Proof of Corollary 4.3

Proof. For each x∗ ∈ A∗, there is an associated open neighborhood Ux∗ promised by the Corollary
4.2.

⋃
x∗∈A∗ Ux∗ forms an open cover, and since Rd (more generally, any manifold) is second-

countable we can find a countable subcover, so that
⋃

x∗∈A∗ Ux∗ =
⋃∞
i=1 Ux∗

i

By the definition of global stable set, we have

W s(A∗) = {x0 : lim
k→∞

g̃(k, 0,x0) ∈ A∗}.

Fix a point x0 ∈ W s(A∗). Since g̃(k, 0,x0) → x∗ ∈ A∗, there exists some nonnegative integer
T and all t ≥ T , such that g̃(t, 0,x0) ∈

⋃
x∗∈A∗ Ux∗ =

⋃∞
i=1 Ux∗

i
. So g̃(t, 0,x0) ∈ Ux∗

i
for

some x∗i ∈ A∗ and all t ≥ T . This is equivalent to g̃(T + k, T, g̃(T, 0,x0)) ∈ Ux∗
i

for all
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k ≥ 0, and this implies that g̃(T, 0,x0) ∈ g̃−1(T + k, T, Ux∗
i
) for all k ≥ 0. And then we have

g̃(T, 0,x0) ∈
⋂∞
k=0 g̃

−1(T + k, T, Ux∗
i
). Denote Si,T :=

⋂∞
k=0 g̃

−1(T + k, T, Ux∗
i
) and the above

relation is equivalent to x0 ∈ g̃−1(T, 0, Si,T ). Take the union for all nonnegative integers T , we have
x0 ∈

⋃∞
T=0 g̃

−1(T, 0, Si,T ). And union for all i we obtain that x0 ∈
⋃∞
i=1

⋃∞
T=0 g̃

−1(T, 0, Si,T )
implying that W s(A∗) ⊂

⋃∞
i=1

⋃∞
T=0 g̃

−1(T, 0, Si,T ). Since Si,T ⊂ Wn(x∗) from Corollary 4.2,
and Wn(x∗) has codimension at least 1. This implies that Si,T has measure 0. Since the image of set
zero-measure set under diffeomorphism is of measure 0, and countable union of zero-measure sets is
of measure 0, we obtain that W s(A∗) is of measure 0.

C.3 Proof of Theorem 5.3

Proof. Let U ⊂ Rd be an open ball centering at x∗,the Taylor expansion of g(k,x) in U ∩M is of
the form

g(k,x) = g(k,x∗) + (IdTx∗M − αk∇2
RΦ(x∗)−1∇2

Rf(x∗))(x− x∗) + θ(k,x).

The fact that g(k,x) satisfies the condition 1 of Corollary 4.2 follows from the proof of Proposition
10, [3], i.e. ∇2

RΦ(x∗)−1∇2
Rf(x∗) is similar to a symmetric linear operator (so diagonalizable) with

at least one negative eigenvalue.
Next, we verify that g(k,x) satisfies the condition 2 of Corollary 4.2. From the Taylor expansion, we
have

θ(k,x) = g(k,x)− x∗ − (IdTx∗M − αk∇2
RΦ(x∗)−1∇2

Rf(x∗))(x− x∗),

and
Dxθ(k,x) = −αk∇2

RΦ(x)−1∇2
Rf(x) + αk∇2

RΦ(x∗)−1∇2
Rf(x∗).

By the continuity of ∇2
Rf and ∇2

RΦ(x)−1, the same argument as the proof of Theorem 5.1 implies
that the condition 2 of Corollary 4.2 is satisfied. Combing Corollary 4.2 and Corollary 4.3, we
conclude that the stable set of saddle points has Lebesgue measure zero.

C.4 Proof of Theorem 5.4

Proof. Different from the other First-order methods, the results is not a direct consequence of
Corollary 4.3, but instead, we need to apply part of the proof of Theorem 4.1. It is still necessary
to verify that the Taylor expansion of g(k,x) at x∗ satisfies condition 1 and 2 of Corollary 4.2.
From the proof of Proposition 3, [3], g(k,x) + αk∇f(g(k,x)) = x. By implicit differentiation,
Dg(k,x) + αk∇2f(g(k,x))Dg(k,x) = I , and

Dg(k,x) = (I + αk∇2f(g(k,x)))−1.

At saddle point x∗, Dg(k,x∗) = (I + αk∇2f(g(k,x∗)))−1 that is diagonalizable since∇2f(x∗) is
diagonalizable. Suppose under the matrix Q, Q∇2f(x∗)Q−1 = H that is diagonal. Then

Q(I + αk∇2f(x∗))−1Q−1 =
(
Q(I + αk∇2f(x∗))Q−1

)−1
(71)

=
(
I + αkQ∇2f(x∗)Q−1

)−1
(72)

= (I + αkH)
−1 (73)

= diag{ 1

1 + αkλi
}, (74)

where λi are the eigenvalues of H . Notice that 1
1+αkλi

= 1− αkλi

1+αkλi
, the stable-unstable decompo-

sition in the proof of Corollary 4.1 holds. Furthermore, since αk ∈ Ω
(
1
k

)
, αkλi

1+αkλi
is also of Ω

(
1
k

)
.

To see this, we can assume αkλi ≥ 1
k−1 = 1

k ·
k
k−1 , and then k−1

k αkλi ≥ 1
k or

(
1− 1

k

)
αkλi ≥ 1

k ,
and thus αkλi ≥ 1

k (1 + αkλi), implying that αkλi

1+αkλi
≥ 1

k . So the proof for Lemma C.1 and Lemma
C.2 holds for the existence of stable manifold of proximal point algorithm if condition 2 of Corollary
4.2 is satisfied. To verify this, we consider the Taylor expansion of g(k,x) at x∗ has the form of

g(k,x) = g(k,x∗) +Dxg(k,x∗)(x− x∗) + θ(k,x)

= x∗ + (I + αk∇2f(g(k,x∗)))−1(x− x∗) + θ(k,x),
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and thus
θ(k,x) = g(k,x)− x∗ − (I + αk∇2f(g(k,x∗)))−1(x− x∗).

So the differential
Dxθ(k,x) = (I + αk∇2f(g(k,x)))−1 − (I + αk∇2f(g(k,x∗)))−1.

Since f is of C2, g(k,x) and ∇2f(x) are continuous, and then ‖θ(k,x)− θ(k,y)‖ ≤ αkε ‖x− y‖
follows from the same argument as the proof of Theorem 5.1. So the verification completes and by
Corollary 4.2 and Corollary 4.3, we conclude that the stable set of strict saddle points is of Lebesgue
measure zero.

C.5 Proof of Theorem 5.5

Proof. According to the proof of Proposition 8, [3], for v ∈ Tx∗M ,
Dxg(k,x∗)v = PTx∗Mv − αkPTx∗MD(PTx∗M∇f̄)(x∗)v.

Let x− x∗ ∈ Tx∗M , the Taylor expansion in the tangent space can be written as
g(k,x) = g(k,x∗) + PTx∗M (x− x∗)− αkPTx∗MD(PTx∗M∇f̄)(x∗)(x− x∗) + θ(k,x).

Using equation 4, [1], PTxMD(PTxM∇f̄)(x) = ∇2
Rf(x), which is exactly the Riemannian Hessian,

and thus it is diagonalizable. So this verifies the condition 1 of Corollary 4.2. Furthermore, the Taylor
expansion gives

θ(k,x) = g(k,x)− x∗ − PTx∗M (x− x∗) + αkPTx∗MD(PTx∗M∇f̄)(x∗)(x− x∗),

and then
Dxθ(k,x) = Dxg(k,x)− PTx∗M + αkPTx∗MD(PTx∗M∇f̄)(x∗).

The continuity of ∇2f implies that for each ε > 0, there exist neighborhood of x∗, such that
‖Dxθ(k,x)‖ ≤ ε. Apply the argument in the proof of Theorem 5.1 (Fundamental Theorem of
Calculus and Cauchy-Schwarz inequality), we can conclude that condition 2 of Corollary 4.2 is
satisfied. then combing with Corollary 4.3, we have that the stable set of strict saddle points has
measure (induced by metric R) zero.

C.6 Proof of Theorem 5.6

Proof. Let x∗ ∈ X ∗, then ∇f(x∗) = 0, and g(k,x∗) = x∗. To show that x∗ is unstable, consider
the differential

Dxg(k,x) = I − αkDx

((
Rij
)
· ∇f(x)

)
,

where

Dx

((
Rij
)
· ∇f(x)

)
=


∂
∂x1

(R1j ∂f
∂xj

) · · · ∂
∂xd

(R1j ∂f
∂xj

)
...

...
∂
∂x1

(Rdj ∂f∂xj
) · · · ∂

∂xd
(Rdj ∂f∂xj

)

 (75)

=


∂R1j

∂x1

∂f
∂xj

+R1j ∂2f
∂x1∂xj

· · · ∂R1j

∂xd

∂f
∂xj

+R1j ∂2f
∂xd∂xj

...
...

∂Rdj

∂x1

∂f
∂xj

+Rdj ∂2f
∂x1∂xj

· · · ∂Rdj

∂xd

∂f
∂xj

+Rdj ∂2f
∂xm∂xj

 (76)

=


∂R1j

∂x1

∂f
∂xj

· · · ∂R1j

∂xd

∂f
∂xj

...
...

∂Rdj

∂x1

∂f
∂xj

· · · ∂Rdj

∂xd

∂f
∂xj

+


R1j ∂2f

∂x1∂xj
· · · R1j ∂2f

∂xd∂xj

...
...

Rdj ∂2f
∂x1∂xj

· · · Rdj ∂2f
∂xd∂xj

 .
(77)

Since at x∗,∇f(x∗) = 0, i.e. ∂f
∂xj

= 0 for all j, we have

Dx

((
Rij
)
· ∇f(x∗)

)
=


R1j ∂2f

∂x1∂xj
· · · R1j ∂2f

∂xd∂xj

...
...

Rdj ∂2f
∂x1∂xj

· · · Rdj ∂2f
∂xd∂xj


x=x∗

=
(
Rij
)
·
(

∂2f

∂xi∂xj

) ∣∣∣∣∣
x=x∗

.
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Recall that
(
Rij
)

= (Rij)
−1, and as it is shown in [3], by the similar transformation under (Rij)

1
2 ,

we have

(Rij)
1
2 ·Dx

((
Rij
)
· ∇f(x∗)

)
· (Rij)−

1
2 = (Rij)

− 1
2 ·
(

∂2f

∂xi∂xj

)
· (Rij)−

1
2 ,

that is a symmetric matrix, so it is diagonalizable. And thus, Dx

((
Rij
)
· ∇f(x∗)

)
is diagonalizable

and has the same eigenvalue with
(

∂2f
∂xi∂xj

)
, meaning that it has negative eigenvalues. So the

Riemmanian Hessian at x∗ as at least one negative eigenvalue.
The Taylor expansion of g(k,x) at x∗ is

g(k,x) = g(k,x∗) +

(
I − αk

(
Rij(x∗)

)
·
(

∂2f

∂xi∂xj
(x∗)

))
(x− x∗) + θ(k,x),

where (
Rij(x∗)

)
·
(

∂2f

∂xi∂xj
(x∗)

)
=
(
Rij
)
·
(

∂2f

∂xi∂xj

) ∣∣∣∣∣
x=x∗

.

We have

θ(k,x) = g(k,x)− x∗ −
(
I − αk

(
Rij(x∗)

)
·
(

∂2f

∂xi∂xj
(x∗)

))
(x− x∗)

and

Dxθ(k,x) = −αk
(
Rij(x)

)
·
(

∂2f

∂xi∂xj
(x)

)
+ αk

(
Rij(x∗)

)
·
(

∂2f

∂xi∂xj
(x∗)

)
.

By the continuity of
(

∂2f
∂xi∂xj

(x)
)

, the same argument as the verification of condition 2 in the proof
of Theorem 5.1 implies that θ(k,x) satisfies the condition 2 of Corollary 4.2. Combining with
Corollary 4.3, we conclude that the stable set of strict saddle points has measure (induced by metric
R) zero.
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