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Abstract

The prevailing wisdom is that a model’s fairness and its accuracy are in tension
with one another. However, there is a pernicious modeling-evaluating dualism
bedeviling fair machine learning in which phenomena such as label bias are ap-
propriately acknowledged as a source of unfairness when designing fair models,
only to be tacitly abandoned when evaluating them. We investigate fairness and
accuracy, but this time under a variety of controlled conditions in which we vary the
amount and type of bias. We find, under reasonable assumptions, that the tension
between fairness and accuracy is illusive, and vanishes as soon as we account for
these phenomena during evaluation. Moreover, our results are consistent with an
opposing conclusion: fairness and accuracy are sometimes in accord. This raises
the question, might there be a way to harness fairness to improve accuracy after
all? Since many notions of fairness are with respect to the model’s predictions
and not the ground truth labels, this provides an opportunity to see if we can im-
prove accuracy by harnessing appropriate notions of fairness over large quantities
of unlabeled data with techniques like posterior regularization and generalized
expectation. We find that semi-supervision improves both accuracy and fairness
while imparting beneficial properties of the unlabeled data on the classifier.

1 Introduction

Torrents of ink have been spilled characterizing the relationship between a classifier’s “fairness”
and its accuracy [11, 7, 3, 8, 20, 4, 14, 2, 13, 17], where fairness refers to a concrete mathematical
embodiment of some rule provided by an external party such as a government and which must be
imposed on a learning algorithm. The consensus, countenanced by both empirical and analytical
studies, is that the relationship is a trade-off: satisfying the supplied fairness constraints is achieved
only at the expense of accuracy. On the one hand, these findings are intuitive: if we think of fairness
as constraints limiting the set of possible classification assignments to those that are collectively fair,
then clearly accuracy suffers because in general, optimization over the subset always lower bounds
optimization over the original set. As put in another paper “demanding fairness of models always
come at a cost of reduced accuracy” [2].1

On the other hand, the belief in a simple assumption immediately calls these findings into question.
In particular, it requires no stretch of credulity to imagine that various personal attributes (e.g., race,
gender, religion; sometimes termed “protected attributes”) have no bearing on a person’s intelligence,
capability, potential, qualifications, etc., and consequently no bearing on ground truth classification
labels — such as job qualification status — that might be functions of these qualities.2 It then follows
that enforcing fairness across these attributes should on average increase accuracy. The reason is clear.
If our classifier produces different label distributions depending on the values of these dimensions,
then we know, under the foregoing assumption, that at least one of these distributions must be wrong,
and thus there is an opportunity to improve accuracy. An opportunity to which we later return.

1Our emphasis.
2This assumption is consistent with the “we’re all equal” worldview [9]
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But first we must understand what accounts for this antinomy. Two possible explanations involve the
phenomena of label bias and selection bias. Label bias occurs when the process that produces the
labels (e.g., a manual annotation process or a decision making process such as hiring) are influenced
by factors that are not particularly germane to the determination of the label value, and thus might
differ from the ideal labels, whatever they should have been. Accuracy measured against any such
biased labels should be considered carefully with a grain of salt. Selection bias occurs when selecting
a subsample of the data in such a way that happens to introduce unexpected correlations, say, between
a protected attribute and the target label. Training data, which is usually derived via selection from a
larger set of unlabeled data and subsequently frozen in time, is especially prone to this problem.

If pressed to couch the above discussion in a formal framework such as probably approximately
correct (PAC) learning, we would say that we have a data distribution D and labeling function f ,
either of which could be biased. For example, due to selection bias we might have a flawed data
distribution D′ and due to label bias we might have a flawed labeling function f ′. This leads to four
regimes: the data distribution is biased (D′) or not (D) and the labeling function is biased (f ′) or not
(f ). Many theoretical works in fair machine learning consider the regime in which neither is biased,
and many empirical works—due in part to the unavailability of an unbiased f—draw conclusions
assuming the regime in which neither is biased. But many forms of unfairness arise exactly because
one or both of these are biased: hence the dualism in fair machine learning. In this work, we assume
that some of the unfairness might arrise because we are actually in one of the other three regimes.

In this paper we account for both label and selection bias in our evaluations and show that when taken
into consideration, that certain definitions of fairness and accuracy are not always in tension. Since
we do not have access to the unbiased, unobserved ground truth labels in practice, we instead simulate
datasets in tightly controlled ways such that, for example, it exposes the actual unbiased labels for
evaluation. Encouraged by theoretical results on semi-supervised PAC learning that state that these
techniques will be successful exactly when there is compatibility between some semi-supervised
signal and the data distribution [1] and the success of GE [16, 10], we also introduce and study a
semi-supervised method that exploits fairness constraints expressed over large quantities of unlabeled
data to build better classifiers. Indeed, we find that as fairness improves, so does accuracy. Moreover,
we find that like other fairness methods, the semi-supervised approach can successfully overcome
label bias; but unlike other fairness methods, it can also overcome selection bias on the training set.

2 Related work

Somehow, the idea that fairness and accuracy are not always in tension is both obvious and incon-
spicuous (but nevertheless of practical significance). The idea appears obvious because we assume
the unobserved unbiased ground-truth to be fair, and then limit our hypotheses to the fair region of
the space, and then claim that fairness improves accuracy. At this level of generality, it even appears
to beg the question, but note that not all fair hypotheses are accurate since in the case we consider
a perfectly random classifier is also fair. Moreover, the noise on the observed biased labels with
which we train the classifier is diametrically opposed to the unobserved label. Thus even under our
assumptions, it is not a foregone conclusion that improving fairness improves accuracy. Rather, our
assumption merely leaves open the possibility for this to happen. The finding is inconspicuous in
the sense that, as mentioned earlier, there is a preponderance of work investigating this trade-off
yet label bias appears to have gone unnoticed: very few papers (e.g., [8, 20]) mention the fact that
the labels against which we evaluate are often biased (unfairly against a protected attribute) in the
very same way as the unfair classifier trained on them [11, 7, 3, 8, 20, 4, 14, 2, 13, 17]. It may be
the case that label-bias is so obvious to most authors that it does not even occur to them to mention
it; howbeit, the conspicuous absence of label-bias from papers on fairness perniciously pervades
real-world discussions underlying the decisions about how to balance the trade-off between fairness
and accuracy. Thus, we believe this finding to be of practical importance and worthy of highlighting.

While uncommon, some papers do indeed mention label-bias, including recent work that considers
the largely hypothetical case: if we have access to unbiased labels, then we can propose a better way
of evaluating fairness with “disparate mistreatment” [20]. However, their emphasis is on new fairness
metrics, not on its tradeoff with accuracy. Other work mentions the problem of label bias in passing,
lamenting that it is difficult to account for in practice because we “only have biased data” and thus
we “cannot evaluate our classifiers against an unbiased ground truth” and so achieving parity requires
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that “one must be willing to reduce accuracy” ([8]). They overcome the lack of unbiased labels via
data simulation, a strategy we also employ.

Congruent with our findings, others have noted that the fairness-accuracy tension is not as bad as it
seems. Recent work correctly remarks that while there is a tradeoff between fairness and goodness of
fit on the training set, that “it does not [necessarily] introduce a tension” since a reduction in model
complexity via fairness constraints might act as a regularizer and improve generalization [2]. This
is a very interesting remark, but it could have gone even further and addressed generalization with
respect to the unbiased labels, which we study in this work.

In recent theoretical work, the authors’ propose a “construct space” in which the observed data
might differ from some unobserved actual truth about the world [9]. While they investigate many
different notions of fairness, they do not address accuracy. The construct space provides a promising
theoretical framework for our work, but we save such analysis for another day. Other analytical
work studies the trade-off between fairness and accuracy as a function of the amount of statistical
dependence between the target class and protected attribute, concluding that only “in the other
extreme” of perfect independence that “we can have maximum accuracy and fairness simultaneously”
[17]. This “extreme” is none other than the “we’re all equal” assumption, which we believe to be
perfectly reasonable in many situations. Further, note that this theoretical “maximum” may not be
achievable in practice due to imperfect classifiers trained on incomplete, noisy data, or in the context
of the phenomena mentioned herein, and hence there is still an opportunity to improve both.

It is worth thinking about the problems of selection and label bias with respect to an existing fairness
datasets such as COMPAS, for which the labels are sometimes treated as if they are the unbiased
ground truth [20]. Consider that the people in the COMPAS data had been selected from a specific
county in Florida with its concomitant pattern of policing, during a specific period of time (2013-
2014), meeting a specific set of criteria such as being scored during a specific stage within the judicial
system. Each one of these “selections” opens the door for selection bias to introduce unintentional
correlations. Indeed, recent work demonstrates that the data is skewed with respect to age, which
acts as a confounding variable in existing analysis [18]. Moreover, while not exactly label-bias, the
variable indicating recidivism is only partially observed since it considers only a two-year window
and assumes that no crime goes uncaught.

Finally, we emphasize that our findings do not imply that the existing theories and conclusions
discussed in the literature are incorrect. On the contrary, these works are in fact both sound and
relevant. The different conclusions then are explained by the consideration of different types of data
bias (or lack thereof) as well as the underlying assumptions, and our assumptions may not always
apply [3]. If there differences between groups based on a protected attribute (e.g., due to selection
bias), then enforcing fairness could indeed hurt accuracy. We do not address the degree to which
one assumption applies to a particular problem or dataset in this paper. Thus, just like in statistical
significance testing, it remains up to the discretion of the discerning practitioner to determine if our
(or their) set assumptions reasonably apply to the situation in question, and if the assumptions do not,
then our (or their) conclusions do not apply, and should be properly rejected as irrelevant to that data.

3 Background

Fairness and bias types We consider two types of biases that lead to unfair machine learning
models: label bias and selection bias. Label bias is when the observed binary class labels, say, on the
training and testing set, are influenced by protected attributes. For example, the labels in the dataset
might be the result of yes/no hiring decisions for each job candidate. It is known that this hiring
process is sometimes biased with respect to protected attributes such as race, age or gender. Since
decisions might be influenced by protected attributes that on the contrary should have no bearing on
the class label, this implies there is a hypothetical set of latent unobserved labels corresponding to
decisions that were not influenced by these attributes. We notate these unobserved unbiased labels as
z. We notate the observed biased labels as y. Typically, we only have access to the latter for training
and testing our models.

Selection bias (skew) occurs when the method employed to select some subset of the overall pop-
ulation biases or skews the subset in unexpected ways. This can occur if selecting based on some
attribute that inadvertently correlates with a protected class or the target labels. Training sets are
particularly vulnerable to such bias because, for the sake of manual labeling expedience, they are
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meager subsamples of the original unlabeled data points. Moreover, this problem is compounded
since most available labeled datasets are statically frozen in time and are thus also selectionally biased
along the axis of time. For example, in natural language processing (NLP), the particular topical
subjects or the entities mentioned in newswire articles change over time: the entities discussed in
political discourse today are very different from a decade ago and new topics must emerge to keep
pace with the dernier cri [19]. And, as we continue to make progress in reducing discrimination, the
discrepancy between the training data of the past and the available data of the present will increasingly
differ w.r.t. to selection bias. Indeed, selection bias might manifest itself in a way such that on the
relatively small training set, the data examples that were selected for labeling happen to show bias
against the protected class. It is with this manifestation of selection bias that we are most concerned,
and that we study in the current work.

Illustrative example: learning fair sectors Consider the problem of learning circular sectors of
the unit disk with the following attributes: the domain set X is the unit disk, the label set Y is {0, 1},
the data generation model D is an arbitrary density on X , the labeling function f is an arbitrary
partition of X into two circular sectors, the hypothesis classH is the set of all partitions of X into two
circular sectors. Samples from D are points on the unit disk with location reiφ where φ ∈ [0, 360)
and r ∈ [0, 1]. We represent a circular sector as a pair of angles (µ, θ) and defined as the circular
sector from angle (µ − θ)%360 to angle (µ + θ)%360 that contains the point eiµ. The labeling
function f partitions the disk in two circular sectors f−1(0) and f−1(1) and we will refer to the
former as the negative circular sector and the latter as the positive circular sector. Note that for any
labeling function f , we have f ∈ H and so the realizable assumption holds.

Due to label bias, the labeling function f might be biased (f ′) as shown in Figure 1. Here, the
total positive area according to f is given by the area in green and red, but because of label bias f ′
only considers points in green as positive. Hence, as demonstrated in Figure 2, an empirical risk
minimization (ERM) algorithm will learn a sector (dotted lines) that appears accurate with respect to
f ′, but is much less accurate with respect to f . If we had prior knowledge that the ratio of the positive
sector and negative sector should be some constant k, perhaps we could exploit this and improve the
ERM solution. We might term such an alternative empirical fairness maximization (EFM) (or fair
ERM [5]), and in this paper, we present a semi-supervised EFM algorithm to exploit such fairness
knowledge as a constraint on unlabeled data. This example is fully developed in appendix B.
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Semi-supervised classification A binary classifier3 gw : Rk → {0, 1} parameterized by a set of
weights w ∈ Rk is a function from a k dimensional real valued feature space, which is often in
practice binary, to a binary class label. A probabilistic model pw(·|x) parameterized by (the very
same) w underlies the classifier in the sense that we perform classification by selecting the class label
(0 or 1) that maximizes the conditional probability of the label y given the data point x

gw(x) = argmax
y∈{0,1}

pw(y|x) (1)

3For ease of explication, we consider the task of binary classification, though our method can easily be
generalized to multiclass classification, multilabel classification, or more complex structured prediction settings.
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We can then train the classifier in the usual supervised manner by training the underlying model to
assign high probability to each observed label yi in the training data Dtr = {〈xi, yi〉 | i = 1 . . . n}
given the corresponding example xi, by minimizing the negative log likelihood:

ŵ = argmin
w∈Rk

∑
〈xi,yi〉∈Dtr

− log pw(yi|xi) (2)

We can extend the above objective function to include unlabeled data Dun = {xi}ni=1 to make the
classifier semi-supervised. In particular, we add a new term to the loss, C(Dun, w), with a weight η to
control the influence of the unlabeled data over the learned weights:

ŵ = argmin
w∈Rk

 ∑
〈xi,yi〉∈Dtr

− log pw(yi|xi)

+ ηC(Dun, w) (3)

The key question is how to define the loss term C over the unlabeled data in such a way that improves
over our classifier.

4 Approach

Apropos the foregoing discussion, we propose to employ fairness in the part of the loss function
that exploits the unlabeled data. There are of course many definitions of fairness proposed in the
literature that we could adapt for this purpose, but for now we focus on a particular type of group
fairness constraint derived from the statistical parity of selection rates. Although this definition has
(rightfully) been criticized, it has also (rightfully) been advocated in the literature and it underlies
legal definitions such as the 4/5ths rule in U.S. law [6, 8, 21]. For the purpose of this paper, we do
not wish to enter the fray on this particular matter.

More formally, let S = {xi}ni=1 be a set of n unlabeled examples, then the selection rate of the
classifier gw is ḡw(S) = 1

n

∑
xi∈S gw(xi). If we partition our data (Dun) into the protected (DPun)

and unprotected (DUun) partitions such that Dun = DPun ∪ DUun, then we want the selection rate ratio

ḡw(DPun)

ḡw(DUun)
(4)

to be as close to one as possible. However, to make the problem more amenable to optimization via
stochastic gradient descent, we relax this definition of fairness to make it differentiable with respect
to w. In particular, analogous to ḡw(S), define p̄w(S) = 1

n

∑
xi∈S pw(y = 1|xi) to be the average

probability of the set when assigning each example xi to the positive class yi = 1. Then, the group
fairness loss over the unlabeled data — which when plugged into Equation 3 yields an instantiation
of the proposed semisupervised training technique discussed herein — is

C(Dun, w) =
(
p̄w(DPun)− p̄w(DUun)

)2
(5)

Parity is achieved at zero, which intuitively encodes that overall, the probability of assigning one
group to the positive class should on average be the same as assigning the other group to the positive
class. This loss has the important property that it is differentiable with respect to w so we can optimize
it with stochastic gradient descent, along with the supervised term of the objective, making it easy to
implement in existing toolkits such as Scikit-Learn, PyTorch or TensorFlow.

5 Experiments

In this section we investigate the relationship between fairness and accuracy under conditions in
which we can account for (and vary) the amount of label bias, selection bias, and the extent to which
the classifiers enforce fairness. Typically, accuracy is measured against the ground truth labels on
the test set, which inconspicuously possesses the very same label bias as the training set. In this
typical evaluation setting, if we train a set of classifiers that differ only in the extent to which their
training objective functions enforce fairness, and then record their respective fairness and accuracy
scores on a test set with such label bias, we see that increased fairness is achieved at the expense
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Figure 3: Accuracy vs. fairness on simulated (β=0.25) COMPAS (assumption hold).

of accuracy (Figure 3a). However, because the labels are biased, we must immediately assume that
the corresponding accuracy measurements are also biased. Therefore, we are crucially interested
in evaluating accuracy on the unbiased ground truth labels, which are devoid of any such label
bias. Since we do not have access to the unbiased ground truth labels of real-world datasets, we
must instead rely upon data simulation. We discuss the details later, but for now, assume we could
evaluate on such data. In Figure 3a, we evaluate the same set of classifiers as before, but this time
measure accuracy with respect to the unbiased ground truth labels. We see the exact opposite pattern:
classifiers that are more fair are also more accurate. With the gist of our results and experimental
strategy in hand, we are now ready to describe the assumptions, data simulator, and systems to
undertake a more comprehensive empirical investigation.

Assumptions We make a set of assumptions that we encode directly into the probabilistic data
generator, explained in more detail below. For example, we encode the “we’re all equal assumption”
by making the unbiased labels statistically independent of the protected class [9]. If these assumptions
do not hold in a particular situation, then our conclusions may not apply. We describe the assumptions
in more detail below and in the appendix.

Data Our experiments require datasets with points of the form D = {x, ρ, z, y} in which x is the
vector of unprotected attributes, ρ is the binary protected attribute, z is the (typically unobserved)
label that has no label bias and y is the (typically observed) label that may have label bias. Since
z is unobserved — and even if it were available, we would still want to vary the severity of label
bias for experimental evaluation — we must rely upon data simulation [8]. We therefore assume
that the biased labels are generated from the unbiased labels via a probabilistic model g and assume
that y ∼ g(y|z, ρ, x, β) where β is a parameter of the model that controls the probability of label
bias occurring. Now we have two options for generating datasets of our desired form, we can either
(a) simulate the dataset entirely from scratch from a probabilistic model of the joint distribution
P (x, ρ, z, y) = g(y|z, ρ, x, β)P (z, ρ, x)P (β), or we can (b) begin with an existing dataset, declare
by fiat that the labels have no label bias (and are thus observed after all) and then augment the data
with a set of biased labels sampled from g(y|z, ρ, x, β).

For data of type (a) we generate the features and labels (both biased and unbiased) entirely from
scratch with the Bayesian network in Figure 7 (Appendix A.2). For this data, we explicitly enforce
the following statistical assumptions: z, x ⊥⊥ ρ, y 6⊥⊥ ρ, z 6⊥⊥ x, y 6⊥⊥ z. A parameter β controls the
amount of label bias; σ controls the amount of selection bias, which can break some assumptions.
For data of type (b) we begin with the COMPAS data, treat the two-year recidivism labels as
the unbiased ground-truth z and then apply our model of label bias to produce the biased labels
y ∼ g(z|y, ρ, x, β) [15]. Since the “we’re all equal” assumption does not hold for COMPAS data we
also create a second type of test data in which we enforce demographic parity via subsampling so
that our assumption holds (see Appendix A.3).

Systems, baselines and evaluations We study the behavior of the following classification systems.
A traditional supervised classifier trained on biased label data, a supervised classifier trained on
unbiased label data (this in some sense is an ideal model, but not possible in practice because we do
not have access to the unbiased labels in practice), a random baseline in which labels are sampled
according to the biased label distribution in the training data, and three fair classifiers. The first
fair classification method is an in-processing classifier that employs our fairness constraint, but as
a regularizer on the training data instead of the unlabeled data. The resulting classifier is similar
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Figure 4: Classifier accuracy (F1) and fairness as a function of the amount of label bias.
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Figure 5: Varying label bias on COMPAS (assumption holds, except in 5d).

to the prejudice remover, but with a slightly different loss [12]. The second fair classifier is a
supervised logistic regression trained using the “reweighing” pre-processing method [11]. The final
fair classifier, which we introduce in this paper, is a semi-supervised classifier that utilizes the fairness
loss (Equation 5) on the unlabeled data.

We assess fairness with a group metric that computes the ratio of the selection rates of the protected
and unprotected class, as we defined in Equation 4. A score of one is considered perfectly fair. To
assess ‘accuracy’ we compute the weighted macro F1, which is the macro average weighted by the
relative portion of examples belonging to the positive and negative classes. We evaluate F1 with
respect to both the biased labels and the unbiased labels. We always report the mean and standard
error of these various metrics computed over ten experiments with ten randomly generated datasets
(or in the case of COMPAS, ten random splits).

5.1 Experiment 1: Label Bias

In this experiment we investigate the relationship between fairness and accuracy for each classification
method as we vary the amount of label bias. All classifiers except the unbiased baseline are trained on
biased labels. If we evaluate the classifiers on the biased labels as in Figure 4b (data simulated from
scratch) or Figure 5b (COMPAS data) we see that the classifiers that achieve high fairness (close to
one, as seen in Figure 4c&5c) sometimes degrade the (biased) F1 accuracy as commonly seen in the
literature. On the other hand, if we evaluate the classifiers on the unbiased labels as in Figure 4a&5a,
we see that fairness and accuracy are in accord: the classifiers that achieve high fairness achieve
better accuracy than the fairness-agnostic supervised baseline. The gap between the fair and unfair
classifiers increases as label bias increases. We also evaluate the classifiers on COMPAS data that
violates the “we’re all equal” assumption. In this case, the fairness classifiers are enforcing something
untrue about the data, and thus fairness initially degrades accuracy (Figure 5d). However, as the
amount of label bias increases, eventually there comes a point at which fairness once again improves
accuracy (possibly because the amount of label bias exceeds the amount of other forms of bias).

5.2 Experiment 2: Selection Bias

We repeat the experiment from the last section, but this time fixing label bias (β = 0.2) and subjecting
the training data to various amounts of selection bias by lowering the probability that a data example
with a positive label is assigned to the protected class. This introduces correlations in the training set
between the protected class and the input features as well as correlations with both the unbiased and
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Figure 6: Classifier accuracy (F1) and fairness as a function of the amount of selection bias.

biased labels. These correlations do not exist in the test set and unlabeled set which we assume do
not suffer from selection bias. We vary selection bias along the abscissa while keeping the label bias
at a constant 20%, and report the same metrics as before. Results are in Figure 6. The main findings
are that (a) the results are consistent with the theory that fairness and accuracy are in accord and (b)
that the semi-supervised method succesfully harnesses unlabeled data to correct for the selection and
label bias in the training data (while the inprocessing fairness method succumbs to the difference in
data distribution between training and testing). Let us now look at these findings in more detail and
in the context of the other baselines.

Interestingly, the fairness-agnostic classifiers and two of the fairness-aware classifiers (in- and pre-
processing) all succumb to selection bias, but in opposite ways (Figure 6c). The fairness-agnostic
classifier learns the correlation between the protected attribute and the label and is unfair to the
protected class. In contrast, the two supervised fair classifiers, for which fairness is enforced with
statistics of the training set both learn to overcompensate and are unfair to the unprotected class (its
fairness curve is above 1). In both cases, as selection bias increases, so does unfairness and this results
in a concomitant loss in accuracy (when evaluated not only against the unbiased labels (Figure 6a),
but also against the biased labels (Figure 6b)), indicating that fairness and accuracy are in accord.
Finally, let us direct our attention to the performance of the proposed semi-supervised method by
examining the same figures (Figure 6c). Now we see that regardless of the amount of selection bias,
the semi-supervised method successfully harnesses the unbiased unlabeled data to rectify it, as seen
by the flat fairness curve achieving a nearly perfect 1 (Figure 6c). Moreover, this improvement in
fairness over the supervised baseline (biased trained) is associated with a corresponding increase in
accuracy relative to that same baseline (Figures 6a & 6b), regardless of whether it is evaluated with
respect to biased (20% label-bias) or unbiased labels (0% label-bias). Note that the “we’re all equal”
assumption is violated as soon as we evaluate against the biased labels. Moreover, the label-bias
induces a correlation between the protected class and the target label, which is a common assumption
for analysis showing that fairness and accuracy are in tension [17]. Yet, the beneficial relationship
between accuracy and fairness is unsullied by the incorrect assumption in this particular case.

6 Conclusion

We studied the relationship between fairness and accuracy while controlling for label and selection
bias and found that under certain conditions the relationship is not a trade-off but rather one that
is mutually beneficial: fairness and accuracy improve together. We focused on demographic parity
in this paper, but the ideas emphasized in this work, especially label bias, have potentially serious
implications for other notions of fairness that go beyond even their relationship with accuracy. In
particular, recent ways of assessing fairness such as disparate mistreatment, equal odds and equal
oppurtunity involve error rates as measured against labeled data. Label bias raises questions about the
reliability of such measures and investigating such questions — about how label bias affects fairness
and whether this causes fairness methods to undercompensate or overcompensate — is an important
direction of future work. Other future directions would be to develop more complex models of
label and selection bias for particular domains so we can better understand the relationship between
fairness and accuracy in these domains.
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A Data Generation

A.1 Assumptions

We make a set of assumptions that we encode directly into the probabilistic data generator, explained
in more detail below. If these assumptions do not hold in a particular situation, then our conclusions
may not apply. For example, in one experiment we assume no selection bias; in another, we assume
the training data experiences more selection bias than the test data. If the opposite were true then,
perhaps, a post-processing method of enforcing fairness might be more appropriate. We also make a
“we’re all equal” assumption [9], which we encode by ensuring that the unbiased labels are statistically
independent of the protected dimension. Again, if this assumption is violated to a sufficiently large
degree, then our conclusions do not apply. This assumption is important, but not necessary for the
finding that fairness and accuracy are not always in tension. Finally, our framework optimistically
presupposes that it is possible to model the way in which these biases actually infiltrate real-world
datasets. For the purpose of this initial study, we employ the simplest possible models of biases
— perhaps at the risk of oversimplifying — that still strongly capture their baleful effects, which
researchers in fair ML toil to address.

A.2 Simulated Data (non-COMPAS)

Here we provide details of our data simulation process. In particular, we enforce that the unobserved
unbiased labels zi do not statistically depend on the example’s status as protected (or not) ρi and
only on its other input features xi. Second, the protected status ρ does not depend on any features
xi. Third, the observed biased labels yi are biased to depend on the protected status ρ by an amount
controlled by the experimental parameter β, which we vary in our experiments.

In summary, we enforce the following statistical properties:

z, x ⊥⊥ ρ y 6⊥⊥ ρ
z 6⊥⊥ x y 6⊥⊥ z

Where ⊥⊥ (respectively, 6⊥⊥) are the familiar symbols for expressing statistical independence (respec-
tively, dependence) of random variables. Note when we later introduce selection bias, it will break
some of these independence assumptions (between ρ and z, x, but in a controlled manner, so we then
show to what extent we correct this via unlabeled data, as we vary the amount of selection bias.

To simulate the dataset, we sample the input data points x iid from a k dimensional binary feature
space. We sample such that some dimensions contain common features while others contain rare
features, in effort to reflect that real-world datasets. In particular, we sample each dimension i
according to a Bernoulli proportional to 1

i making some dimensions common and others rare.

The parameters of our data generator are β the amount of label bias, τ , which controls the discrepancy
between the rarity of features, and α, which controls the ratio between members of the protected and
unprotected class. We also introduce a parameter σ that controls the amount of selection bias. First,
we sample the observed samples xi and its status as protected (ρ = 1) or not (ρ = 0), independently
to ensure that protected status and input features are not statistically dependent. Next, we sample the
unobserved unbiased labels z from xi while crucially ignoring the protected status ρi to ensure that
the label is indeed unbiased. Finally, we sample the observed biased labels y in a way to make them
dependent on the class labels ρi, a dependency strength controlled by β. More precisely:

wgen ∼ N(0,Σ) (6)
ρi ∼ Bernoulli(α) (7)

xji ∼ Bernoulli
(

1

j + 1

)τ
for j = 0, . . . , k − 2 (8)

zi = max(0, sign
(
wTgenxi

)
) (9)

yi ∼ g(y|zi, ρi, xi, β) (10)
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Figure 7: Data generator as a Bayesian network.

where g is the label bias model, parameterized by β ∈ [0, 1], the amount of label bias to introduce,
and is a function of the protected dimension and the unobserved unbiased labels zi, and defined as

g(yi|zi, ρi, xi, β) = g(yi|zi, ρi, β) =

{
β if yi 6= zi ∧ z = ρi
1− β o.w.

(11)

This model assumes that the desirable label is 1 (say calling a candidate for an interview, or offering a
loan) and that the bias will be against the protected class and in favor of the unprotected class. Hence
with probability β, a protected class individual that has an unbiased label of 1 will have it flipped to 0;
similarly, an unprotected class individual that has an unbiased label of 0 will have it flipped favorably
to one with probability β. Note the model is simplistic in that it does not make use of the unprotected
features and that it assumes symmetry in the bias, as just described. Note that other models could
be used for specific datasets or problem domains for which a domain expert has a theory or insight
about what the nature of the label bias might be.

The function returns the unbiased labels with probability 1−β, but otherwise works against examples
of the protected class by assigning their labels to 0, and for all other examples by assigning their
labels to 1. See Figure 7 for a Bayesian network representation of the generator.

We can control the amount of selection bias with a parameter σ. As selection bias increases, the data
is increasingly unlikely to contain members of the protected attribute (ρ = 1) that have a favorable
class label (z = 1). In particular, if r ∈ [0, 1] is the portion of the protected attribute assigned to the
favorable class in the original data, then the selection bias process “selects” the data in such a way
to reduce this portion to r

σ for σ ≥ 1. Therefore if σ = 1 then no bias occurs, and if σ > 1 then an
amount of bias against the protected class occurs proportional to σ. Note that this selection procedure
introduces statistical dependencies between the input x and the unbiased label z as well as between
the protected class ρ and the unbiased label.

For the non-COMPAS experiments, we generate 20-dimensional binary input features xi and, 200
training examples, 1000 testing examples and 10,000 unlabeled examples. Note that 200 training
examples is reasonable since it means that n� k as is usually required for training machine learning
models. Yet, at the same time, it is small enough to allow for the weights of some of the rarer
features to be under-fit as is typical in most applications of machine learning. Also, unless otherwise
stated, the expected protected to unprotected class ratio is even at 50/50, though we have repeated the
experiments but with a skewed expected ratio of 20/80 and found it did not affect the conclusions.
We train each classifier with 10 epochs of stochastic gradient descent, which we found to be sufficient
for this dataset.

A.3 COMPAS Data with Simulated Bias

The COMPAS data is a dataset of criminal recidivism. Here, the task is to predict recidivism (after
two-years) from a set of demographic features including age (under 25, over 45 and between 25 and
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45), sex, race, prior count (0-37), charge degree (misconduct or felony). We employ race (African-
American or not) as the binary protected attribute. A key challenge with real-world data such as
COMPAS is that it exhibits both selection and label bias, thus making it difficult to perform our
evaluations, which crucially rely on the existence of an unbiased test set. To this end, we resort to a
combination of simulation and subsampling to unbias the test set.

First, we assume that there is no label bias in the two-year recidvism labels, but then create a biased
version of the labels in a simular fashion as before (in this case, by randomly flipping the recidivism
label for African Americans from 0 to 1, and by randomly flipping the recidivism label for all others
from 1 to 0). In this way, we can create a discrepancy in label bias between the training and testing
data. Second, we can force the test set to adhere to the “we’re all equal” assumption by subsampling
the data such that the recidivism rates are the same for the protected and unprotected class. We thus
have two versions of the test data, one in which we enforce this assumption and one in which we do
not. In either case, we can vary the amount of label bias on the training set in the same way.

For our COMPAS experiments, we perform ten random splits of the data (7215 total examples) in
which we partition the data into 40% train 40% unlabeled and 20% test. Each algorithm is fit with
stochastic gradient descent, trained for two epochs on the training data. We found that two epochs
was sufficient for training, likely because the training set is large (almost 3000 examples) relative to
its dimensionality (about 50 features).

B Learning Circular Sectors: Complete Example

We present the completely developed example mentioned in the paper on learning circular sector
with a potentially biased labeling function. This illustrates precisely the intuitive idea that when the
labeling function is biased, then ERM’s guarantees with respect to the true labeling function are void,
while trying to maximize fairness has very strong guarantees.

B.1 Learning Circular Sectors

We consider the problem of learning circular sectors of the unit disk with the following attributes. The
domain set X is the unit disk, the label set Y is {0, 1}, the data generation model D is an arbitrary
density on X , the labeling function f is an arbitrary partition of X into two circular sectors, the
hypothesis classH is the set of all partitions of X into two circular sectors.

Samples from D are points on the unit disk with location reiφ where φ ∈ [0, 360) and r ∈ [0, 1].
We represent a circular sector as a pair of angles (µ, θ) and defined as the circular sector from angle
(µ− θ)%360 to angle (µ+ θ)%360 that contains the point eiµ. The labeling function f partitions
the disk in two circular sectors f−1(0) and f−1(1) and we will refer to the former as the negative
circular sector and the later as the positive circular sector. Note that for any labeling function f , we
have f ∈ H and so the realizable assumption holds.
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Figure 9: Samples from D labeled by f .

input :A set S of N labeled examples (rj e
iφj , lj) for j ∈ [N ]

precondition :S contains at least 3 positive examples with distinct angles
output :A hypothesis h ∈ H

1 a = max{φj | (rj eiφj , lj) ∈ S ∧ lj = 1};
2 b = min{φj | (rj eiφj , lj) ∈ S ∧ lj = 1};
3 c = choose{φj | (rj eiφj , lj) ∈ S ∧ φj 6= a ∧ φj 6= b};
4 if b < c < a then
5 θ = a− b;
6 µ = b+ θ/2;
7 else
8 θ = 360− a+ b;
9 µ = a+ θ/2;

10 end
11 return (eiµ, θ)

Algorithm 1: AERM , Smallest positive circular sector

The smallest positive circular sector algorithm implements empirical risk minimization and is probably
approximately correct.

x

y
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(0,−1)

(0, 1)

S2

S1

θ̂

µ̂

Figure 10: Error of AERM

Theorem 1 (The AERM algorithm is probably approximately correct). For any accuracy ε > 0 and
confidence 0 < δ < 1, there exists a finite number m such that if we take m independent samples
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e1, ..., em from D and let h = AERM ({(ei, f(ei))}) we have

Pr [D({x | h(x) 6= f(x)}) > ε] ≤ 1− δ

Proof. In the following proof, we assume that we have at least 3 examples with distinct angles, which
is a fairly mild assumption since the probability of two samples having the same angle is zero.

First note that since all the positive examples belong to the positive circular sector, the smallest
positive circular sector returned by the algorithm, h, is a subset of the positive circular sector f−1(1).
Indeed, f−1(1) can be partitioned into three circular sectors S1, S2, and h such that S1 and S2

correspond to the only two area where h(x) 6= f(x) for any x. Therefore, by the additivity of
measures

D({x | h(x) 6= f(x)}) = D(S1) +D(S2) (12)

For D(S1) +D(S2) to be greater than ε, we must have D(S1) > ε/2 or D(S2) > ε/2. Therefore, by
the union bound

Pr [D({x | h(x) 6= f(x)}) > ε] ≤ Pr [D(S1) > ε/2] + Pr [D(S2) > ε/2] (13)

Let us focus on the first term involving S1. Assume that we have m examples. We know that none of
our m examples belong to S1, or the algorithm would have returned a different, larger, hypothesis.
The probability that none of our m samples fell in S1 is (1−D(S1))m, so the probability that D(S1)
be greater than ε/2 is at least (1− ε/2)m. The same argument holds for S2 so

Pr [D({x | h(x) 6= f(x)}) > ε] ≤ 2(1− ε/2)m (14)

As m increases, 2(1− ε/2)m decreases, so for any δ < 1, we can choose m such that 2(1− ε/2)m

is smaller than 1− δ.

This theorem holds for any distribution D and it is worth noting that this includes distributions which
satisfies D(S1) = 0. In such a case, the selected hypothesis h cannot get close to f regardless of how
many samples we draw, but the algorithm is still correct since D({x | h(x) 6= f(x) ∧ x ∈ S1}) = 0.
This remark will be important later on in our presentation.

B.2 Fairness

Assume that we have some predicate P (., .) which is true on D, and f .

As an example, for some constant k, such a predicate could be defined as

λ(f−1(0))

λ(f−1(1))
= k (15)

where λ is the Lebesgues measure. This predicate simply states that the ratio of the area of the two
circular sectors is a constant.

Pure learning bias. Assuming that we have a training set S and h = AERM (D, f), the probability
that P (S, h) holds is 0. However, because AERM is probably approximately correct, we know that
we can use a training set large enough that λ(h

−1(0))
λ(h−1(1)) tends to k.

Data Generation bias. If the samples are drawn from a distribution D′ that is different than D.

Labeling bias. If the samples are labeled by a function f ′ which is different than f .
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Figure 11: Labeling with f ′. The positive region of f ′ is green, the negative region of f ′ is blue or
red, with the red region indicating where f and f ′ are different.

There are other predicates we could be interested in

D(f−1(0))

D(f−1(1))
= k (16)

C Empirical Risk Minimization

What happens if we use algorithm AERM on a training set generated with (D, f ′)? Then, some
of the samples which would have been labeled as positive by f are labeled as negative by f ′. In
consequence, with respect to f ′, AERM returns a smaller circular sector than with respect to f .
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Figure 12: AERM returns a circular sector of location µ̂ and spread ρ̂

This has two implications when we assess the error of AERM .
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Figure 13: Error of AERM w.r.t. f ′
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Figure 14: Error of AERM w.r.t. f

1. With respect to f ′, AERM is probably approximately correct
2. With respect to f , AERM has an error lower bound of D(S1) +D(S2)

D Empirical Risk Minimization with Empirical Fairness Maximization

We now design an algorithm AEFM which is such that for any training set S , we return an hypothesis
h for which P (D, h) holds. Since P (D, h) must hold, we have

λ(h−1(1)) =
λ(h−1(0))

k
(17)

and we also know
λ(h−1(0)) + λ(h−1(1)) = 2π (18)

so we conclude

λ(h−1(1)) =
2π

k + 1
(19)

and therefore the spread of h must be 360/(k + 1).

input :A set S of N labeled examples (rj e
iφj , lj) for j ∈ [N ]

precondition :S contains at least 3 positive examples with distinct angles
output :A hypothesis h ∈ H

1 (eiµ, .) = AERM (S);
2 return (eiµ, 360/(k + 1))

Algorithm 2: AEFM : Smallest positive circular sector with fairness maximization
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Figure 15: AEFM returns a circular sector of location µ̂ and spread θ̂
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First note that AEFM is not probably approximately correct with respect to f ′. Indeed, since
λ(f

′−1(1)) is smaller than λ(f−1(1)), λ(f
′−1(1)) < 360/(k + 1).

We will now prove that AEFM is probably approximately correct wirth respect to f . Intuitively this
is because h has the right spread by construction and with enough data, we should be able to have a
good estimate of the location of f with high probability.
Theorem 2 (Algorithm AEFM is probably approximately correct for positive densities). For any
accuracy ε > 0 and confidence 0 < δ < 1, if D is psitive then there exists a finite number m such
that if we take m independent samples e1, ..., em from D and let h = AERM ({(ei, f(ei))}) we have

Pr [D({x | h(x) 6= f(x)}) > ε] ≤ 1− δ

Proof. Since f ′ is contained in f , the location of f ′ is in the circular sector of f . Therefore, h and f
overlap and their union can be partioned in three different sets, S1 = h− f , f ∩ h, and S2 = f − h.
By the additivity of measures we conclude

D({x | h(x) 6= f(x)}) = D(S1) +D(S2) (20)

For D(S1) +D(S2) to be greater than ε, we must have D(S1) > ε/2 or D(S2) > ε/2. Therefore, by
the union bound

Pr [D({x | h(x) 6= f(x)}) > ε] ≤ Pr [D(S1) > ε/2] + Pr [D(S2) > ε/2] (21)

Without loss of generality, let us focus on sector S1. There are two other sectors that are relevant in
analyzing S1. The first one is the sector defined going from the location of f to the location of h in
trigonometric order, we will refer to this sector as Sc. The second one is the error of h with respect to
f ′, we will refer to this sector as Se. Note that S1, Sc, and Se all have the same area.

If we assume that the density is non-negative, then there exists some positive ε′ such that

Pr[D(S1) ≥ ε/2] ≤ Pr[D(Sc) ≥ ε′] (22)

and likewise, there exists some positive ε′′ such that

Pr[D(Sc) ≥ ε/2] ≤ Pr[D(Se) ≥ ε′′] (23)

Finally, we know from theorem 1 that for all ε, Pr[D(S′1) > ε] < (1− ε)m. We can conclude that
there exists some decreasing function a such that

Pr[D(S1) ≥ ε/2] ≤ a(m) (24)

The same arguments holds for S2 and since a is a decreasing function of m, for any value δ we can
choose m large enough.
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Figure 16: Error of AEFM w.r.t. f ′
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Figure 17: Error of AEFM w.r.t. f

1. With respect to f , AEFM is probably approximately correct for non-negative densities
2. With respect to f ′, AEFM has an error lower bound of D(S1) +D(S2)
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