
Appendix

A Related Work

Regularization in RL. The first class aims to control the complexity of value function approxi-
mation. The use of function approximation makes it possible to model value (or Q-value) function
when the state space is large or even infinite. The main regularization form is L2 or L1 regularization.
For example, [23, 7] uses L2 regularization to control the complexity of fitting value (or Q-value)
functions. [18, 16] uses L1 regularization for sparse feature selection.

The second class aims to capture the geometry of parameter spaces better and confine the information
loss of policy search [30]. A lot of works propose to constraint the updated policy πnew so that it is
close to the old one πold in some sense. [30, 32, 22, 34, 21] use the Kullback-Leibler (KL) divergence
as the measure for closeness and [3] considers a more general class of f-divergences.

The third class aims to modify the original MDP to a more tractable one. One considers the case
the transition probabilities can be rescaled [37]. Others add a policy-related regularization term to
the rewards, where entropy-regularized RL belongs. [29, 25, 12, 13] consider using the Shannon
entropy, which is shown to improve both exploration and robustness. An MDP with Shannon
entropy maximization is termed as soft MDP where the hard max operator is replaced by a softmax
[1]. However, the optimal policy in soft MDPs put probability mass on all actions, implying
some significantly unimportant actions would be executed. To fix this problem, [11] proposes
to dynamically learn a prior that weights the importance of actions by using mutual information.
Alternatively, [27, 19] replace Shannon entropy with Tsallis entropy, since a special case (q = 2
in our notation) of Tsallis entropy can devise a sparse optimal policy [19]. Recently, [20] analyzes
a more general Tsallis entropy family with an additional real-valued parameter (i.e., q mentioned
above), called an entropic index, which is able to control the exploration tendency. [10] considers a
more general class of regularized MDP where any strongly concave function replaces the entropy-like
regularization term.

To address the issues discussed in the introduction (i.e., to obtain a sparse but multi-modal optimal
policy), only the regularization in the third class could work. However, they either focus on entropy
regularization or consider too large function, the former ignoring various regularization forms in
convex optimization and the latter having no implications for the choice of regularization. Thus we
are motivated to propose a unified framework for regularized RL which extends current entropy-
regularized RL and provides enough practical guidance.

Optimization for Entropy-regularized MDPs. In the literature, there are many algorithms to
solve entropy-regularized MDP problems. Similarly, these methods can be modified to solve regular-
ized MDPs since the regularization we proposed is an extension of the traditional entropy.

[12, 19] consider the general modified value iteration approach. They repeatedly solve greedily
the target regularized Q-values and updates the Q-value function in a Q-learning-like pattern. [33]
discussed the equivalence between policy gradients and Q-learning where the entropy regularizer
is Shannon entropy. [13] adopted actor-critic methods to solve the Shannon regularized MDP in an
off-policy fashion and achieves the state-of-the-art performance in continuous control tasks in RL.
[20] proposes TAC, a variant of SAC, by replacing Shannon entropy with general Tsallis entropy.
[25] point out there exists a path consistency equation which only the (near) optimal value and policy
satisfy and propose to minimize the residual of that equation by simultaneously updating value and
policy functions. This method is called as Path Consistency Learning(PCL). [26, 27, 6] share the
same methodology with PCL for Shannon entropy.

[28] provides a unified view of entropy-regularized MDPs which enables us to formalize most
entropy-regularized RL algorithms as approximate variants of Mirror Descent or Dual Averaging.
[10] extends this result such that a broader class of regularizers is considered. They propose a
modified policy iteration and give error propagation analyses for many existing algorithmic schemes.
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B Proof for Optimality Condition of Regulazied MDPs

In this section, we give the detail proof for Theorem 1, which states the optimality condition of
regularized MDPs. The proof follows from the Karush-Kuhn-Tucker (KKT) conditions where the
derivative of a Lagrangian objective function with respect to policy π(a|s) is set zero. Hence, our
main theory is necessary and sufficient.

Proof for Theorem 1 The Lagrangian function of (2) obtained by the optimal policy is written as
follows

L(π, β, µ) =
∑
s

dπ(s)
∑
a

π(a|s) (Q∗λ(s, a) + λφ(π(a|s)))

−
∑
s

dπ(s)[µ(s)(
∑
a

π(a|s)− 1) +
∑
a

β(a|s)π(a|s)]

where dπ is the stationary state distribution of the policy π, µ and β are Lagrangian multipliers for
the equality and inequality constraints respectively. Let fφ(x) = xφ(x). Then the KKT condition
of (2) are as follows, for all states and actions

0 ≤ π(a|s) ≤ 1 and
∑
a

π(a|s) = 1 (11)

0 ≤ β(a|s) (12)
β(a|s)π(a|s) = 0 (13)

Q∗λ(s, a) + λf ′φ(π(a|s))− µ(s) + β(a|s) = 0 (14)

where (11) is the feasibility of the primal problem, (12) is the feasibility of the dual problem, (13)
results from the complementary slackness and (14) is the stationarity condition. We eliminate dπ(s)
since we assume all policies induce an irreducible Markov chain.

Since fφ(x) = xφ(x) is a strictly decreasing function due to (4) in Assumption 1, its inverse function
gφ(x) = (f ′φ)−1(x) is also strictly decreasing. From (14), we can resolve π(a|s) as

π(a|s) = gφ

(
1

λ
(µ(s)−Q∗λ(s, a)− β(a|s))

)
. (15)

Fix a state s. For any positive action, its corresponding Lagrangian multiplier β(a|s) is zero due to
the complementary slackness and Q∗λ(s, a) > µ(s) − λf ′φ(0) must hold. For any zero-probability
action, its Lagrangian multiplier β(a|s) will be set such that π(a|s) = 0. Note that β(a|s) ≥ 0,
thus Q∗λ(s, a) ≤ µ(s) − λf ′φ(0) must hold in this case. From these observations, π(a|s) can be
reformulated as

π(a|s) = max

{
gφ

(
1

λ
(µ(s)−Q∗λ(s, a))

)
, 0

}
(16)

By plugging (16) into (11), we obtain an new equation∑
a

max

{
gφ

(
1

λ
(µ(s)−Q∗λ(s, a))

)
, 0

}
= 1 (17)

Lemma 1 states that (17) has and only has one solution denoted as µ∗λ. Therefore, µ∗λ can be solved
uniquely. We defer the proof of Lemma 1 later in this section.

Next we aim to obtain the optimal state value V ∗λ . It follows that

V ∗λ (s) = TλV ∗λ (s)

=
∑
a

π∗λ(a|s) (Q∗λ(s, a) + λφ(π∗λ(a|s)))

=
∑
a

π∗λ(a|s) (µ∗λ(s)− λπ∗λ(a|s)φ(π∗λ(a|s)))

= µ∗λ(s)− λ
∑
a

π∗λ(a|s)2φ′(π∗λ(a|s)).
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The first equality follows from the definition of the optimal state value. The second equality holds
because π∗λ maximizes TλV ∗λ (s). The third equality results from plugging (14).

To summarize, we obtain the optimality condition of regularized MDPs as follows

Q∗λ(s, a) = r(s, a) + γEs′|s,aV ∗λ (s′),

π∗λ(a|s) = max

{
gφ

(
1

λ
(µ∗λ(s)−Q∗λ(s, a))

)
, 0

}
,

V ∗λ (s) = µ∗λ(s)− λ
∑
a

π∗λ(a|s)2φ′(π∗λ(a|s)),

where gφ(x) = (f ′φ)−1(x) is strictly decreasing and µ∗λ(s) is a normalization term so that∑
a∈A π

∗
λ(a|s) = 1.

Lemma 1 For any Q-value function Q(s, a), the equation∑
a

max

{
gφ

(
1

λ
(µ(s)−Q(s, a))

)
, 0

}
= 1 (18)

has and only has one µ∗ satisfying it.

Proof Denote the left hand side of (18) which is a continuous function of µ as h(µ). We first prove
that h(µ) is a strictly decreasing function on (−∞, µmax), where µmax = maxaQ(s, a) + λf ′φ(0).
Let Λ(s, µ) the set of actions such that their maximum term in (18) is not obtained at 0, i.e., Λ(s, µ) =
{a : Q(s, a) > µ(s)− λf ′φ(0)}. Then for µ1 < µ2 < µmax, it follows that Λ(s, µ2) ⊆ Λ(s, µ1) and

h(µ1)− h(µ2) =
∑

a∈Λ(s,µ2)

∆(µ1, µ2) +
∑

a∈Λ(s,µ1)−Λ(s,µ2)

gφ

(
1

λ
(µ1(s)−Q(s, a))

)

where

∆(µ1, µ2) = gφ

(
1

λ
(µ1(s)−Q(s, a))

)
− gφ

(
1

λ
(µ2(s)−Q(s, a))

)
is positive for all actions in Λ(s, µ2). Since there must be at least one action in Λ(s, µ2),
h(µ1)− h(µ2) > 0. Therefore, we have proved that h(µ) decreases strictly on (−∞, µmax). Note
that h(µmax) = 0 < 1 and h(µmin) > 1 where µmin = minaQ(s, a) + λf ′φ(1). This result implies
there exist a unique µ∗ ∈ (µmin, µmax) satisfying (18) as the result of the intermediate value theorem.

C Proof for General Bellman Operator

In (7), we define a general Bellman operator Tλ for regularized MDPs. Given one state s ∈ S and
current value function Vλ,

(TλVλ)(s) := max
π

∑
a

π(a|s) [Qλ(s, a) + λφ(π(a|s))] ,

where Qλ(s, a) = r(s, a) + γEs′|s,aVλ(s′) is Q-value function deriving from one-step foreseeing
according to Vλ. In Lemma 2, we prove Tλ is a γ-contraction. In Theorem 4, we prove the simple
lower and upper bound for Tλ under Assumption 2.

Lemma 2 Tλ is a γ-contraction.
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Proof For any two state value functions V1 and V2, let πi be the policy that maximize TλVi, i ∈ {1, 2}.
Then it follows that for any state s in S,

(TλV1)(s)− (TλV2)(s)

=
∑
a

π1(a|s)
[
r(s, a) + γEs′|s,aV1(s′) + λφ(π1(a|s))

]
−max

π

∑
a

π(a|s)
[
r(s, a) + γEs′|s,aV2(s′) + λφ(π(a|s))

]
≤
∑
a

π1(a|s)
[
r(s, a) + γEs′|s,aV1(s′) + λφ(π1(a|s))

]
−
∑
a

π1(a|s)
[
r(s, a) + γEs′|s,aV2(s′) + λφ(π1(a|s))

]
= γ

∑
a

π1(a|s)Es′|s,a(V1(s′)− V2(s′)) ≤ γ‖V1 − V2‖∞.

By symmetry, it follows that for any state s in S,

(TλV2)(s)− (TλV1)(s) ≤ γ‖V1 − V2‖∞
Therefore, it follows that

‖TλV2 − TλV1‖∞ ≤ γ‖V1 − V2‖∞

Proof for Theorem 4 Fix any value function V and s ∈ S . Note that φ(π(a|s)) is non-negative due
to (1) and (2) in Assumption 1. Therefore, by definition the left inequality follows from

TλV (s) = max
π

∑
a

π(a|s)
[
r(s, a) + γEs′|s,aV (s′) + λφ(π(a|s))

]
≥ max

π

∑
a

π(a|s)
[
r(s, a) + γEs′|s,aV (s′)

]
= T V (s).

For the right inequality, note that

TλV (s) = max
π

∑
a

π(a|s)
[
r(s, a) + γEs′|s,aV (s′) + λφ(π(a|s))

]
≤ max

π

∑
a

π(a|s)
[
r(s, a) + γEs′|s,aV (s′)

]
+ λmax

π
Hφ(π)

= T V (s) + λmax
π

Hφ(π).

where Hφ(π) =
∑
a π(a|s)φ(π(a|s)) defined in (3) is what we next aim to bound.

The Lagrangian of solving maxπHφ(π) is

L(π, β, µ) = Hφ(π) + µ(
∑
a

π(a|s)− 1) + βaπ(a|s).

Its stationary condition is

∂L

∂π(a|s) = f ′φ(π(a|s)) + µ+ βa = 0.

If π(a|s) > 0 then βa = 0 from the complementary slackness. Let π∗ be the policy that maximizes
Hφ(π) and S = {a : π∗(a|s) > 0} be its support set. Then π(a|s) = gφ(−µ) = constant for all
a ∈ S. Hence, π(a|s) = 1

|S| for a ∈ S and = 0 for a /∈ S. Note that gφ is strictly decreasing and the
assumption lim

x→0+
xφ(x) = 0,

Hφ(π) =
∑

a∈S(s)

π∗(a|s)φ(π∗(a|s)) = φ(
1

|S| ) ≤ φ(
1

|A| )

where the last inequality use the fact φ is decreasing and |S| ≤ |A|.
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D Proof for Performance Error

We prove Theorem 5 in that the difference of V ∗ and V ∗λ is controlled by both λ and φ(·) under
Assumption 2. To that end, we first introduce several useful lemmas which give some properties of
Tλ including monotonicity, translation and convergence of repeated applications. Then a combination
of these lemmas will prove Theorem 5.

Lemma 3 (Monotonicity) Tλ has the property of monotonicity, i.e., if V1(s) ≤ V2(s) for all s ∈ S ,
then TλV1(s) ≤ TλV2(s) for all s ∈ S.

Proof The conclusion directly follows from

TλV1(s) = max
π

∑
a

π(a|s)
[
r(s, a) + γEs′|s,aV1(s′) + λφ(π(a|s))

]
≤ max

π

∑
a

π(a|s)
[
r(s, a) + γEs′|s,aV2(s′) + λφ(π(a|s))

]
= TλV2(s)

Lemma 4 (Translation) Let c denote any constant. Define (V + c)(s) , V (s) + c as the value
function shifted by c. Then it follows that for any s ∈ S,

(Tλ(V + c))(s) = (TλV )(s) + γc

Proof By definition, it directly follows from

(Tλ(V + c))(s) = max
π

∑
a

π(a|s)
[
r + γEs′|s,a(V + c)(s′) + λφ(π(a|s))

]
= max

π

∑
a

π(a|s)
[
r + γEs′|s,aV (s′) + γc+ λφ(π(a|s))

]
= (TλV )(s) + γc

Lemma 5 (Convergence of Repeated Applications) For any initial value function V0, define Vn =
T nλ V0 , Tλ · · · Tλ︸ ︷︷ ︸

n

V0 as the value function resulting from n times application of Tλ to V0. Then

lim
n→∞

‖Vn − V ∗λ ‖∞ = 0.

Proof Note that V ∗λ = TλV ∗λ . It follows that

‖Vn − V ∗λ ‖∞ = ‖TλVn−1 − TλV ∗λ ‖∞ ≤ γ‖Vn−1 − V ∗λ ‖∞ ≤ · · · ≤ γn‖V0 − V ∗λ ‖∞.
The first equality follows from definition. The first inequality results from Lemma 2. The last
inequality is due to n-times applications of the first inequality.

Proof for Theorem 5 Fix any initial value function V0. We aim to use mathematical induction to
prove the statement that for any n ≥ 1, it follows for any s ∈ S

T nV0(s) ≤ T nλ V0(s) ≤ T nV0(s) + λφ(
1

|A| )
n−1∑
t=0

γt. (19)

When n = 1, (19) results from Theorem 4.

Suppose the statement holds when n = k(k ≥ 1). Consider the case where n = k + 1. First it
follows that

T k+1V0(s) ≤ T T kλ V0(s) ≤ T k+1
λ V0(s).
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The first inequality follows from the hypothesis and the monotonicity of T (which is a special case of
Tλ when λ = 0) from Lemma 3. The second inequality results from letting V = T kλ V0 in Theorem 4.

Second, it follows that

T k+1
λ V0(s) = TλT kλ V0(s)

≤ Tλ(T kV0(s) + λφ(
1

|A| )
k−1∑
t=0

γt)

= TλT kV0(s) + λφ(
1

|A| )
k∑
t=1

γt

≤ T k+1V0(s) + λφ(
1

|A| )
k∑
t=0

γt,

where the first inequality follows from the induction where n = k and the monotonicity of Tλ from
Lemma 3, the second equality holds by setting V = T kV0 and c = λφ( 1

|A| )
∑k−1
t=0 γ

t in Lemma 4.
The last inequality results from letting V = T kλ V0 in Theorem 4.

Putting above results together, we prove that (19) holds when n = k + 1. Therefore by mathematical
induction, (19) holds for any positive integer n. From Lemma 5, we have V ∗(s) = lim

n→∞
T nV0(s)

and V ∗λ (s) = lim
n→∞

T nλ V0(s). Now let n go infinity in both sides of (19), we obtain

V ∗(s) ≤ V ∗λ (s) ≤ V ∗(s) +
λ

1− γ φ(
1

|A| ),

which proves the theorem.

E Proof for Control the sparsity of Optimal Policy

In this section, we show that the number of positive actions can be controlled by regularization
coefficient λ. Similar results about Tsallis entropy regularized MDPs can be found in [19]. However
their proof focuses on a specific regularization. The proof we provide is suitable for any regularizors
satisfying Assumption 1.

Proof for Theorem 3. At first we prove that the optimal policy will approximate uniform distribution
on action space. Under such situation, it is obvious that the optimal policy will have no sparsity
as λ → ∞. Denote H = maxπH(π). For an arbitrary δ > 0, there exists λ0, such that ∀λ > λ0,
| r(s,a)

λ | ≤ δ. Next we estimate the error between Q∗λ(s,a)
λ and maxπ E[

∑∞
t=1 γ

tφ(π(at|st))|s0 =
s, a0 = a] = γ

1−γH:

Q∗λ(s, a)

λ
− γ

1− γH =
Q∗λ(s, a)

λ
−max

π
E[

∞∑
t=1

γtφ(π(at|st))|s0 = s, a0 = a, π]

≤ Q
π∗λ
λ (s, a)

λ
− E[

∞∑
t=1

γtφ(π∗λ(at|st))|s0 = s, a0 = a, π∗λ]

= E[

∞∑
t=0

γt
r(st, at)

λ
|s0 = s, a0 = a, π∗λ]

≤ δ

1− γ (20)
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On the other hand, denote π∗H = argmaxπH(π), we have:

Q∗λ(s, a)

λ
− γ

1− γH =
Q∗λ(s, a)

λ
−max

π
E[

∞∑
t=1

γtφ(π(at|st))|s0 = s, a0 = a, π]

≥ Q
π∗H
λ (s, a)

λ
− E[

∞∑
t=1

γtφ(π∗H(at|st))|s0 = s, a0 = a, π∗H ]

= E[

∞∑
t=0

γt
r(st, at)

λ
|s0 = s, a0 = a, π∗H ]

≥ − δ

1− γ (21)

So |Q
∗
λ(s,a)
λ − γ

1−γH| ≤ δ
1−γ .

Fix any s ∈ S, denote µλ(s) is the solution satisfies Equation 18:

1 =
∑
a

max

{
gφ

(
1

λ
(µλ(s)−Q∗λ(s, a))

)
, 0

}
> |A|max

{
gφ

(
1

λ
(µλ(s)−min

a
Q∗λ(s, a))

)
, 0

}
> |A|gφ

(
1

λ
(µλ(s)−min

a
Q∗λ(s, a))

)
As gφ is strictly decreasing, we have 1

λ (µλ(s)−minaQ
∗
λ(s, a)) > f ′φ( 1

|A| ). By the same method,

we can obtain that 1
λ (µλ(s)−maxaQ

∗
λ(s, a)) < f ′φ( 1

|A| ). Combining with |Q
∗
λ(s,a)
λ − γ

1−γH| ≤
δ

1−γ :

µλ(s)

λ
− γ

1− γH =
µλ(s)

λ
− minaQ

∗
λ(s, a)

λ
+

minaQ
∗
λ(s, a)

λ
− γ

1− γH

> f ′φ(
1

|A| )−
δ

1− γ
µλ(s)

λ
− γ

1− γH =
µλ(s)

λ
− maxaQ

∗
λ(s, a)

λ
+

maxaQ
∗
λ(s, a)

λ
− γ

1− γH

< f ′φ(
1

|A| ) +
δ

1− γ

For arbitrary s, a, the following inequality holds:

µλ(s)−Q∗λ(s, a)

λ
=
µλ(s)

λ
− γ

1− γH +
γ

1− γH −
Q∗λ(s, a)

λ

> f ′φ(
1

|A| )−
2δ

1− γ
µλ(s)−Q∗λ(s, a)

λ
=
µλ(s)

λ
− γ

1− γH +
γ

1− γH −
Q∗λ(s, a)

λ

< f ′φ(
1

|A| ) +
2δ

1− γ
(22)

which concludes that |µλ(s)−Q∗λ(s,a)
λ − f ′φ( 1

|A| )| < δ
1−γ . By continuity of gφ, ∀ε > 0, choose a

proper δ, |gφ(
µλ(s)−Q∗λ(s,a)

λ )− 1
|A| | < ε.

Next we prove that the sparsity of optimal policy π∗λ varies as δ → 1
|A| when λ→ 0.

18



For arbitrary (s, a) ∈ S ×A, ε > 0 and λ > 0 , the following inequality holds:

0 ≤ Q∗λ(s, a)−Q∗(s, a) ≤ Qπ
∗
λ

λ (s, a)−Qπ∗λ(s, a)

= λE[

∞∑
t=1

γtφ(π∗λ(at|st))|s0 = s, a0 = a, π∗λ]

≤ λ γ

1− γH (23)

DenoteG(s) = mina1,a2∈A |Q∗(s, a1)−Q∗(s, a2)|, if λ < 1−γ
Hγ G(s), the order of Q-valuesQ∗(s, ·)

is exactly the same with the order of Q∗λ(s, ·). In other words, denote Q∗(s, a1) < Q∗(s, a2) < ... <

Q∗(s, a|A|), then Q∗λ(s, a1) < Q∗λ(s, a2) < ... < Q∗λ(s, a|A|) still holds for λ < 1−γ
Hγ G(s).

Next we prove the desired result by contradiction. For any given ak ∈ A and s ∈ S, and λ <
1−γ
Hγ G(s), ∃λ0 < λ, such that πλ0

(ak|s) = gφ(
µλ0 (s)−Q∗λ0 (s,ak)

λ0
) > 0. With the assumption, we

can construct a sequence 1−γ
Hγ G(s) > λ1 > λ2 > ... > λn > ..., which satisifies lim

n→∞
λn = 0

and gφ(
µλn (s)−Q∗λn (s,ak)

λn
) > 0, which is equivalent with µλn(s) − Q∗λn(s, ak) < λnf

′
φ(0) as gφ

is a strictly decreasing function. Combining with KKT conditions (14): µλn(s) = Q∗λn(s, a|A|) +
λnf

′
φ(π∗λn(a|A|s)), the following inequality holds:

Q∗λn(s, a|A|)−Q∗λn(s, ak) < λn(f ′φ(0)− f ′φ(π∗λn(a|A||s))) < λn(f ′φ(0)− f ′φ(1)) (24)

By (23) and (24),

Q∗(s, a|A|)−Q∗(s, ak) ≤ Q∗λn(s, a|A|)−Q∗(s, ak)

≤ Q∗λn(s, a|A|)−Q∗λn(s, ak) + λn
γ

1− γH

< λn(f ′φ(0)− f ′φ(1) +
γ

1− γH) (25)

As lim
n→∞

λn = 0 and f ′φ(0) − f ′φ(1) + γ
1−γH is a positive constant, then the limit of right hand

side of (25) is 0, which causes conflicts with that the left hand side of (25) is a positive constant.
Therefore, we claim that for any given a ∈ A, s ∈ S and a 6= arg maxQ∗(s, ·), ∃λa,s > 0, such
that ∀λ ≤ λa,s, π∗λ(a|s) = 0. So for all λ < mina,s λa,s, the sparsity of the optimal policy π∗λ is
δ = 1

|A| .

F Regularized Policy Iteration (RPI)

To solve problem (2) , we introduce Regularized Policy Iteration (RPI), an algorithm that alternates
between policy evaluation and policy improvement in the maximum regularized MDP framework.
We first derive RPI on a tabular setting and show it provably converges to an optimal policy. Then we
approximate RPI into a more practical algorithm which is an actor-critic method and thus named as
regularized actor-critic (RAC).

The derivation of RPI stems from generalized policy iteration [36] that alternates between policy
evaluation and policy improvement. In the policy evaluation step, we wish to compute the Q-value
Qπλ of a given policy π. When π is fixed, Qπλ can be computed iteratively by initializing any Q-value
function and repeatedly applying the modified Bellman backup operator T πλ defined by

T πλ Qλ(s, a) , r(s, a) + γEs′|s,aVλ(s′), (26)

where Vλ is the state value function derived from Qλ,

Vλ(s′) = Ea′∼π(·|s′)[Qλ(s′, a′) + φ(π(a′|s′))]. (27)

One can show that by repeatedly applying T πλ to any initialized value function, the regualrized
Q-value Qπλ of the policy π will be obtained.
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In the policy improvement step, we wish to update the evaluated policy πold to an improved policy
πnew in terms of its regularized Q-values.Therefore for each state s we update the policy according to

πnew(a|s) = arg max
π

Ea∼π(·|s)[Q
πold
λ (s, a) + λφ(π(a|s))]. (28)

If φ is good enough, we can find a closed form of πnew for problem (28). For example, for
Shannon entropy [25] with φ(x) = − log(x), πnew(a|s) ∝ exp(

Q
πold
λ

λ ); for Tsallis entropy [19]

with φ(x) = 1
2 (1 − x), πnew(a|s) = max

(
Q
πold
λ (s,a)

λ − τ(
Q
πold
λ (s,·)
λ ), 0

)
, where τ(

Q
πold
λ (s,·)
λ ) =∑

a∈S(s,λ)

Q
πold
λ

(s,a)

λ −1

|S(s,λ)| is the normalization term and S(s, λ) is the number of non-zero probability
state-action pair. However, for a general φ, it is unlikely to find a closed form of πnew. In that
case the solution can be obtained through a numerical optimization method, since the maximization
problem (28) is a convex optimization whose domain is the probability simplex ∆A and traditional
convex solvers could solve it efficiently. Actually, in the experiments of RPI, for the regularization
forms introduced in Section 3.1 except the two examples mentioned above, there is no closed form
and we use numerical optimization to improve the old policy.

Once evaluating and improving the current policy πold, we can prove the resulting policy πnew has a
higher regularized Q-value than that of the old one. Therefore, by alternating the policy evaluation
and the policy improvement, any initializing policy will provably converge to the optima policy π∗λ
under the framework of regularized MDPs (Theorem 6).

Theorem 6 For any policy π0, by repeatedly applying policy evaluation and regularized policy
improvement, π0 will converge to the optimal policy π∗λ in the sense that Qπ

∗
λ

λ (s, a) ≥ Qπλ(s, a) for
all π and s ∈ S, a ∈ A.

G Proof for Regularized Policy Iteration

In this section, we give the proof of convergence of RPI. We first that repeatedly applying T πλ to any
initialized policy leads to the Q-value of a given policy πold. Then we prove the policy improvement
step will lead to a new policy πnew which has higher Q-value than πold.

Lemma 6 (Policy Evaluation) Fix any policy π. Consider the Bellman backup operator T πλ in (26),
for any initial Q-value Q0, let Qn = T πλ Qn−1(n ≥ 1). Then lim

n→∞
‖Qn −Qπλ‖∞ = 0.

Proof Similar to Lemma 2, we can prove T πλ is a γ contraction. Note that Qπλ = T πλ Qπλ. Therefore
we have that

‖Qn −Qπλ‖∞ = ‖T πλ Qn−1 − T πλ Qπλ‖∞ ≤ γ‖Qn−1 −Qπλ‖∞ ≤ · · · ≤ γn‖Q0 −Qπλ‖∞.

When n goes infinity, Qn will converge to the regularized Q-value of π.

Lemma 7 (Policy Improvement) Let πold be the evaluated policy with Qπold
λ its regularized Q-value

and πnew be the optimizer of the maximization problem defined in (28). ThenQπold
λ (s, a) ≤ Qπnew

λ (s, a)
for all s ∈ S and a ∈ A.

Proof Since πnew is the maximizer of the problem defined in (28), it follows that for all states and
actions

Ea∼πold [Q
πold
λ (s, a) + λφ(πold(a|s))] ≤ Ea∼πnew [Qπold

λ (s, a) + λφ(πnew(a|s))]
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Let τt = (s0, a0, · · · , st, at) denotes the trajectory and τ is the whole trajectory (with infinite
horizon). τ ∼ πold means the trajectory is generated by πold. It follows that

Qπold
λ (s0, a0)

= E[r(s0, a0) + γEs1|τ0V
πold
λ (s1)]

= E[r(s0, a0) + γEs1|τ0Ea1∼πold [Q
πold
λ (s1, a1) + λφ(πold(a1|s1))]]

≤ E[r(s0, a0) + γEs1|τ0Ea1∼πnew [Qπold
λ (s1, a1) + λφ(πnew(a1|s1))]]

= Eτ1∼πnew [r(s0, a0) + γ(r(s1, a1) + λφ(πnew(a1|s1))) + γ2Es2|τ1V
πold
λ (s2)]

≤ Eτn∼πnew [r(s0, a0) +

n∑
t=1

γt(r(st, at) + λφ(πnew(at|st))) + γn+1Esn+1|τnV
πold
λ (sn+1)]

≤ Eτ∼πnew [r(s0, a0) +

∞∑
t=1

γt(r(st, at) + λφ(πnew(at|st)))]

= Qπnew
λ (s0, a0),

where the last inequality is because we repeatedly expanded Qπold
λ on the RHS by applying (27) and

Qπold
λ is bounded by Rmax

1−γ .

Proof for Theorem 6 Let πi be the policy at iteration i of RPI. By Lemma 7, the sequence Qπiλ
is monotonically increasing. Since Qπiλ is bounded by Rmax

1−γ for any policy πi, therefore Qπiλ will
converge to a limit, denoted by Qlim

λ . Let πlim = argmaxπ Ea∼π(·|s)[Q
lim
λ (s, a) + λφ(π(a|s))]. It

is obvious that Qπlim

λ = Qlim
λ . We aim to prove πlim = π∗λ. To that end, we only need to prove

Q∗λ = Qlim
λ . For one hand, Qπlim

λ (s, a) = lim
n→∞

Qπiλ (s, a) ≤ Q∗λ(s, a) = Q
π∗λ
λ (s, a). For another

hand, at convergence, it must be the case that for all policy π,

Ea∼π[Qπlim

λ (s, a) + λφ(π(a|s))] ≤ Ea∼πlim
[Qπlim

λ (s, a) + λφ(πlim(a|s))].

Using the same iterative argument as in the proof of Lemma 7, we get Qπ
∗
λ

λ (s, a) ≤ Qπlim

λ (s, a) for
all states and actions. Putting above results together, it follows that Q∗λ = Qlim

λ therefore πlim = π∗λ.

H Experiment Details

H.1 Discrete Environments

H.1.1 Environment setup

For the random MDP model, we choose |A| = 50, |S| = 10 and γ = 0.99. Each state is assigned an
index ranging from 0 to 49. The transition probabilites are generated by uniform distribution [0, 1]
and each entry of transition is clipped as zero with probability 0.95. Then each row of the clipped
matrix is scaled to a probability distribution. The state we monitored is the state with index zero.
The rewards are generated by uniform distribution [0, 1]. The initial Q-value is generated by uniform
distribution [0, 10] and policies are calculated explicitly or implicitly from Q-values.

For (2N − 1)× (2N − 1) GridWorld model, we choose N = 10 and γ = 0.99. The action space
includes four actions (left, right, up, down). Each grid is indexed by an Cartesian coordinates (x, y)
with x the row index and y the column index. x and y are all range from −(N − 1) to N − 1. The
agent is initialized at the origin (0, 0). Once it achieves four corners (i.e., ±(N − 1)×±(N − 1)), a
reward with value 1 will be obtained. Otherwise, no reward will be given. Due to the symmetry of
GridWorld, we are interesting on the three states (0, 0), (0, N/2), (N/2, N/2). In the origin (0, 0),
all actions should be equal. While the agent locates at (0, N/2) or (N/2, N/2), the optimal policy
should put more probability mass on the action which could lead to
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H.1.2 Optimization

In this section, we detail how we conduct RPI(Appendix F) in two discrete environments. Given a
regularization function, we run 500 iterations of RPI that alternates between policy evaluation and
policy improvement.

Policy evaluation Since in our experiments the transition probability is known, the evaluation of a
given policy is conducted by DP. Specifically, let Pπ ∈ R|S|×|S| denote the transition matrix deduced
from π, i.e., Pπ(s, s′) =

∑
a′ π(a′|s)P(s′|a′, s) and rπλ ∈ R|S| the reward vector deduced from π,

i.e., rπλ(s) =
∑
a′ r(s, a

′)π(a′|s). Then the regularized state value function V πλ is solved from

V πλ = rπλ + γPπV πλ ⇒ V πλ = (1− γPπ)−1rπλ

where by slightly notation abuse, V πλ ∈ R|S| is the vector with each coordinate V πλ (s). Then Qπλ can
be computed from V πλ by definition (4).

Policy improvement The policy improvement step involves an possibly intricate convex optimiza-
tion (28). Here we detail how we solve the involved convex optimization.

Let Qπold
λ denote the already evaluated Q-value function of πold. For φ(x) = 1

2 (1 − x), since the
improved policy has an explicit form [19]. However, for φ(x) = cos(π2x) and φ(x) = exp(1) −
exp(x) which do not have an closed form and their corresponding gφ are hard to formulate, thus we
solve the convex optimization problem (28) directly. Specifically, for each s ∈ S, we solve

max
π

∑
a

π(a|s)Qπold
λ (s, a) + λ

∑
a

π(a|s)φ(π(a|s)).

In practice, we use CVXOPT [41] package to compute the improved policy.

H.1.3 Regularizers

We test four basic regularizers, including − log x, 1
2 (1− x), cos(π2x) and exp(1)− exp(x). From

Proposition 1 and 2, we can combine different basic regularizers to more complicated ones, which
we term as combined regularizers. We test the following three combined regularizers, (1) min: the
minimum of tsallis and shannon, i.e., min{− log(x), 2(1− x)}, (2) poly: the positive addition
of two polynomial functions, i.e., 1

2 (1− x) + (1− x2) and (3) mix: the positive addition of tsallis
and shannon, i.e., − log(x) + 1

2 (1− x). We draw these seven regularizers and their corresponding
f ′φ respectively in Figure 4 (a) and (b).
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Figure 4: (a) plots seven different regularization forms we will investigate. (b) shows the plot of
f ′φ = φ + xφ′ for corresponding regularizers. We prefer finite f ′φ(0) since it implies the optimal
policy has a potentially sparse distribution if λ is appropriately selected. (c) and (d) shows the results
of the sparsity δ of the optimal policy on two envorinments (Random MDP and Gridworld).

H.1.4 Results for Random MDP

Figure 5 shows the probability mass of all actions in the optimal policy at selected state. When λ is
small, all regularizers except shannon have some zero-probability actions. When λ is just over 2, exp
and tsallis already have a full action support set. By contrast, cos is still sparse enough, implying
the trigonometric function cos has a stronger ability in modeling sparseness. In the extreme case
where λ is sufficiently large, the optimal policy will converge to a uniform distribution on the action
space as we expect.
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(b) exp: exp(1)− exp(x)
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(d) shannon: − log x
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Figure 5: (a)-(g) shows the changing process of the probability mass on each action in the optimal
policy in a random MDP where |A| = 10. There are totally ten colored curves in each figure with
one color representing one action.

H.1.5 Results for Gridworld

Figure 6 shows the probability mass of four actions in the optimal policy at selected three states.
When λ is large, the optimal policies tend to uniform distribution. We show the result of three
combined regularizars in Figure 7. It can be seen from these figures that in the regime of low λ, the
optimal policy at different states show different preferrence. As shown in Random MDP, cos still has
the strongest sparseness power.

H.2 Atari Environments

We test our regularizers on OpenAI Gym benchmark with Atari environments: AlienNoFrameskip-v4,
BoxingNoFrameskip-v4, BreakoutNoFrameskip-v4 and SeaquestNoFrameskip-v4.

Architecture. We model the Q-values and policies with deep neural networks. The Q-value network
is composed of 3 convolutional layers, 1 fully connected laryer, and 1 output fully connected layer as
the following scheme. In particalr, the first convolutional layer C1 has 32 8× 8 filter with stride 4,
the second C2 contains 64 4× 4 filters with stride 2, and the third C3 has 64 3× 3 filters with stride
1. The fully connected layer F1 consists of 512 hidden units and the layer F2 is a 512 × |A| fully
connected layer. Each layer except the final layer is followed with a rectified linear activation(ReLU).
For shannon, the architecture of policy network is the same as Q-value network except the final
layer is replaced with softmax function. For other regularizers with 0 6∈ domf ′φ, the final layers are
replaced with a softmax fully connected layer and a ReLU fully connected layer. The final ReLU
fully connected layer serves as dual variables. The output probability is the multiplication of the two
layers and scale the sum to 1. We use the Adam optimizer with learning rate 0.0001 and ε = 0.0015.
The discount was set to γ = 0.99. We update the target network every 10000 steps. The size of
experience replay buffer is 100000 tuples, where 32 minibatches were sampled every 4 steps to
update the network.

Q-value : C1 C2 C3 F1 F2
ReLU ReLU ReLU ReLU

Policy (shannon) : C1 C2 C3 F1 F2
ReLU ReLU ReLU Softmax
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(d) shannon: − log x
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(f) exp: exp(1)− exp(x)
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(h) shannon: − log x
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(j) exp: exp(1)− exp(x)

0 2 4 6 8 10
Regularization Coefficients

0.0

0.1

0.2

0.3

0.4

0.5

Op
tim

al
 P

ol
icy

 P
ro

b

(k) tsallis: 1
2
(1− x)

0 2 4 6 8 10
Regularization Coefficients

0.0

0.1

0.2

0.3

0.4

0.5

Op
tim

al
 P

ol
icy

 P
ro

b

right
left
up
down

(l) shannon: − log x

Figure 6: The probability mass on four actions in the optimal policy regularized by four basic
regularization functions at selected three states. (a)-(d) shows the results for the origin (0, 0). (e)-(h)
shows the results for the state (0, N/2) and (i)-(l) shows the results for the state (N/2, N/2)

Policy (Other) : C1 C2 C3 F1 F2 F4 F5

F3

ReLU ReLU ReLU

ReLU

Softmax Scale

�

Parameter sensitivity. We show how learning performance changes when λ varies in Figure 8.
Large λ will make the policy becomes nearly uniform and unable to make use of the information of
rewards. Small λ will make the policy becomes nearly deterministic and therefore be stuck in local
minima since no sufficient exploration is made. In the experiment of Breakout, we find that shannon
is insensitive to λ. However, for other regularizers, small or large λ would make the algorithm fail to
converge.

H.3 Mujoco Environments

We choose OpenAI Gym benchmark with the MuJoCo simulator for our test environments, including
Hopper-v2, Walker-v2, HalfCheetah-v2 and Ant-v2. We exclude cos due to its numerical unstability.
Then we only consider three regularizers, i.e., − log x, 1

2 (1−x) and exp(1)− exp(x) for their stable
performance in deep RL training process. Since RAC is very similar to SAC except RAC is agonostic
to regularization forms. We build our code on the work of SAC [14]. For comparison’s purpose, we
use the same network structure and hyper-parameter settings. Figure 9 shows that the full experiments
we conducted in each environment. Each regularizer is coupled with three regularization parameter
λ ∈ {1, 0.1, 0.01}.

The reparameterization trick. Mujoco is continuous problem, we model the policy πψ(a|s) as a
factorized Gaussian distribution with the mean and variance modeled as neural networks. Besides,
we can update policy parameters like eqn(10) as there is no access to compute expectation over π
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Figure 7: The probability mass on four actions in the optimal policy regularized by three combined
regularization functions at selected three states. (a)-(c) shows the results for the origin (0, 0). (d)-(f)
shows the results for the state (0, N/2) and (g)-(h) shows the results for the state (N/2, N/2).
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(d) Breakout Cosx

Figure 8: Training curves on Atari games. Each entry in the legend is named with the rule
the regularization form + λ. The score is smoothed with 100 windows while the shaded
area is the one standard deviation.

in continuous setting. We apply the reparameterization trick to update the policy. The policy is
reparameterized as an factorized gaussian with tanh output, i.e.,

πψ(s, ε) = tanh(meanψ(s) + ε · stdψ(s))

where ε is an input noise vector, sampled from the standard Gaussian. Denote the generative action
at = tanh(Zt) and Zt is a multivariate normal distribution, we have the density transformation
π(at) = N (Zt)|det( datdZt

)|−1, where log det( datdZt
) =

∑A
i=1 log(1 − tanh2(Zt,i)). Therefore, we

can rewrite the policy loss as:

Jπ(ψ) = ÊD [−λφ(πψ(st, εt))−Qθ(st, φ(πψ(st, εt)))] . (29)
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We now approximate the gradient of Jπ(ψ) with:

∇̂Jπ(ψ) = ∇ψφ(πψ(at|st)) + (∇atφ(πψ(at|st))−∇atQ(st, at))∇ψπψ(st, εt),

where at is evaluated at πψ(st, εt).

Parameter sensitivity. As reported by Haarnoja et al. [13], shannon is very sensitive to the regular-
ization coefficient λ (which is also referred as the temperature parameter). As an extreme example,
when λ = 1, shannon fails to converge in Walker-v2 and Ant-v2. By contrast, tsallis is less
sensitive to λ. As λ varies from 0.01 to 1, the performance of tsallis doesn’t degrade to much.
Exp is also insensitive to hyperparameter λ.
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Figure 9: Training curves on continuous control benchmarks. Each curve is the average
of four experiments with different seeds. Each entry in the legend is named with the rule
the regularization form + λ. The score is smoothed with 30 windows while the shaded
area is the one standard deviation.
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