
A Proof of Main Lemmas413

Before we prove our two main lemmas we define the concept of an orthogonal loss. Consider a loss414

function L(θ; g) that depends on a target model θ ∈ Θ and nuisance model g ∈ G.415

Definition 1 (Directional Derivative). Let V be a vector space of functions. For a functional
F : V → R, we define the derivative operator

DgF (g)[ν] =
d

dt
F (g + tν) | t=0,

for a pair of functions g, ν ∈ V . Likewise, we define

Dk
gF (g)[ν1, . . . , νk] =

∂k

∂t1 . . . ∂tk
F (g + t1ν1 + . . .+ tkνk) | t1=···=tk=0.

When considering a functional in two arguments, e.g. F (θ, g), we will write DgF (θ, g) and416

DθF (θ, g) to make the argument with respect to which the derivative is taken explicit.417

Definition 2 (Orthogonal Loss). The population risk L(θ; g) is orthogonal, if:418

DgDθL(θ0; g0)[θ − θ0, g − g0] = 0 ∀θ ∈ Θ,∀g ∈ G. (9)

Definition 3 (Strong Convexity in Prediction). The population risk L(θ; g) is strongly convex with
respect to the prediction, if:

D2
θL(θ̄, g)[θ − θ0, θ − θ0] ≥ λ‖θ − θ0‖22 ∀θ ∈ Θ, ∀g ∈ G, ∀θ̄ ∈ star(Θ, θ0).

where:419

star(Θ, θ) = {t · θ + (1− t) · θ′ : θ′ ∈ Θ, t ∈ [0, 1]} . (10)

A.1 Proof of Lemma 1420

Proof. We show that the expected directional derivative of the moment (directional derivative of the421

loss with respect to θ(X)) conditional on X , with respect to each of the nuisance functions is equal422

to zero, when evaluated at the true nuisance and target functions. The directional derivative of the423

loss with respect to direction ν = θ′ − θ and evaluated at parameter θ is:424

E[m1(X; θ(X), q(X), p(X), h) · ν(X)]

where:425

m1(X; θ(X), q(X), p(X), h) = −2E[(Y − q(X)− θ(X) (h(Z,X)− p(X))) (h(Z,X)− p(X)) | X]

To show orthogonality with respect to p, q, it suffices to show that the classical derivative of m1426

with respect to the inputs p(X) and q(X) is zero, when evaluated at the true nuisance and target427

parameters:428

∇q(X)m
1(X; θ0(X), q0(X), p0(X), h0) := − 2E[h0(Z,X)− p0(X) | X] = 0

∇p(X)m
1(X; θ0(X), q0(X), p0(X), h0) := − 2 θ0(X)E[h0(Z,X)− p0(X) | X]

+ 2E[Y − q0(X)− θ0(X) (h0(Z,X)− p0(X)) | X]

= 0

Where in both equations we invoked the conditional moment restrictions to claim that they are equal429

to zero.430

To prove orthogonality with respect to h we need to show that the directional derivative of m1 with431

respect to h is zero. We cannot reduce it to a classical derivative condition, since h takes as input the432

variable Z which is not part of the conditioning set of the moment m1. However, we see that this433

directional derivative evaluated at h0 and at a direction ν = h− h0, is not zero:434

Dhm1(X; θ0, q0, p0, h0)[ν] := 2 θ0(X)E[(h0(Z,X)− p0(X)) ν(Z,X) | X]

+ 2E[(Y − q0(X)− θ0(X) (h0(Z,X)− p0(X))) ν(Z,X) | X]

= 2 θ0(X)E[(h0(Z,X)− p0(X)) ν(Z,X) | X]
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The last quantity is not necessarily zero, since E[h0(Z,X) − p0(X) | Z,X] 6= 0. This finding is435

reasonable since we are using h(Z,X) as our regressor. Hence, any error in the measurement of436

the regressor should directly propagate to an error in θ(X). The quantity would have been zero if437

the residual error from the first stage function h(Z,X)− h0(Z,X) was independent of the residual438

randomness h0(Z,X)− p0(X), conditional on X . However, the two in general can be correlated:439

the second quantity measures how far is h0(Z,X) from each mean p0(X) = E[h0(Z,X) | X], while440

the first quantity measures how far is the estimate h(Z,X) from h0(Z,X). It is highly probable that441

when Z takes values that lead to a large deviation from the mean treatment, then these are also the442

values of Z for which the first stage model makes more mistakes.443

A.2 Proof of Lemma 3444

Proof. We show that the expected derivative of the moment (derivative of the loss with respect445

to θ(X)) conditional on X , with respect to each of the nuisance functions is equal to zero, when446

evaluated at the true nuisance and target functions. The directional derivative of the loss with respect447

to direction ν = θ′ − θ and evaluated at parameter θ is:448

−2E[m2(X; θ(X), g(X)) · ν(X)]

where g(X) = (θ̂(X), p(X), q(X), r(X), β(X)) and :449

m2(X; θ(X), g(X)) = E

[
θ̂(X) +

(Y − q(X)− θ̂(X) (T − p(X))) (Z − r(X))

β(X)
− θ(X)

∣∣∣∣X
]

To show orthogonality with respect to the nuisance functions g, it suffices to show that the classical450

derivative of m1 with respect to each component of g(X) is zero, when evaluated at the true nuisance451

and target parameters:452

∇θ̂(X)m
2(X; θ0(X), g0(X)) := E

[
1− (T − p0(X)) (Z − r0(X))

β0(X)
| X
]

= 0

= 1− E[(T − p0(X)) (Z − r0(X))]

β0(X)
= 0

∇p(X)m
1(X; θ0(X), g0(X)) := θ0(X)

E[Z − p0(X) | X]

β0(X)
= 0

∇q(X)m
1(X; θ0(X), g0(X)) := − E[Z − r0(X) | X]

β0(X)
= 0

∇r(X)m
1(X; θ0(X), g0(X)) := θ0(X)

E[T − p0(X) | X]

β0(X)
= 0

∇β(X)m
1(X; θ0(X), g0(X)) := − E [(Y − q0(X)− θ0(X) (T − p0(X))) (Z − r0(X))]

β0(X)2

= − E [E[Y − q0(X)− θ0(X) (T − p0(X)) | Z,X] (Z − r0(X))]

β0(X)2

= − E [E[Y − θ0(X)T − f0(X) | Z,X] (Z − r0(X))]

β0(X)2
= 0

Where in all equations we invoked the conditional moment restrictions and the definitions of the true453

nuisance functions to claim that they are equal to zero.454

Moreover, observe that the second directional derivative of the loss with respect to θ and for a455

direction ν = θ′ − θ is equal to:456

2E[ν(X)T ν(X)] ≥ 2‖ν‖22 (11)
Thus the loss is 2-strongly convex.457

B W Data and Analysis458

B.1 Model Details and Parameters459

Residualization Models460
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• LASSO regression and logistic regression with an L2 penalty using the Python sklearn library.461

For each cross-fitted fold, 3-Fold cross-validation was used to select the regularization462

parameter based on minimizing RMSE and log-loss.463

• Gradient boosting (GB) regression and classification using the XGBoost library.[8] 100464

estimators were used, with a minimum child weight of 20, and gamma set to 0.1. A 10%465

validation set was used for early stopping based on RMSE and log-loss.466

The gradient boosting models from sklearn also yielded substantially similar results to XGBoost.467

Random Forest We use a shallow, heavily regularized random forest for projection of the CATE.468

Parameters used: 1,000 trees, a minimum leaf size of 20,000, and a maximum depth size of 1. The469

heavy regularization is required in order to ensure stability of the CATE estimates.470

Linear Compliance Model Using the 2018 experiment data and linear residualization models,471

the compliance quantity E[T · Z|X] − E[T |X] · E[Z|X] (despite the logistic function) is well-472

approximated by a linear regression. We use this approximation for interpreting the coefficents of the473

fitted model (Figure 4).474

B.2 Additional Data Description and Preparation475

Full description of the data in Table 3. The criteria for eligibility required that users were not existing476

members of W before the experimental period; visited W through a desktop browser during the477

experimental period; and visited W at least twice during the experimental period. The first visit did478

not activate the test functionality. Group assignment was determined randomly with equal probability,479

resulting in nA = 2, 303, 658 in group A, and nB = 2, 302, 383 in group B.480

We transform the operating system categorical variable using one-hot encoding and drop the "Win-481

dows" level to use as the baseline. In addition, the co-variates are normalized uniformly over 1,000482

quantiles, resulting in aXi ∈ [0, 1]10 co-variate vector for each user to be used for both residualization483

and effect heterogeneity.484

For confidentiality reasons, we report the ATE and CATE results normalized by µ̂B , the mean number485

of days visited by users in group B of the A/B experiment. A treatment effect of 1 unit is therefore486

equal to µ̂B additional days visited.487
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revenue_pre Total revenue in dollars generated by the user in the pre-experimental
period

days_visited_free_pre Count of the days the user visited the W through free channels (e.g.
email) in the pre-experimental period (0-28)

days_visited_hs_pre Count of the days the user visited the hotels pages of W in the pre-
experimental period (0-28)

days_visited_exp_pre Count of the days the user visited the experiences pages of W in the
pre-experimental period (0-28)

days_visited_rs_pre Count of the days the user visited the restaurants pages of W in the
pre-experimental period (0-28)

days_visited_vrs_pre Count of the days the user visited the vacation rentals pages of W in
the pre-experimental period (0-28)

days_visited_fs_pre Count of the days the user visited the flights pages of W in the pre-
experimental period (0-28)

os_type Categorical variable for the user’s operating system (3 levels)

locale_en_US Binary variable indicating whether the user was from the en_US locale

Y Outcome measurement, count of the number of total days the user
visited W

T Treatment, binary variable of whether the user became a member during
the experimental period

Z Instrument, binary variable of the user’s group assignment in the A/B
test

Table 3: Definition of variables in the 2018 experimental data from W

Additional details about the 2019 experiment There were some key differences compared to the488

2018 A/B test:489

• the test was run for 3 weeks instead of 2;490

• the test functionality was displayed on both desktop and mobile platforms across nearly all491

pages of W (i.e. not just the homepage);492

• first-time visitors were eligible for the test; and493

• the sample size was much larger at n = 84, 657, 263 users. We use a sample of nS =494

10, 158, 871 users stratified by A/B test group allocation for computational reasons.495

B.3 Additional Figures of Experimental Results496
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Figure 3: (From left to right) Linear CATE projection, SHAP summary of random forest CATE
projection, Linear CATE projection coefficients. Using gradient boosting nuisance models.
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Figure 4: Coefficients of the linear model approximation of the compliance quantity E[T · Z|X]−
E[T |X] · E[Z|X]. Using linear models for nuisance.

Figure 5: Coefficients of the CATE linear projection model using DRIV with gradient boosting
residualization on the W 2019 experiment data.

4 2 0 2
Coefficient Value

os_type_linux
revenue_pre

days_visited_free_pre
intercept

locale_en_US
days_visited_rs_pre

days_visited_exp_pre
os_type_osx

days_visited_hs_pre
days_visited_fs_pre

days_visited_vrs_pre

Linear Model Residualization

2 0 2 4
Coefficient Value

revenue_pre
days_visited_free_pre

days_visited_fs_pre
locale_en_US

intercept
os_type_osx

days_visited_rs_pre
days_visited_exp_pre

days_visited_hs_pre
days_visited_vrs_pre

os_type_linux

Gradient Boosting Residualization

Figure 6: Coefficients of the linear CATE projection model for DRIV
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(a) Linear nuisance (b) GB nuisance

Figure 7: SHAP summary plot of the DRIV random forest CATE projection model
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Figure 8: Distribution of CATE estimates using linear nuisance models.
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Figure 9: Distribution of CATE estimates using gradient boosting nuisance models.

C Semi-Synthetic Data Analysis for W Data497

W Semi-synthetic Data Results. In order to validate the correctness of ATE and CATE from DRIV498

model, we consider a semi-synthetic data generating process that looks similar in structure to W499
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data. The covariates have the same schema but are generated from fixed marginal distributions. The500

instrument corresponds to a fully randomized recommendation of treatment. And the compliance501

rates are generated to be similar with the experiment. This probability depends both on the observed502

feature X and an unobserved confounder that has a direct effect on the outcome. The X covariates503

and DGP are given by:504

Covariate Distribution

days_visited_free_pre, days_visited_hs_pre,
days_visited_rs_pre, days_visited_exp_pre,
days_visited_vrs_pre, days_visited_fs_pre

X ∼ U{0, 28}

locale_US X ∼ Bernoulli(p = .5)

os_type X ∼ {OSX,Windows, Linux}
revenue_pre X ∼ Lognormal(µ = 0, σ = 3)

Table 4: Data Generation of Covariates X

Z ∼ Bernoulli(p = .5) (Instrument)
ν ∼ U[0, 10] (Unobserved confounder)
C ∼ Bernoulli(p = 0.017 · Logistic(0.1 · (X[0] + ν))) (Compliers when recommended)
C0 ∼ Bernoulli(p = 0.006) (Non-Compliers when not recommended)
T ∼ C · Z + C0 · (1− Z) (Treatment)
y ∼ θ(X) · (T + 0.1 · ν) + 0.4 ·X[0] + 2 · U[0, 1] (Outcome)

Moreover, the treatment effect function is predefined here, which depends on the feature505

"days_visited_free_pre"(X[0]) and "locale_US"(X[6])506

θ(X) = 0.2 + 0.1 ·X[0]− 2.7 ·X[6] (CATE)

We rerun the same experiments with 4 million samples. In table 5, it shows that both DMLATEIV507

and DRIV with either linear or GBM nuisance estimators, their ATE CI can recover the true estimate508

of ATE. Moreover, we validate the CATE via DRIV. In figure 10 and 11, we can see that DRIV with509

linear regression as final stage recovers the true coefficient from CATE, and the last stage model510

using random forest also picks the correct factor of heterogeneity as the most important features.511

Nuisance Models Method True ATE ATE Estimate 95% CI

Linear Models DMLATEIV 0.249 0.336 [0.186, 0.487]

Linear Models DRIV with constant 0.249 0.166 [-0.025, 0.358]

Gradient Boosting Models DMLATEIV 0.249 0.342 [0.191, 0.492 ]

Gradient Boosting Models DRIV with constant 0.249 0.136 [-0.060, 0.332 ]
Table 5: ATE Estimates for Semi-Synthetic Data (n=4,000,000,coef=0.1)
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Figure 10: (from left to right) CATE projection on X[0] and X[6] by linear final stage model,
CATE projection on X[0] and X[6] by RF final model, SHAP summary of RF CATE projection.
(n=4,000,000, coef=0.1, linear nuisance models)

Figure 11: Same plot for n=4,000,000, coef=0.1, GBM nuisance models

We also run some other experiments with different sample size n and different level of endogeneity512

(the coefficient of variable ν) to learn the consistency of ATE for these two models. we can see from513

the table and figures below that all of their CI covers the true estimate of ATE, but with the increase514

of n and the decrease of the endogeneity coefficient, the ATE of DMLATEIV is more biased.515

Nuisance Models Method True ATE ATE Estimate 95% CI

Linear Models DMLATEIV 0.249 0.349 [0.230, 0.468]

Linear Models DRIV with constant 0.249 0.197 [0.044, 0.350]

Gradient Boosting Models DMLATEIV 0.249 0.354 [0.235, 0.473]

Gradient Boosting Models DRIV with constant 0.249 0.179 [0.023, 0.335]
Table 6: ATE Estimates for Semi-Synthetic Data (n=4,000,000,coef=0.01)

Figure 12: Same plot for n=4,000,000, coef=0.01, Linear nuisance models
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Figure 13: Same plot for n=4,000,000, coef=0.01, GBM nuisance models

Nuisance Models Method True ATE ATE Estimate 95% CI

Linear Models DMLATEIV 0.250 0.350 [0.045, 0.655]

Linear Models DRIV with constant 0.250 0.167 [-0.222, 0.556]

Gradient Boosting Models DMLATEIV 0.250 0.344 [0.040, 0.648]

Gradient Boosting Models DRIV with constant 0.250 0.253 [-0.212, 0.718]
Table 7: ATE Estimates for Semi-Synthetic Data (n=1,000,000,coef=0.1)

Figure 14: Same plot for n=1,000,000, coef=0.1, Linear nuisance models

Figure 15: Same plot for n=1,000,000, coef=0.1, GBM nuisance models

Coverage Experiment. To further validate the consistency of DMLATEIV and DRIV under effect516

and compliance heterogeneity, we create a slightly different semi-synthetic dataset with stronger517

instrument and less samples (n = 100, 000) to run 100 times Monte Carlo Simulations. The DGP is518

given by:519
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Z ∼ Bernoulli(p = .5) (Instrument)
ν ∼ U[0, 10] (Unobserved confounder)
C ∼ Bernoulli(p = 0.2 · Logistic(0.1 · (X[0] + ν))) (Compliers when recommended)
C0 ∼ Bernoulli(p = 0.1) (Non-Compliers when not recommended)
T ∼ C · Z + C0 · (1− Z) (Treatment)
y ∼ θ(X) · (T + 0.2 · ν) + 0.1 ·X[0] + 0.1 · U[0, 1] (Outcome)

Moreover,520

θ(X) = 0.8 + 0.5 ·X[0]− 3 ·X[7] (CATE)

It turns out that distribution of DMLATEIV ATE has smaller variance but larger bias with 0 coverage521

to the true ATE, while DRIV ATE are more converged to the true ATE with 94% coverage.522

Figure 16: DMLATEIV VS. DRIV ATE Estimates across 100 Monte Carlo Experiments: (left)
distribution of ATEs across experiments, (middle) qq-plot of distribution of DRIV ATE vs normal
centered at true estimate, scaled by std of DRIV, (right) qq-plot of distribution of DMLATEIV ATE
vs normal centered at true estimate, scaled by std of DMLATEIV.

D NLSYM Data Analysis523

NLSYM Data Results. The NLSYM data is comprised of 3,010 entries from men ages 14-24 that524

were interviewed in 1966 and again in 1976. We use the covariates X selected by Card: mother525

and father education, family composition at 14, workforce experience, indicators for black, region,526

southern residence and residence in an SMSA in 1966 and 1976. The outcome of interest y is log527

wages, the treatment T is the years of schooling, and the instrument Z is an indicator of whether the528

participant grew up near a 4-year college.529

Observational Data Semi-Synthetic Data
Nuisance Method ATE Est 95% CI ATE Est 95% CI Cover ‡

LM DMLATEIV 0.137 [0.027, 0.248] 0.654 [0.621, 0.687] 10%
LM DRIV 0.065 [-0.02, 0.151] 0.587 [0.521, 0.652]† 92%

GBM DMLATEIV 0.138 [0.025, 0.251] 0.645 [0.613, 0.695] 30%
GBM DRIV 0.052 [-0.032, 0.136] 0.612 [0.548, 0.677]† 86%
† Contains the true ATE (0.609) ‡ Coverage for 95% CI over 100 Monte Carlo simulations

Table 8: NLSYM ATE Estimates for Observational and Semi-synthetic Data

Semi-synthetic Data Results. The NLSYM data is a relatively small dataset and Z could potentially530

be a weak instrument, which could explain the large confidence intervals in the prior analysis. To531

disentangle these effects, we create semi-synthetic data from the NLSYM covariatesX and instrument532

Z, with generated treatments and outcomes based on known compliance and treatment functions.533

The data generating process for the semi-synthetic data is given by:534

ν ∼ U[0, 1] (Unobserved Confounder)
C = c0 ·X[4], c0 (const) ∼ U[0.2, 0.3] (Compliance Level)
T = C · Z + g(X) + ν (Treatment)
y ∼ θ(X) · (T + ν) + f(X) +N (0, 0.1) (Outcome)
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We create a realistic heterogeneous treatment effect that depends on the mother’s education (X[4])535

and whether the child was in the care of a single mother at age 14 (X[7], 10% of subjects):536

θ(X) = 0.1 + 0.05 ·X[4]− 0.1 ·X[7] (CATE)
f(X) = 0.05 ·X[4], g(X) = X[4] (Nuissance Functions)
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