
Singleshot : a scalable Tucker tensor decomposition

Abraham Traoré
LITIS EA4108

University of Rouen Normandy
abraham.traore@etu.univ-rouen.fr

Maxime Bérar
LITIS EA4108

University of Rouen Normandy
maxime.berar@univ-rouen.fr

Alain Rakotomamonjy
LITIS EA4108

University of Rouen Normandy
Criteo AI Lab, Criteo Paris

alain.rakoto@insa-rouen.fr

Abstract

This paper introduces a new approach for the scalable Tucker decomposition
problem. Given a tensor X , the algorithm proposed, named Singleshot, allows to
perform the inference task by processing one subtensor drawn from X at a time.
The key principle of our approach is based on the recursive computations of the
gradient and on cyclic update of the latent factors involving only one single step of
gradient descent. We further improve the computational efficiency of Singleshot by
proposing an inexact gradient version named Singleshotinexact. The two algorithms
are backed with theoretical guarantees of convergence and convergence rates under
mild conditions. The scalabilty of the proposed approaches, which can be easily
extended to handle some common constraints encountered in tensor decomposition
(e.g non-negativity), is proven via numerical experiments on both synthetic and
real data sets.

1 Introduction

The recovery of information-rich and task-relevant variables hidden behind observation data (com-
monly referred to as latent variables) is a fundamental task that has been extensively studied in
machine learning. In many applications, the dataset we are dealing with naturally presents different
modes (or dimensions) and thus, can be naturally represented by multidimensional arrays (also called
tensors). The recent interest for efficient techniques to deal with such datasets is motivated by the
fact that the methodologies that matricize the data and then apply matrix factorization give a flattened
view of data and often cause a loss of the internal structure information. Hence, to mitigate the
extent of this loss, it is more favorable to process a multimodal data set in its own domain, i.e. tensor
domain, to obtain a multiple perspective view of data rather than a flattened one.

Tensors represent generalization of matrices and the related decomposition techniques are promising
tools for exploratory analysis of multidimensional data in diverse disciplines including signal process-
ing [11], social networks analysis [28], etc. The two most common decompositions used for tensor
analysis are the Tucker decomposition [43] and the Canonical Polyadic Decomposition also named
CPD[16, 6]. These decompositions are used to infer multilinear relationships from multidimensional
datasets as they allow to extract hidden (latent) components and investigate the relationships among
them.

In this paper, we focus on the Tucker decomposition motivated by the fact that this decomposition
and its variants have been successfully used in many real applications [24, 19]. Our technical goal
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is to develop a scalable Tucker decomposition technique in a static setting (the tensor is fixed).
Such an objective is relevant in a situation where it is not possible to load in memory the tensor of
interest or when the decomposition process may result in memory overflow generated by intermediate
computations [20, 31].

1.1 Related work and main limitations

Divide-and-conquer type methods (i.e. which divide the data set into sub-parts) have already been
proposed for the scalable Tucker decomposition problem, with the goal of efficiently decomposing
a large fixed tensor (static setting). There are mainly three trends for these methods: distributed
methods, sequential processing of small subsets of entries drawn from the tensor or the computation of
the tensor-matrix product in a piecemeal fashion by adaptively selecting the order of the computations.
A variant of the Tucker-ALS has been proposed in [31] and it solves each alternate step of the Tucker
decomposition by processing on-the-fly intermediate data, reducing then the memory footprint of the
algorithm. Several other approaches following the same principles are given in [5, 9, 4, 33] while
others consider some sampling strategies [29, 36, 14, 39, 48, 18, 47, 35, 27, 10, 25] or distributed
approaches [49, 7, 34]. One major limitation related to these algorithms is their lack of genericness
(i.e. they cannot be extended to incorporate some constraints such as non-negativity).

Another set of techniques for large-scale Tucker decomposition in a static setting focuses on designing
both deterministic and randomized algorithms in order to alleviate the computational burden of the
decomposition. An approach proposed by [4] performs an alternate minimization and reduces the
scale of the intermediate problems via the incorporation of sketching operators. In the same flavor,
one can reduce the computational burden of the standard method HOSVD through randomization
and by estimating the orthonormal basis via the so-called range finder algorithm [51]. This class
of approaches encompasses other methods that can be either random [8, 30, 13, 37, 42, 46] or
deterministic [40, 2, 38, 3, 50, 17, 26, 32]. The main limitation of these methods essentially stems
from the fact that they use the whole data set at once (instead of dividing it), which makes them
non-applicable when the tensor does not fit the available memory.

From a theoretical point of view, among all these works, some algorithms are backed up with
convergence results [4] or have quality of approximation guarantees materialized by a recovery bound
[1]. However, there is still a lack of convergence rate analysis for the scalable Tucker problem.

1.2 Main contributions

In contrast to the works described above, our contributions are the following ones:

• We propose a new approach for the scalable Tucker decomposition problem, denoted as Singleshot
leveraging on coordinate gradient descent [41] and sequential processing of data chunks amenable
to constrained optimization.

• In order to improve the computational efficiency of Singleshot, we introduce an inexact gradient
variant, denoted as Singleshotinexact. This inexact approach can be further extended so as to make
it able to decompose a tensor growing in every mode and in an online fashion.

• From a theoretical standpoint, we establish for Singleshot an ergodic convergence rate ofO
(

1√
K

)
(K: maximum number of iterations) to a stationary point and for Singleshotinexact, we establish a
convergence rate of O( 1

k ) (k being the iteration number) to a minimizer.
• We provide experimental analyses showing that our approaches are able to decompose bigger

tensors than competitors without compromising efficiency. From a streaming tensor decomposition
point of view, our Singleshot extension is competitive with its competitor.

2 Notations & Definitions

A N−order tensor is denoted by a boldface Euler script letter X ∈ RI1×···×IN . The matrices are
denoted by bold capital letters (e.g. A). The identity matrix is denoted by Id. The jth row of a
matrix A ∈ RJ×L is denoted by Aj,: and the transpose of a matrix A by A>.
Matricization is the process of reordering all the elements of a tensor into a matrix. The mode-
n matricization of a tensor [X ]

(n) arranges the mode-n fibers to be the columns of the resulting
matrix X(n) ∈ RIn×(

∏
m6=n Im). The mode-n product of a tensor G ∈ RJ1×···×JN with a matrix
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A ∈ RIn×Jn denoted by G ×n A yields a tensor of the same order B ∈ RJ1×···Jn−1×In×Jn+1···×JN

whose mode-n matricized form is defined by: B(n) = AG(n). For a tensor X ∈ RI1×...×IN , its
ithn subtensor with respect to the mode n is denoted by Xn

in ∈ RI1×···×In−1×1×In+1×···×IN . This

subtensor is aN -order tensor defined via the mapping between its n-mode matricization
[
Xn
in

](n)
and

the ithn row of X(n), i.e. the tensor Xn
in is obtained by reshaping the ithn row of X(n), with the target

shape (I1, .., In−1, 1, In+1, .., IN ). The set of integers from n to N is denoted by InN = {n, .., N}:
if n = 1, the set is simply denoted by IN . The set of integers from 1 to N with n excluded is
denoted by IN 6=n = {1, .., n− 1, n+ 1, .., N}. Let us define the tensor G ∈ RJ1×..×JN and N
matrices

{
A(m) ∈ RIm×Jm

}
n∈IN

. The product of G with the matrices A(m),m ∈ IN denoted by
G ×1 A

(1) ×2 ...×N A(N) will be alternatively expressed by:
G ×m
m∈IN

A(m) = G ×m
m∈In−1

A(m) ×n A(n) ×q
q∈In+1

N

A(q) = G ×m
m∈IN 6=n

A(m) ×n A(n).

The Frobenius norm of a tensor X ∈ RI1×···×IN , denoted by ‖X‖F is defined by:

‖X‖F =
(∑

1≤in≤In,1≤n≤N X 2
i1,··· ,iN

) 1
2

. The same definition holds for matrices.

3 Piecewise tensor decomposition: Singleshot

3.1 Tucker decomposition and problem statement

Given a tensor X ∈ RI1×...×IN , the Tucker decomposition aims at the following approximation:

X ≈ G ×m
m∈IN

A(m),G ∈ RJ1×...×JN ,A(m) ∈ RIm×Jm

The tensor G is generally named the core tensor and the matrices
{
A(m)

}
m∈IN

the loading matrices.
With orthogonality constraints on the loading matrices, this decomposition can be seen as the
multidimensional version of the singular value decomposition [23].
A natural way to tackle this problem is to infer the latent factors G and

{
A(m)

}
m∈IN

in such a
way that the discrepancy is low. Thus, the decomposition of X is usually obtained by solving the
following optimization problem:

min
G,A(1),··· ,A(N)

{
f
(
G,A(1), · · · ,A(N)

)
,

1

2
‖X − G ×m∈IN A(m)‖2F

}
(1)

Our goal in this work is to solve the above problem, for large tensors, while addressing two potential
issues : the processing of a tensor that does not fit into the available memory and avoiding memory
overflow problem generated by intermediate operations during the decomposition process [21].

For this objective, we leverage on a reformulation of the problem (1) in terms of subtensors drawn
from X with respect to one mode (which we suppose to be predefined), the final objective being to
set up a divide-and-conquer type approach for the inference task. Let’s consider a fixed integer n (in
the sequel, n will be referred to as the splitting mode). Indeed, the objective function can be rewritten
in the following form (see supplementary, property 2):

f
(
G,A(1), · · · ,A(N)

)
=

In∑
in=1

1

2
‖Xn

in − G ×m
m∈IN 6=n

A(m) ×n A
(n)
in,:
‖2F (2)

More generally, the function f given by (1) can be expressed in terms of subtensors drawn with
respect to every mode (see supplementary material, property 3). For simplicity concerns, we only
address the case of subtensors drawn with respect to one mode and the general case can be derived
following the same principle (see supplementary material, section 5).

3.2 Singleshot

Since the problem (1) does not admit any analytic solution, we propose a numerical resolution
based on coordinate gradient descent [41]. The underlying idea is based on a cyclic update over
each of the variables G,A(1), ..,A(N) while fixing the others at their last updated values and each
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Algorithm 1 Singleshot

Inputs: X tensor of interest, n splitting mode,
{
A

(m)
0

}
1≤m≤N

initial loading matrices,

Output: G,
{
A(m)

}
1≤m≤N

Initialization: k = 0

1: while a predefined stopping criterion is not met do
2: Compute optimal step ηGk
3: Gk+1 ← Gk − ηGk D

G
k with DG

k given by (4)
4: for p from 1 to N do
5: Compute optimal step ηpk
6: A

(p)
k+1 ← A

(p)
k − η

p
kD

p
k with Dp

k given by (5),(6)
7: end for
8: end while

update being performed via a single iteration of gradient descent. More formally, given at iteration
k, Gk,A(1)

k , ...,A
(N)
k the value of the latent factors, the derivatives DG

k and Dp
k of f with respect

to the core tensor and the pth loading matrix respectively evaluated at
(
Gk,A(1)

k , · · · ,A(N)
k

)
and(

Gk+1,A
(1)
k+1, · · · ,A

(p−1)
k+1 ,A

(p)
k .,A

(N)
k

)
are given by:

DG
k = ∂Gf

(
Gk,

{
A

(m)
k

}N
1

)
, Dp

k = ∂A(p)f

(
Gk+1,

{
A

(m)
k+1,

}p−1
1

,
{
A

(q)
k

}N
p

)
(3)

The resulting cyclic update algorithm, named Singleshot, is summarized in Algorithm 1. A naive
implementation of the gradient computation would result in memory overflow problem. In what
follows, we show that the derivatives DG

k and Dp
k, 1 ≤ p ≤ N given by the equation (3) can be

computed by processing a single subtensor at a time, making Algorithm 1 amenable to sequential
processing of subtensors. Discussions on how the step sizes are obtained will be provide in Section 4.

Derivative with respect to G. The derivative with respect to the core tensor is given by (details in
Property 7 of supplementary material):

DG
k =

In∑
in=1

Rin ×m
m∈IN 6=n

(
A

(m)
k

)>
×n
((

A
(n)
k

)
in,:

)>
︸ ︷︷ ︸

θin

,Rin = −Xn
in+Gk ×m

m∈IN 6=n
A

(m)
k ×n

(
A

(n)
k

)
in,:

(4)
It is straightforward to see that DG

k (given by the equation (4)) is the last term of the recursive

sequence
{

(DG
k )j
}
1≤j≤In

defined as
(
DG
k

)j
=
(
DG
k

)j−1
+ θj , with

(
DG
k

)0
being the null tensor.

An important observation is that the additive term θj (given by the equation (4)) depends only on one
single subtensor Xn

j . This is the key of our approach since it allows the computation of DG
k through

the sequential processing of a single subtensor Xn
j at a time.

Derivatives with respect to A(p), p 6= n (n being the splitting mode). For those derivatives, we
can exactly follow the same reasoning, given in detail in Property 9 of the Supplementary material,
and obtain for p < n (the case p > n yields a similar formula):

Dp
k =

In∑
in=1

(
−
(
Xn
in

)(p)
+ A

(p)
k B

(p)
in

)(
B

(p)
in

)>
(5)

The matrices (Xn
in

)(p) and B
(p)
in

represent respectively the mode-p matricized forms of the ithn
subtensor Xn

in and the tensor Bin is defined by:

Bin = Gk+1 ×m
m∈Ip−1

A
(m)
k+1 ×p Id ×q

q∈Ip+1
N 6=n

A
(q)
k ×n (A

(n)
k )in,:
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with Id ∈ RJp×Jp being the identity matrix. With a similar reasoning as for the derivative with
respect to the core, it is straightforward to see that Dp

k can be computed by processing a single
subtensor at a time.

Derivative with respect to A(n) (n being the splitting mode). The derivative with respect to the
matrix A(n) can be computed via the row-wise stacking of independent terms, that are, the derivatives
with respect to the rows A

(n)
j,: and the derivative of f with respect to A

(n)
j,: depends only on Xn

j .
Indeed, let’s consider 1 ≤ j ≤ In. In the expression of the objective function f given by the equation
(2), the only term that depends on A

(n)
j,: is ‖Xn

j − G ×m
m∈In−1

A(m) ×n A
(n)
j,: ×q

q∈In+1
N

A(q)‖2F , thus

the derivative of f with respect to A
(n)
j,: depends only on Xn

j and is given by (see property 8 in the
supplementary material):

∂
A

(n)
j,:
f

(
G,
{
A(m)

}N
1

)
= −

(
(Xn

j )(n) −A
(n)
j,: B

(n)
)
B(n)> (6)

The tensors (Xn
j )(n) ∈ R1×

∏
k 6=n Ik and B(n) respectively represent the mode-n matricized form of

the tensors Xn
j and B with B = G ×p

p∈In−1

A(p) ×n Id ×q
q∈In+1

N

A(q), Id ∈ RJn×Jn : identity matrix.

Remark 1. . For one-mode subtensors, it is relevant to choose n such that In is the largest dimension
since this yields the smallest subtensors. We stress that all entries of the tensor X have been
entirely processed when running Algorithm 1 and our key action is the sequential processing of
subtensors Xn

in . In addition, if one subtensor does not fit in the available memory, the recursion,
as shown in section 5 of the supplementary material, can still be applied to subtensors of the form
X θ1,...,θN , θm ⊂ {1, 2, .., Im} with (X θ1,..,θN )i1,..,iN = X i1,..,iN , (i1, .., iN ) ∈ θ1 × ... × θN , ×
referring to the Cartesian product.

3.3 Singleshotinexact

While all of the subtensors Xn
in , 1 ≤ in ≤ In are considered in the Singleshot algorithm for the

computation of the gradient, in Singleshotinexact, we propose to use only a subset of them for the
sake of reducing computational time. The principle is to use for the gradients computation only
Bk < In subtensors. Let’s consider the set SET k (of cardinality Bk) composed of the integers
representing the indexes of the subtensors that are going to be used at iteration k. The numerical
resolution scheme is identical to the one described by Algorithm 1 except for the definition of DG

k

and Dp
k which are respectively replaced by D̂G

k and D̂p
k, p 6= n defined by:

D̂G
k =

∑
in∈SET k

Rin ×m
m∈IN 6=n

A
(m)>
k ×n

((
A

(n)
k

)
in,:

)>
(7)

D̂p
k =

∑
in∈SET k

(
−
(
Xn
in

)(p)
+ A(p)B

(p)
in

)(
B

(p)
in

)>
(8)

For the theoretical convergence, the descent steps are defined as ηGk
Bk

and ηpk
Bk
, 1 ≤ p ≤ N . It is

worth to highlight that the derivative D̂n
k (n being the mode with respect to which the subtensors are

drawn) is sparse: Singleshotinexact amounts to minimize f defined by (2) by dropping the terms{
‖Xn

j − G ×m
m∈IN 6=n

A(m) ×n A
(n)
j,: ‖2F

}
with j 6∈ SET k, thus, the rows

(
D̂n
k

)
j,:
, j 6∈ SET k are

all equal to zero.

3.4 Discussions

First, we discuss the space complexity needed by our algorithms supposing that the subtensors
are drawn with respect to one mode. Let’s denote by n the splitting mode. For Singleshot and
Singleshot-inexact, at the same time, we only need to have in memory the tensor Xnj of size
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∏
m∈IN 6=n Im = I1..In−1In+1..IN , the matrices

{
A(m)

}
m∈IN 6=n

,A
(n)
in,:

and the previous iterate of
the gradient. Thus, the complexity in space is

∏
m∈IN 6=n Im +

∑
m6=n ImJm + Jn +AT with AT

being the space complexity of the previous gradient iterate: for the core update, AT =
∏
m∈IN Jm

and for a matrix A(m), AT = ImJm. If the recursion used for the derivatives computation is applied
to subtensors of the form Xθ1,··· ,θN , the space complexity is smaller than these complexities.

Another variant of Singleshotinexact can be derived to address an interesting problem that has received
little attention so far [4], that is the decomposition of a tensor streaming in every mode with a single
pass constraint (i.e. each chunk of data is processed only once) named Singleshotonline. This is
enabled by the inexact gradient computation which uses only subtensors that are needed. In the
streaming context, the gradient is computed based only on the available subtensor.

Positivity constraints is one of the most encountered constraints in tensor computation and we can
simply handle those constraints via the so-called projected gradient descent [45]. This operation does
not alter the space complexity with respect to the unconstrained case, since no addition storage is
required but increases the complexity in time. For more details, see the section 3 in the supplementary
material for the algorithmic details for the proposed variants.

4 Theoretical result

Let’s consider the minimization problem (1):

min
G,A(1),..,A(N)

f
(
G,A(1), ..,A(N)

)
By denoting the block-wise derivative by ∂xf , the derivative of f , denoted ∇f and defined by
(∂Gf, ∂A(1)f..∂A(N)f), is an element of RJ1×..×JN×RI1×J1×...×RIN×JN endowed with the norm
‖·‖∗ defined as the sum of the Frobenius norms. Besides, let’s consider, for writing simplicity, the alter-
native notations of f(G,A(1), · · · ,A(N)) given by: f(G,

{
A(m)

}N
1

), f(G,
{
A(m)

}p
1
,
{
A(q)

}N
p+1

).
For the theoretical guarantees which details have been reported in the supplementary material, we
consider the following assumptions:

Assumption 1. Uniform boundedness. The nth subtensors are bounded: ‖Xn
in‖F ≤ ρ.

Assumption 2. Boundedness of factors. We consider the domain G ∈ Dg,A(m) ∈ Dm with:

Dg = {‖Ga‖F ≤ α} ,Dm =
{
‖A(m)

a ‖F ≤ α
}

4.1 Convergence result of Singleshot

For the convergence analysis, we consider the following definitions of the descent steps ηGk and ηpk at
the (k + 1)th iteration:

ηGk = arg min
η∈[ δ1√

K
,
δ2√
K

]

(η − δ1√
K

)φg(η), ηpk = arg min
η∈[ δ1√

K
,
δ2√
K

]

(η − δ1√
K

)φp(η) (9)

φg(η) = f

(
Gk − ηDG

k ,
{
A

(m)
k

}N
1

)
− f

(
Gk,

{
A

(m)
k

}N
1

)

φp (η) =f

(
Gk+1,

{
A

(m)
k+1

}p−1
1

,A
(p)
k − ηD

p
k,
{
A

(q)
k

}N
p+1

)
− f

(
Gk+1,

{
A

(m)
k+1

}p−1
1

,
{
A

(q)
k

}N
p

)
and δ2 > δ1 > 0 being user-defined parameters. The motivation of the problems given by the
equation (9) is to ensure a decreasing of the objective function after each update. Also note that, the
minimization problems related to ηGk and ηpk are well defined since all the factors involved in their
definitions are known at the computation stage of Gk+1 and A

(p)
k+1 and correspond to the minimization

of a continuous function on a compact set.
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Along with Assumption 1 and Assumption 2, as well as the definitions given by (9), we assume that:
δ1√
K

< ηGk ≤
δ2√
K

and
δ1√
K

< ηpk ≤
δ2√
K

(10)

This simply amounts to consider that the solutions of the minimization problems defined by the
equation (9) are not attained at the lower bound of the interval. Under this framework, we establish,
as in standard non-convex settings [12], an ergodic convergence rate. Precisely, we prove that:

∃K0 ≥ 1,∀K ≥ K0,
1

K

K−1∑
k=0

‖∇f
(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤

(N + 1)∆√
K

(11)

with ‖∇f
(
Gk,

{
A

(m)
k

}N
1

)
‖∗ = ‖∂Gf(Gk,

{
A

(m)
k

}N
1

)‖F +
∑N
p=1 ‖∂A(p)f(Gk,

{
A

(m)
k

}N
1

)‖F ,

∆ = δ2
δ21

(
2Γ + α2NΓ2

gδ
2
2 +

∑N
p=1(1 + 2Γ + α2NΓ2

pδ
2
2)
)

, Γ,Γp,Γg ≥ 0 being respectively the

supremun of f, ‖∂A(p)f(G,
{
A(m)

}
)‖F , ‖∂Gf(G,

{
A(m)

}
)‖F on the compact set Dg ×D1..×DN

This result proves that Singleshot converges ergodically to a point where the gradient is equal to 0 at
the rate O

(
1√
K

)
.

4.2 Convergence result for Singleshotinexact

Let us consider that `j(A(N)) , 1
2
‖Xn

j − Gk+1 ×m
m∈In−1

A
(m)
k+1 ×n (A

(n)
k+1)j,: ×q

q∈In+1
N−1

A
(q)
k+1 ×N A(N)‖2F

and that the step ηNk for A(N) is defined by the following minimization problem:

ηNk = arg min
η∈[ 1

4Kγ ,
1
Kγ ]

(
η − 1

4Kγ

)
φ(η) (12)

φ(η) = f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
− f

(
Gk,

{
A

(m)
k

}N

1

)
+ λf

(
Gk+1,

{
A

(m)
k+1

}N−1

1
, φ̃(η)

)
and φ̃(η) = A

(N)
k − η

Bk

∑
j∈SET k ∂A(N)`j , ∂A(N)`j being the derivative of `j evaluated at A(N)

k .

The parameters λ > 0, γ > 1 represent user-defined parameters. In addition to Assumption 1 and
Assumption 2, we consider the following three additional assumptions:

1. Descent step related to the update of A(N). We assume that 1
4Kγ < ηNk ≤ 1

α2N , which means
that the solution of problem (12) is not attained at the lower bound of the interval.

2. Non-vanishing gradient with respect to A(N) ∂A(N)f

(
Gk+1,

{
A

(m)
k+1

}N−1
1

,A
(N)
k

)
6= 0.

This condition ensures the existence of a set SET k such that
∑
j∈SET k ∂A(N)`j 6= 0 and the set

considered for the problem (12) is one of such sets.

3. Choice of the number of subtensors Bk. We suppose that In ×
√

1
2 + 1

In
≤ Bk and In > 2.

This condition In > 2 ensures that In
√

1
2 + 1

In
< In.

With these assumptions at hand, the sequence ∆k = f

(
Gk,

{
A

(m)
k

}N
1

)
− fmin verifies:

∀k > k0 = 1 +
1

log(1 + λ)
log

(
1

log(1 + λ)

)
,∆k ≤

∆1 + ζ(λ, ρ, α, In)

k − k0
(13)

with log being the logarithmic function, fmin representing the minimizer of f , a continuous function
defined on the compact set Dg × D1 × ....× DN and ζa function of λ, ρ, α, In. The parameter k0 is

well-defined since λ > 0. This result ensures that the sequence
{
Gk,A(1)

k , .,A
(N)
k

}
generated by

Singleshotinexact converges to the set of minimizers of f at the rate O
(
1
k

)
Remark 2. The problems defined by the equations (9) and (12), which solutions are global and can
be solved by simple heuristics (e.g. Golden section), are not in contradiction with our approach since
they can be solved by processing a single subtensor at a time due to the expression of f given by (2).
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Figure 1: Approximation error and running time for the unconstrained decomposition algorithms.
From left to right: first and second figures represent Movielens, third and fourth represent Enron. As
M grows , missing markers for a given algorithm means that it ran out of memory. The core G rank
is (5, 5, 5).
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Figure 2: Approximation error and running time for the non-negative decomposition algorithms.
From left to right: first and second figures represent Movielens, third and fourth represent Enron. As
M grows, missing markers, for a given algorithm means that it ran out of memory. The core G rank
is (5, 5, 5).

5 Numerical experiments

Our goal here is to illustrate that for small tensors, our algorithms Singleshot and Singleshotinexact
and their positive variants, are comparable to some state-the-art decomposition methods. Then as the
tensor size grows, we show that they are the only ones that are scalable. The competitors we have
considered include SVD-based iterative algorithm [44](denoted GreedyHOOI ), a very recent alternate
minimization approach based on sketching [4] (named Tensorsketch) and randomization-based
methods [51] (Algorithm 2 in [51] named Scalrandomtucker and Algorithm 1 in [51] with positivity
constraints named posScalrandomtucker). Other materials related to the numerical experiments are
provided in the section 4 of the supplementary material. For the tensor computation, we have used
the TensorLy tool [22].

The experiments are performed on the Movielens dataset [15], from which we construct a 3-order
tensor whose modes represent timesteps, movies and users and on the Enron email dataset, from which
a 3-order tensor is constructed, the first and second modes representing the sender and recipients of
the emails and the third one denoting the most frequent words used in the miscellaneous emails. For
Movielens, we set up a recommender system for which we report a mean average precision (MAP)
obtained over a test set (averaged over five 50− 50 train-test random splits) and for Enron, we report
an error (AE) on a test set (with the same size as the training one) for a regression problem. As our
goal is to analyze the scalability of the different methods as the tensor to decompose grows, we have
arbitrarily set the size of the Movielens and Enron tensors to M ×M × 200 and M ×M × 610, M
being a user-defined parameter. Experiments have been run on MacOs with 32 Gb of memory.

Another important objective is to prove the robustness of our approach with respect to the assumptions
and the definitions related to the descent steps laid out in the section 4, which is of primary importance
since the minimization problems defining these steps can be time-consuming in practice for large
tensors. This motivates the fact that for our algorithms, the descent steps are fixed in advance. For
Singleshot, the steps are fixed to 10−6. For Singleshot-inexact, the steps are respectively fixed to
10−6 and 10−8 for Enron and Movielens. Regarding the computing of the inexact gradient for
Singleshotinexact, the elements in SET k are generated randomly without replacement with the same
cardinality for any k. The number of slices is chosen according to the third assumption in section 4.2.
For the charts, the unconstrained versions of Singleshot and Singleshotinexact will be followed by
the term "unconstrained" and "positive" for the positive variantes.
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Figure 3: Comparing Online version of Tensorsketch and Singleshot with positive constraints on the
Enron dataset. (left) Approximation error. (right) running time.

Figure 1 presents the results we obtain for these two datasets. At first, we can note that performance,
in terms of MAP or AE, are rather equivalent for the different methods. Regarding the running
time, the Scalrandomtucker is the best performing algorithm being an order of magnitude more
efficient than other approaches. However, all competing methods struggle to decompose tensors with
dimension M = 4000 and M ≥ 2800 respectively for Enron and Movielens due to memory error.
Instead, our Singleshot methods are still able to decompose those tensors, although the running time
is large. As expected, Singleshotinexact is more computationally efficient than Singleshot.

Figure 2 displays the approximation error and the running time for Singleshot and singleshotinexact
with positivity constraints and a randomized decomposition approach with non-negativity constraints
denoted here as PosScalrandomtucker for Enron and Movielens. Quality of the decomposition is in
favor of Singleshotpositive for both Movielens and Enron. In addition, when the tensor size is small
enough, PosScalrandomtucker is very computationally efficient, being one order of magnitude faster
than our Singleshot approaches on Enron. However, PosScalrandomtucker is not able to decompose
very large tensors and ran out of memory contrarily to Singleshot.

For illustrating the online capability of our algorithm, we have considered a tensor of size 20000×
2000 × 50 constructed from Enron which is artificially divided into slices drawn with respect to
the first and the second modes. The core rank is (R,R,R). We compare the online variant of our
approach associated to positivity constraints named Singleshotonlinepositive to the online version
of Tensorsketch [4] denoted Tensorsketchonline. Figure 3 shows running time for both algorithms.
While of equivalent performance, our method is faster as our proposed update schemes, based on one
single step of gradient descent, are more computationally efficient than a full alternate minimization.

Remark 3. Other assessments are provided in the supplementary material: comparisons with other
recent divide-and-conquer type approaches are provided, the non-nullity of the gradient with respect
to A(n) is numerically shown, and finally, we demonstrated the expected behavior of Singleshotinexact,
i.e. “the higher the number of subtensors in the gradient approximation, the better performance we
get”.

6 Conclusion

We have introduced two new algorithms named Singleshot and Singleshotinexact for scalable Tucker
decomposition with convergence rates guarantees: for Singleshot, we have established a convergence
rate to the set of minimizers of O( 1√

K
) (K being the maximum number of iterations) and for

Singleshotinexact, a convergence rate of O
(
1
k

)
(k being the iteration number). Besides, we have

proposed a new approach for a problem that has drawn little attention so far, that is, the Tucker
decomposition under the single pass constraint (with no need to resort to the past data) of a tensor
streaming with respect to every mode. In future works, we aim at applying the principle of Singleshot
to other decomposition problems different from Tucker.
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