
w

yj�l:j�1

r̂j

m̂j

Figure 3: Illustration of DLN

A Deep Leveled Network
Large scale time-series datasets containing upwards of hundreds of thousands of time-series can have
very diverse scales. The diversity in scale leads to issues in training deep models, both Temporal
Convolutions and LSTM based architectures, and some normalization is needed for training to
succeed [16, 3, 9]. However, selecting the correct normalizing factor for each time-series is not an
exact science and can have effects on predictive performance. For instance in [9] the data-sets are
whitened using the training standard deviation and mean of each time-series while training, and the
predictions are renormalized. On the other hand in [3], each time-series is rescaled by the value
of that time-series on the first time-step. Moreover, when performing rolling predictions using a
pre-trained model, when new data is observed there is a potential need for updating the scaling factors
by incorporating the new time-points. In this section we propose DLN , a simple leveling network

architecture that can be trained on diverse datasets without the need for a priori normalization.

DLN consists of two temporal convolution blocks (having the same dynamic range/look-back l) that
are trained concurrently. Let us denote the two networks and the associated weights by Tm(·|⇥m)
and Tr(·|⇥r) respectively. The key idea is to have Tm(·|⇥m) (the leveling component) to predict
the rolling mean of the next w future time-points given the past. On the other-hand Tr(·|⇥r) (the
residual component) will be used to predict the variations with respect to this mean value. Given an
appropriate window size w the rolling mean stays stable for each time-series and can be predicted by
a simple temporal convolution model and given these predictions the additive variations are relatively
scale free i.e. the network Tr(·|⇥r) can be trained reliably without normalization. This can be
summarized by the following equations:

[ŷj�l+1, · · · , ŷj] = TDLN (yj�l:j�1|⇥m, ⇥r) := Tm (yj�l:j�1|⇥m)+Tr(yj�l:j�1|⇥r) (4)
[m̂j�l+1, · · · , m̂j] = Tm(yj�l:j�1|⇥m) (5)

[r̂j�l+1, · · · , r̂j] = Tr(yj�l:j�1|⇥r) (6)
where we want m̂j to be close to µ(yj:j+w�1) and r̂j to be close to yj �µ(yj:j+w�1). An illustration
of the leveled network methodology is shown in the above figure.

Training: Both the networks can be trained concurrently given the training set Y(tr), using mini-batch
stochastic gradient updates. The pseudo-code for training a DLN is described in Algorithm 1. The
loss function L(·, ·) used is the same as the metric defined in Eq. (1). Note that in Step 9, the leveling
component Tm(·|⇥m) is held fixed and only Tr(·|⇥r) is updated.

Prediction: The trained model can be used for multi-step look-ahead prediction in a standard manner.
Given the past data-points of a time-series, yj�l:j�1, the prediction for the next time-step is given by
ŷj defined in (4). Now, the one-step look-ahead prediction can be concatenated with the past values
to form the sequence ỹj�l+1:j = [yj�l+1:j�1ŷj], which can be again passed through the network
and get the next prediction: [· · · , ŷj+1] = TDLN(ỹj�l+1:j). The same procedure can be repeated ⌧
times to predict ⌧ time-steps ahead in the future. Table 3 shows the performance of leveled network
on the same datasets and mertics used in Table 2.

Table 3: Performance of DLN on the same datasets and metrics as in Table 2.

Algorithm electricity n = 370 traffic n = 963 wiki n = 115, 084
Normalized Unnormalized Normalized Unnormalized Normalized Unnormalized

Proposed Local DLN 0.086/0.258/0.129 0.118/ 0.336/0.172 0.169/0.246/0.218 0.237/0.422/0.275 0.235/0.469/ 0.346 0.288/0.397/0.341

We will now provide a proof of Proposition 1.

11

Proof of Proposition 1. We will follow the convention of numbering the input layer as layer 0 and
each subsequent layers in increasing order. 1a shows a TCN with the last layered numbered d = 4.
Each neuron in a layer is numbered starting at 0 from the right-hand side. ai,j denote neuron j in
layer i. We will focus on the neurons in each layer that take part in the prediction ŷj . Note that
on layer d � 1 (d being the last layer), the neurons that are connected to the output ŷj , are ad�1,0

and ad�1,2d�1 . Therefore, we have ŷj = 1
2 (ad�1,0 + ad�1,2d�1), whenever the neurons have values

greater equal to zero. Similary, any neuron al,s⇤2l is the average of al�1,s⇤2l and al�1,(2s+1)⇤2l�1 .
Therefore, by induction we have that,

ŷj =
1

2 ⇤ 2d�1

2⇤2d�1X

i=1

yj�i. (7)

B Rolling Prediction without Retraining
Once the TCN-MF model is trained using Algorithm 2, we can make predictions on the test range
using multi-step look-ahead prediction. The method is straight-forward - we first use TX(·) to
make multi-step look-ahead prediction on the basis time-series in X(tr) as detailed in Section 4, to
obtained X̂(te); then the original time-series predictions can be obtained by Ŷ(te) = FX̂(te). This
model can also be adapted to make rolling predictions without retraining. In the case of rolling
predictions, the task is to train the model on a training period say Y[:, 1 : t1], then make predictions
on a future time period say Ŷ[:, t1 + 1 : t2], then receive the actual values on the future time-range
Y[:, t1 + 1 : t2] and after incorporating these values make further predictions for a time range further
in the future Ŷ[:, t2 + 1 : t3] and so on. The key challenge in this scenario, is to incorporate the
newly observed values Y[:, t1 + 1 : t2] to generate the values of the basis time-series in that period
which is X[:, t1 + 1 : t2]. We propose to obtain these values by minimizing global loss defined in (3)
while keeping F and TX(·) fixed:

X[:, t1 + 1 : t2] = argmin
M2Rk⇥(t2�t1)

LG (Y[:, t1 + 1 : t2],F,M, TX) .

Once we obtain X[:, t1 + 1 : t2], we can make predictions in the next set of future time-periods
Ŷ[:, t2 +1 : t3]. Note that the TRMF model in [29] needed to be retrained from scratch to incorporate
the newly observed values. In this work retraining is not required to achieve good performance, as
we shall see in our experiments in Section 6.

C More Experimental Details
We will provide more details about the experiments like the exact rolling prediction setting in each
data-sets, the evaluation metrics and the model hyper-parameters.
C.1 Rolling Prediction
In our experiments in Section 6, we compare model performances on rolling prediction tasks. The
goal in this setting is to predict future time-steps in batches as more data is revealed. Suppose the
initial training time-period is {1, 2, ..., t0}, rolling window size ⌧ and number of test windows nw.
Let ti = t0 + i⌧ . The rolling prediction task is a sequential process, where given data till last window,
Y[:, 1 : ti�1], we predict the values for the next future window Ŷ[:, ti�1 + 1 : ti], and then the
actual values for the next window Y[:, ti�1 + 1 : ti] are revealed and the process is carried on for
i = 1, 2, ..., nw. The final measure of performance is the loss L(Ŷ[:, t0 +1 : tnw],Y[:, t0 +1 : tnw])
for the metric L defined in Eq. (1).

For instance, In the traffic data-set experiments we have t0 = 10392, ⌧ = 24, w = 7 and in electricity
t0 = 25968, ⌧ = 24, w = 7. The wiki data-set experiments have the parameters t0 = 747, ⌧ =
14, w = 4.
C.2 Loss Metrics
The following well-known loss metrics [13] are used in this paper. Here, Y 2 Rn0⇥t0 represents the
actual values while Ŷ 2 Rn0⇥t0 are the corresponding predictions.

12

(i) WAPE: Weighted Absolute Percent Error is defined as follows,

L(Ŷ,Y) =

Pn0

i=1

Pt0

j=1 |Yij � Ŷij |
Pn0

i=1

Pt0

j=1 |Yij |
. (8)

(ii) MAPE: Mean Absolute Percent Error is defined as follows,

Lm(Ŷ,Y) =
1

Z0

n0X

i=1

t0X

j=1

|Yij � Ŷij |
|Yij |

1{|Yij | > 0}, (9)

where Z0 =
Pn0

i=1

Pt0

j=1 1{|Yij | > 0}.

(iii) SMAPE: Symmetric Mean Absolute Percent Error is defined as follows,

Ls(Ŷ,Y) =
1

Z0

n0X

i=1

t0X

j=1

2|Yij � Ŷij |
|Yij + Ŷij |

1{|Yij | > 0}, (10)

where Z0 =
Pn0

i=1

Pt0

j=1 1{|Yij | > 0}.
C.3 Model Parameters and Settings
In this section we will describe the compared models in more details. For a TC network the important
parameters are the kernel size/filter size, number of layers and number of filters/channels per layer. A
network described by [c1, c2, c3] implies that there are three layers with ci filters in layer i. For, an
LSTM the parameters (nh, nl) means that the number of neurons in hidden layers is nh, and number
of hidden layers is nl. All models are trained with early stopping with a tenacity or patience of 7, with
a maximum number of epochs 300. The hyper-parameters for all the models are as follows,

DeepGLO: In all the datasets, except wiki and PeMSD7(M) the networks TX and TY both have
parameters [32, 32, 32, 32, 32, 1] and kernel size is 7. On the wiki dataset, we set the networks TX

and TY with parameters [32, 32, 32, 32, 1]. On the PeMSD7(M) dataset we set the parameters as
[32, 32, 32, 32, 32, 1] and [16, 16, 16, 16, 16, 1]. We set ↵ and �T both to 0.2 in all experiments. The
rank k used in electricity, traffic, wiki and PeMSD7(M) are 64, 64 ,256 and 64 respectively. We use
7 time-covariates, which includes minute of the hour, hour of the day, day of the week, day of the
month, day of the year, month of the year, week of the year, all normalized in a range [�0.5, 0.5],
which is a subset of the time-covariates used by default in the GluonTS library.

Local TCN (LeveledInit): We use the setting [32, 32, 32, 32, 32, 1] for all datasets.

Local DLN: In all the datasets, the leveled networks have parameters [32, 32, 32, 32, 32, 1] and
kernel size is 7.

TRMF: The rank k used in electricity, traffic, wiki are 60, 60 ,1024 respectively. The lag indices are
set to include the last day and the same day in the last week for traffic and electricity data.

SVD+Leveled: The rank k used in electricity, traffic and wiki are 60, 60 and 500 respectively. In all
the datasets, the leveled networks have parameters [32, 32, 32, 32, 32, 1] and kernel size is 7.

LSTM: In all datasets the parameters are (45, 3).

DeepAR: In all datasets, we use the default parameters in the DeepAREstimator in the GluonTS
implementation.

TCN: In all the datasets, the parameters are [32, 32, 32, 32, 32, 1] and kernel size is 7.

Prophet: The parameters are selected automatically. The model is parallelized over 32 cores. The
model was run with growth = ’logistic’, as this was found to perform the best.

Note that we replicate the exact values reported in [28] for the STGCN models on the PeMSD7(M)

dataset.

13

