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Abstract
This document contains supplementary material for the paper ”Explicit Disentanglement of Appearance and
Perspective in Generative Models”. The current document contains the following sections: 1. Derivation of
the ELBO for C-VITAE and U-VITAE, 2. Implementation details for the experiments, 3. Experiments on the
robustness of different affine parameterizations, 4. Additional results

1. Derivation of the ELBO for C-VITAE and U-VITAE
We will here focus on deriving the ELBO for the C-VITAE, because as we will see the ELBO for the U-VITAE can easily
be identified from this. For both models it hold that the generative model is given by

p(x) =

∫∫
p(x|zA, zP )p(zA)p(zP )dzAdzP .

We know assume that the inference of appearance now becomes dependent on the perspective factors zP i.e.

p(zP |x) ≈ qP (zP |x) and p(zA|x) ≈ qA(zA|x, zP ).

as in the C-VITAE model. The log-posterior is then given by:

log p(x) = log

(∫∫
p(x|zA, zP )p(zA)p(zP )dzAdzP

)
= log

(∫∫
p(x|zA, zP )p(zA)p(zP )

qA(zA|zP ,x)
qA(zA|zP ,x)

qP (zP |x)
qP (zP |x)

dzAdzP

)
= log

(∫
EqA(zA|zP ,x)

[
p(x|zP , zA)p(zA)
qA(zA|zP ,x)

]
p(zP )

qP (zP |x)
qP (zP |x)

dzP

)
= logEqP (zP |x)

[
EqA(zA|zP ,x)

[
p(x|zP , zA)p(zA)
qA(zA|zP ,x)

]
p(zP )

qP (zP |x)

]

By using Jensen’s inequality once to exchange the outer expectation with the log gives us

log p(x) ≥ EqP (zP |x)

[
log

(
EqA(zA|zP ,x)

[
p(x|zP , zA)p(zA)
qA(zA|zP ,x)

])
+ log

(
p(zP )

qP (zP |x)

)]
= EqP (zP |x)

[
log

(
EqA(zA|zP ,x)

[
p(x|zP , zA)p(zA)
qA(zA|zP ,x)

])]
−DKL(qP (zP |x)||p(zP ))

Then, by using Jensen’s inequality once more to exchange the log and inner expectation we get
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log p(x) ≥ EqP (zP |x)

[
EqA(zA|zP ,x)

[
log p(x|zP , zA) + log

(
p(zA)

qA(zA|zP ,x)

])]
−DKL(qP (zP |x)||p(zP ))

= EqP (zP |x)
[
EqA(zA|zP ,x) [log p(x|zP , zA)]

]︸ ︷︷ ︸
term 1

−EqP (zP |x) [DKL(qA(zA|zP ,x)||p(zA))]︸ ︷︷ ︸
term 2

−DKL(qP (zP |x)||p(zP ))︸ ︷︷ ︸
term 3

Here term 1 is reconstruction term between x and p(x|zA, zP ), is the term 2 is the KL divergence for the appearance space
qA(zA|zP ,x) and its prior p(zA) and term 3 is the KL divergence for the perspective space qP (zP |x) and its prior p(zP ).
Similar to how gradients are calculate in VAE’s, the outer expectation in term 2 is calculated with respect to a single sample,
but can also be computed with respect to multiple samples similar to the work of Burda et al. (2015).

To get the ELBO of the U-VITAE model, we make the the inference of the latent spaces independent of each other i.e.
qA(zA|zP , x) = qA(zA|x). This get rid of the expectation in term 2 and we are left with

log p(x) ≥ EqP (zP |x)
[
EqA(zA|zP ,x) [log p(x|zP , zA)]

]
−DKL(qA(zA|x)||p(zA))−DKL(qP (zP |x)||p(zP )),

which is the ELBO for the U-VITAE model. The intuition behind this equation is that the U-VITAE model is just a standard
VAE, where the latent space z has been split into two smaller latent spaces zP , zA, thus this is reflected in ELBO where the
KL-term is similar split into two terms.

2. Implementation details for the experiments
Below we describe the network architectures in details. All models were trained using the Adam optimizer (Kingma & Ba,
2014) with fixed learning rate of 10−4. For the MNIST experiments we used a batch size of 512 and trained for a 2000
epochs and for SMLP and CelebA experiments we used a batch size of 256 and trained for 5000 epochs. No early stopping
was used. Similar to Kaae Sønderby et al. (2016), we use annealing/warmup for the KL-divergence by scaling the term(s) by
w = min

(
epoch

warmup , 1
)

, where the warmup parameter was set to half the number of epochs.

Details for MNIST experiments. Pixel values of the images are scaled to the interval [0,1]. Each pixel is assumed to be
Bernoulli distributed. For the encoders and decoders we use multilayer perceptron networks. For the VAE, β-VAE (Higgins
et al., 2017), β-TCVAE (Chen et al., 2018) and DIP-VAE (Kumar et al., 2017), we use the settings listed below. For both
VITAE models, we model both encoders and both decoders with approximately half the neurons, for a fair comparison. In
practice we found that the encoders/decoders of the appearance factors benefits from having a bit higher capacity than the
encoders/decoders of the perspective factors.

Layer 1 Layer 2 Layer 3
µencoder 128, (LeakyReLU) 64, (LeakyReLU) d, (Linear)
σ2
encoder 128, (LeakyReLU) 64, (LeakyReLU) d, (softplus)
µdecoder 64, (LeakyReLU) 64, (LeakyReLU) D, (Sigmoid)

Table 1. Model architecture for the MNIST experiments.

Here D = 784 and d = 4 for VAE based models and d = 2 for VITAE based models. The numbers corresponds to the
size of the layer and the parenthesis is the used activation function. For the LeakyRelu activation function we use hyper
parameter α = 0.1. We only parametrize a mean function in the decoder because we assume the output pixels are Bernoulli
distributed.

Details for SMPL experiments. Images was generated using the SMPL library1. The parameters for generating the body
shape was drawn from a N (0, 1.252) distribution. The parameters that controls the body pose was uniformly sampled from
one out of 4 pre-specified pose configurations, see Table 2.

The resolution of each image was scaled down to (400, 200). Each pixel is assumed to be Normal distributed. For the VAE

1http://smpl.is.tue.mpg.de/

http://smpl.is.tue.mpg.de/
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Pose 1 Pose 2 Pose 3 Pose 4
Left shoulder −π/8 −π/16 π/16 π/8
Right shoulder π/8 π/16 −π/16 −π/8
Left arm −π/3.5 −π/3.5 π/3.5 π/3.5
Right arm π/3.5 π/3.5 −π/3.5 −π/3.5

Table 2. When generating synthetic bodies, we uniformly sample one of the above settings for the pose.

based models, we use the settings listed below. For the VITAE models we used approximately half the neurons for the
encoders/decoders.

Layer 1 Layer 2 Layer 3
µencoder 256, (LeakyReLU) 128, (LeakyReLU) d, (Linear)
σ2
encoder 256, (LeakyReLU) 128, (LeakyReLU) d, (softplus)
µdecoder 128, (LeakyReLU) 256, (LeakyReLU) D, (Linear)

Table 3. Model architecture for the SMPL experiments.

Here D = 80.000 and d = 4 for VAE based models and d = 2 for VITAE based models. The numbers corresponds to
the size of the layer and the parenthesis is the used activation function. For the LeakyRelu activation function we use
hyper parameter α = 0.1. We only parametrize a mean in the decoder because the variance function is in general very
hard to train and completely arbitrarily outside the latent manifold (Arvanitidis et al., 2017). It was therefore fixed for all
pixels in all images to σ2

decoder = 0.1. For the CPAB transformations (Freifeld et al., 2015) we ran the experiments with
tessellation parameters [2, 4] with zero boundary constrains and no volume preservation constrains. With these settings, we
are generating perspective transformations of size 30 i.e. dim(θ) = 30.

Details for CelebA experiments. We use the align and cropped version of the dataset, downloaded from the homepage2.
Each image was then down sampled to size 128× 128, to decrease computational time. Each pixel is assumed to be Normal
distributed. For this task we use a convolutional-VAE. Below is listed the configuration of the network:

Layer 1 Layer 2 Layer 3 Layer 4
µencoder Conv(10, 5, 2, LeakyReLU) Conv(20, 5, 2, LeakyReLU) Conv(40, 3, 2, LeakyReLU) Dense(2, Linear)
σ2
encoder Conv(10, 5, 2, LeakyReLU) Conv(20, 5, 2, LeakyReLU) Conv(40, 3, 2, LeakyReLU) Dense(2, Softplus)
µdecoder DeConv(40, 3, 2, LeakyReLU) DeConv(20, 3, 2, LeakyReLU) DeConv(10, 5, 2, LeakyReLU) DeConv(3, 5, 2, Sigmoid)

Table 4. Model architecture for the CelebA experiments. Conv denotes a convolutional layer and DeConv denotes de-/transposed
convolutional layers. The parameters are respective number of filters, filter size, stride and activation function.

For the CPAB transformation (Freifeld et al., 2015) we ran the experiments with tessellation parameters [4, 4] with
zero boundary constrains and no volume preservation constrains. With these settings, we are generating perspective
transformations of size 62.

Computational requirements. Even though VITAE has a more complicated architecture than VAE (comparing Fig. (3a)
vs. (3c) in main paper) both forward and backward passes in the models have roughly the same complexity when we use
affine transformations (see Table 5). Using the more complex CPAB transformations adds some penalty to the computational
time.

3. Stability results
In the main paper we discuss multiple ways to parameterize an affine transformation. If we choose Tγ with a diffiomorphic
parameterization, we have found that this also has positive positive optimization properties. Fig. 1 shows the ELBO as a
function of the learning rate λ for the three different choices of affine parametrization discussed in the main paper, using our
C-VITAE architecture. We clearly see that the diffeomorphic affine parametrization archives a tighter bound, and can run for
much higher learning rates (faster convergence) before the network begins to diverge. These findings are similar to those of
Detlefsen et al. (2018) in the supervised context.

2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Forward Backward
VAE & β-VAE 0.0016s 0.014s
β-TCVAE 0.0020s 0.016s
DIP-VAE-II 0.0025s 0.018s

C-VITAE Affine 0.0092s 0.037s
CPAB 0.1s 0.86s

Table 5. Forward and backwards timings for the different architectures. The experiments was conducted with an Intel Xeon E5-2620v4
CPU and Nvidia GTX TITAN X GPU.

10-4 10-3 10-2 10-1 100

Learning rate

-170

-160

-150

-140

E
LB

O

Affine
AffineDecomp
AffineDiffio

0 1 2 3 4 5 6
Iteration 104

-400

-300

-200

-100

E
LB

O

Affine
AffineDecomp
AffineDiffio

Figure 1. Top: Stability towards choice of learning rate for three different parametrizations of affine transformations. Missing values
indicates that the network diverged. Bottom: Learning curves also show that the diffiomorphic affine parametrization converges faster and
is more stable in its training.

These experiments was conducted on the MNIST dataset. For all three experiments we use the C-VITAE architecture
with a neural network structure as Table 1. A batch size of 512 was used. The results where generated by changing the
parametrization of the affine spatial transformer between

Affine Tγ(x) =
[
γ11 γ12 γ13
γ21 γ22 γ14

]xy
1

 (1)

AffineDecomp Tγ(x) =
[
cos(α) − sin(α)
sin(α) cos(α)

] [
1 m
0 1

] [
sx 0
0 sy

]
+

[
tx
ty

]
(2)

AffineDiffio Tγ(x) = expm

γ11 γ12 γ13
γ21 γ22 γ14
0 0 0

xy
1

 (3)

and by varying the learning rate λ = {10−4, 10−3, 10−2, 10−1}. The lower subplot of Figure 4, was generated using a
learning rate of λ = 10−4 to make sure that all transformer types would converge.

4. Additional results
4.1. MNIST experiments

In Fig. 2 reconstructions from the different models can be seen. In Fig. 3 generated sampler from the different models can
be seen. In Fig. 4 latent manipulations can be seen.
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(a) VAE (b) β-VAE

(c) β-TCVAE (d) DIP-VAE-II

(e) C-VITAE

Figure 2. Samples from the test set (top rows) and the corresponding reconstructions (bottom rows) for all models. We clearly observe
that the additional weight on the KL term in β-VAE, β-TCVAE and DIP-VAE-II makes the reconstructions worse.

(a) VAE (b) β-VAE (c) β-TCVAE

(d) DIP-VAE-II (e) C-VITAE

Figure 3. Samples from the prior distribution.
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(a) VAE

(b) β-VAE

(c) β-TCVAE

(d) DIP-VAE-II

(e) C-VITAE

Figure 4. Latent manipulation. The images were generated by varying one latent dimension, while keeping the rest fixed. We choose the
latent variable that qualitatively gave the best results.

5. SMPL experiment
In Fig. 5 reconstructions from the different models can be seen. In Fig. 6 generated sampler from the different models can
be seen. In Fig. 4 latent manipulations can be seen.
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(a) VAE (b) β-VAE

(c) β-TCVAE (d) DIP-VAE-II

(e) C-VITAE

Figure 5. Test set reconstructions on SMPL dataset.
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(a) VAE (b) β-VAE

(c) β-TCVAE (d) DIP-VAE-II

(e) C-VITAE

Figure 6. Samples from the prior distribution.
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Figure 7. Disentanglement of body shape and body pose on SMPL-generated bodies for all models. The images are generated by varying
one latent dimension, while keeping the rest fixed. For the C-VITAE model we have shown this for both the appearance and perspective
spaces, since this is the only model where we quantitatively observe disentanglement.
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