
Supplementary Material for: Globally optimal score-based learn-502

ing of directed acyclic graphs in high-dimensions503

Appendix A contains some background and preliminary material that is important for the proof. We504

then use Appendix B to outline the main ideas and postpone detailed proofs of the various technical505

results to Appendices C-D. The reader interested in skipping directly to the proofs of the main506

theorems can find them in Appendices B.5 (Theorem 3.1) and B.6 (Theorem 4.1).507

A Preliminaries508

We begin by reviewing the connection between the equivalence class D(⌃), Cholesky factors of509

⌃, and permutations. This material is essential and forms the basis for our proof technique. We510

then give some details on the regularizers used, and conclude with some important definitions on511

neighbourhood regression problems and introduce the concept of a model selection exponent.512

A.1 Permutations513

Denote the class of permutations on p elements by Sp. For each ⇡ 2 Sp, define the associated514

permutation operator P⇡ on matrices: For any matrix A, P⇡A is the matrix obtained by permuting515

the rows and columns of A according to ⇡, so that (P⇡A)ij = a⇡(i)⇡(j).516

Cholesky representation Fix ⇡ 2 Sp. Write � := ⌃�1 and use the (modified) Cholesky decom-517

position to write P⇡� = (I � L)D�1(I � L)T where L is strictly lower triangular and D 2 Rp
+.518

Define eB(⇡) := P⇡�1L and e⌦(⇡) := P⇡�1D. The following result is well-known, but is restated519

here for completeness:520

Lemma A.1. For any ⌃ � 0, the equivalence class of ⌃ (cf. (4)) is D(⌃) = { eB(⇡) : ⇡ 2 Sp}.521

Thus we can always write an arbitrary element of D(⌃) as eB(⇡). The permutation ⇡ represents a522

valid topological sort for eB(⇡). The columns of eB(⇡) will be denoted by e�j(⇡), and the jth diagonal523

element of e⌦(⇡) will be denoted by e!2
j (⇡). It follows from these definitions and (2) that524

Xj = e�j(⇡)TX + e"j(⇡), where e"j(⇡) ⇠ N (0, e!2
j (⇡)), (15)

for j = 1, . . . , p. Note that supp(e�j(⇡)) ⇢ Sj(⇡) for all j = 1, . . . , p, where525

Sj(⇡) := {k : ⇡�1(k) > ⇡�1(j)} (16)

consists of the nodes Xk that come after Xj under the ordering X⇡(i) � X⇡(i+1) for i = 1, . . . , p�1.526

Minimum-trace permutations In Section 2.1, we defined the notion of a minimum-trace DAG527

eBmin. By Lemma A.1, we know that eBmin = eB(⇡) for some ⇡ 2 Sp, where ⇡ is not necessarily528

unique. This motivates the following definition:529

Definition A.1. The set of minimum-trace permutations is defined to be530

⇧0 := argmin
⇡ 2 Sp

tr e⌦(⇡). (17)

Given ⇡0 2 ⇧0, ⇡0 is called a minimum-trace permutation and the corresponding DAG eB(⇡0) is531

called a minimum-trace DAG. This definition does not require that eBmin is unique, and allows for the532

possibility that eB(⇡1) 6= eB(⇡2) for ⇡1,⇡2 2 ⇧0.533

Estimated permutations Recall that D is the space of p ⇥ p real matrices that represent DAGs534

when interpreted as weighted adjacency matrices. For each ⇡ 2 Sp, define535

D[⇡] = {B 2 D : P⇡B is lower triangular}. (18)

A DAG B = [�1 | · · · |�p ] 2 D is in D[⇡] if and only if supp(�j) ⇢ Sj(⇡) for all j = 1, . . . , p. In536

other words, for each node Xj , the permutation ⇡ defines a unique set of candidate parents given537
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by (16), and B 2 D[⇡] if and only if the parent set of �j comes from Sj(⇡) for all j. By definition,538

eB(⇡) 2 D[⇡] for every ⇡ and hence supp(e�j(⇡)) ⇢ Sj(⇡) for all j.539

Recall the estimator bB defined via (1). The following definition formalizes the collection of permuta-540

tions that are topological sorts for bB:541

Definition A.2. The collection of estimated permutations is542

b⇧ = {⇡ 2 Sp : bB 2 D[⇡]}.

An arbitrary element of b⇧will be denoted by b⇡. An equivalent definition of b⇧ is the set of permutations543

⇡ such that P⇡ bB is lower triangular.544

A.2 Regularizers545

We study both the `1 and MCP regularizers as given by Condition 2.1. Here we summarize some546

properties of these regularizers for later use.547

Lemma A.2. Suppose ⇢� is either `1 or MCP. Then ⇢� satisfies the following conditions:548

(a) ⇢� is concave and nondecreasing;549

(b) ⇢�(0) = 0;550

(c) There are constants ⇢
0
, ⇢

1
� 0, independent of �, such that ⇢�(x) � min{⇢

1
�x, ⇢

0
�2}.551

Lemma A.3. Suppose ⇢� is either `1 or MCP. Then ⇢� is additionally right-differentiable at zero552

and satisfies 0 < ⇢0�(0+) < 1.553

An elementary consequence of Lemma A.1 is that ⇢� is subadditive. Lemma A.1(c) says that ⇢� can554

be bounded below by a capped-`1 penalty: It is always true that a concave, nondecreasing function555

can be bounded below by a capped-`1 penalty, and Lemma A.1(c) simply normalizes this capped-`1556

penalty in terms of �.557

For completeness, we summarize below both regularizers under consideration along with the constants558

involved in the previous lemmas.559

– The minimax concave penalty (MCP) proposed by Zhang [72]:560

⇢�(x; �) := �
⇣
x� x2

2��

⌘
1(x < ��) +

�2�

2
1(x � ��). (19)

The MCP has ⇢0�(0+) = �, ⇢
1
= 1/2, and ⇢

0
= �/2.561

– The `1 penalty, ⇢�(x) = �x, has ⇢0�(0+) = �, ⇢
1
= 1, and ⇢

0
2 [0,1).562

Finally, since several of the results proved in this supplement do not require the incoherence condition563

⇣(G) < 1, we will also make use of the following weaker version of Condition 2.1:564

Condition A.1 (Regularizer). The regularizer ⇢� is chosen to be `1 or the MCP.565

A.3 Neighbourhood regression566

The core of our analysis is the regression decomposition (15) which we interpret as a neighbourhood567

regression problem and is used to learn the parent set of a node and hence the DAG structure. In this568

section we formalize these notions and introduce the concept of a model selection exponent, which569

quantifies the difficulty of a neighbourhood regression problem.570

A.3.1 Penalized least-squares estimators571

We are interested in the population SEM coefficients given by the following:572

Definition A.3. For any S ⇢ [p]j , let573

�j(S) := argmin
� 2Rp, supp(�)⇢S

E
⇥
Xj � �TX

⇤2
.
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We call �j(S) the SEM coefficients for Xj and denote the support set of �j(S) by mj(S) :=574

supp(�j(S)).575

Note that �j(S) = ⌃�1
SS⌃Sj . Every positive definite matrix ⌃ defines a collection of p2p�1 SEM576

coefficients given by {�j(S) : S ⇢ [p]j , j 2 [p]}. We will be interested in estimating �j(S) via577

penalized least-squares (PLS):578

Definition A.4. Suppose y 2 Rn and Z 2 Rn⇥m. Let S ⇢ [m] and consider the set defined by579

b⇥�(y, Z;S) := argmin
✓2Rm, supp(✓)⇢S

1

2n
ky � Z✓k22 + ⇢�(✓), (20)

i.e., the set of global minimizers of the support-restricted PLS problem above. Let b⇥�(y, Z) :=580

b⇥�(y, Z; [m]) correspond to the case where there is no support restriction.581

The support-restricted PLS problem b⇥�(y, Z;S) allows us to properly define a neighbourhood582

regression problem. Let xj denote the jth column of X.583

Definition A.5 (Neighbourhood regression). The neighbourhood regression problem for node Xj584

given a neighbourhood S ⇢ [p]j is defined to be the (possibly nonconvex) program given by585

b⇥�(xj ,X;S). An arbitrary solution to this program will be denoted by b�j(S), i.e. b�j(S) 2586

b⇥�(xj ,X;S).587

Learning bB reduces to controlling b⇥�(xj ,X;S) for specific choices of S for each j (Lemma B.1).588

Thus, in the sequel, we no longer need to consider individual permutations, and instead will restrict589

our attention to subsets S, called candidate sets.590

A.3.2 Model selection exponents591

Given some n⇥m matrix Z and m-vector ✓⇤, define a set of “bad” noise vectors as follows:592

A(Z, ✓⇤;S) :=
�
w 2 Rn : supp(b✓) 6= supp(✓⇤) (21)

for some b✓ 2 b⇥�(Z✓⇤ + w,Z;S)
 
.

For a random vector w 2 Rn (e.g. w ⇠ Nn(0,�2In)), we then have the following model selection593

failure event:594

A(w, Z, ✓⇤;S) :=
�
w 2 A(Z, ✓⇤;S)

 
. (22)

As usual we use the shorthand A(w, Z, ✓⇤) = A(w, Z, ✓⇤; [m]).595

Definition A.6. Given a regularizer ⇢�, the model selection exponent for the regression problem596

y = Z✓⇤ +w is defined to be597

��(Z, ✓
⇤,�2) := � logP

⇥
A(w, Z, ✓⇤)

⇤
,

where P is taken with respect to the distribution of w ⇠ Nn(0,�2In).598

A larger exponent corresponds to better model selection performance. Let �2
max :=599

max1jp var(Xj) and note that �2
max  rmax(⌃). Define600

 � =  �(X) := inf
0<��max

inf
k✓k0  d(⌃)
⌧⇤(✓) � ⌧⇤(⌃)

��(X, ✓, �2). (23)

This quantity measures “how difficult” the model selection problems defined by the fixed matrix X601

are, and encodes what is usually proved in the regression literature: An upper bound on the probability602

of model selection failure given the maximum sparsity level d, minimum signal strength ⌧⇤, and603

the maximum variance �2
max. This probability generally depends on the regularization parameter �,604

which in turn may depend on any of these quantities.605
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A.3.3 Example model selection exponents606

To illustrate, let us derive a model selection exponent for the MCP, defined in (19). Huang et al. [27]607

consider PLS estimators b⇥�(y, Z;S) as defined in (20), applied to the data from a linear regression608

model y = Z✓⇤ +w, and provides conditions for model selection consistency. Adapting their result609

to our setup and notation, we have the following bound on model selection exponent for the MCP:610

Lemma A.4. Suppose X
iid⇠ Np(0,⌃). Take ⇢� = ⇢�( · ; �) as in (19) and assume ⌃ is positive611

definite with bounded eigenvalues. Assume that612

1. d(⌃)  4 ·min{p, n, n/ log p},613

2. ⌧⇤(⌃) > (1 + �)� for some � > 5 > 0.614

Then for any � � 6 ·
p

(d+ 1) log p/n, it follows that Ee� �(X,⌃)  3 exp (�2min{d log p, n}).615

Here, j = j(⌃) (j = 4, 5, 6) are constants depending only on {rmin(⌃), rmax(⌃)}.616

This lemma is a straightforward consequence of Theorem 4.2 in [27] and Proposition 2 in [73].617

Briefly, [27] show that the least-squares MCP estimator correctly recovers the support of a linear618

model as long as the so-called sparse Riesz condition holds. We then use [73] to bound the probability619

that X satisfies this condition. For the special case �j(S) = 0 (which is not covered by [27]) we can620

invoke Proposition D.4.621

In a similar manner, analogous bounds can be derived for other regularizers using existing results, see622

e.g. [27, 36, 66]. For example, using Corollary 1(a) in [36], a similar bound for `1-regularization can623

be derived under the additional assumption that ⇣(G) < 1 as long as n & d log p.624

B Outline of proofs625

We seek control over the following event:626

B := {supp( bB) 6= supp( eB(b⇡)) 9 b⇡ 2 b⇧}. (24)

We will do this by reducing the analysis of bB to a family of neighbourhood regression problems.627

There are two key steps: (i) Showing that bB is equivalent to solving a series of p random regression628

problems given by b⇥�(xj ,X;Sj(b⇡)) (cf. Definition A.5), and (ii) Controlling the neighbourhood629

problems b⇥�(xj ,X;Sj(b⇡)) for all b⇡ 2 b⇧.630

The second step (ii) highlights the main technical difference between Theorems 3.1 and 4.1:631

• To prove Theorem 3.1, we first prove a uniform concentration result for the score Q(B), and632

use this to show that b⇧ ⇢ ⇧0. That is, any estimated permutation must be a minimum-trace633

permutation. As a result, the random permutations b⇡ 2 b⇧ are confined to live in a small set,634

which makes controlling the neighbourhood problems simpler. As a result we are able to635

bound P(supp( bB) 6= supp( eB(b⇡)) directly, which implies bounds on the desired quantities636

with b⇡ replaced by a minimum-trace permutation ⇡0.637

• To prove Theorem 4.1, we no longer assume we can restrict to a superstructure, and hence638

uniform score concentration (i.e. over the full space D) is no longer readily viable. As a639

result, we must obtain uniform control over the neighbourhood problems b⇥�(xj ,X;S) for640

all S and j. The challenge is that there are superexponentially many regression problems, so641

a naïve union bound over this family would yield overly pessimistic bounds on the order642

p/n. To deal with this, we will exploit a lattice property of these problems.643

The proofs of Theorem 3.1 and 4.1 will be broken down into several steps. First, we establish644

some basic properties of the objective function and the probability space in order to reduce the645

neighbourhood regression analysis to a family of maximal sets denoted by Mj(S) (Definition B.2).646

Then we introduce the lattice property (Lemmas B.2 and B.3) that is central to our proofs, and exploit647

this to provide a uniform bound on the probability of false selection for any neighbourhood problem648

(Proposition B.5).649
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B.1 Reduction to neighbourhood regression650

Recall that the jth column of bB is denoted by b�j and denote the sample version of e"j(⇡) by boldface,651

i.e. e"j(⇡) := xj �Xe�j(⇡). The first step above is justified by the following result. The symbol ??652

is used here to denote independence of random variables.653

Lemma B.1. Suppose X
iid⇠ Np(0,⌃) and � � 0. Then the following statements are true:654

(a) For any j 2 [p] and ⇡ 2 Sp, e"j(⇡) ?? XSj(⇡).655

(b) bB is a global minimizer of Q(B) if and only if b�j 2 b⇥�(xj ,X;Sj(b⇡)) for each j 2 [p] and656

b⇡ 2 b⇧.657

The proof of this lemma, which is a simple consequence of how the least-squares loss and the658

regularizer factor, is found in Appendix C.3. This allows us to formally establish the equivalence659

between the DAG problem and neighbourhood regression: In order to construct bB, it suffices to660

solve a neighbourhood regression problem for each column of bB, given by b⇥�(xj ,X;Sj(b⇡)). A661

key observation is that through the independence established in Lemma B.1(a) and a conditioning662

argument, we can reduce the regression problem given by b⇥�(xj ,X;Sj(b⇡)) to a fixed design problem.663

The details are outlined in the proof of Proposition B.5.664

B.2 Invariant sets and monotonicity665

As a consequence of Lemma B.1, we have (cf. (24))666

B ⇢ {supp(b�j(S)) 6= supp(�j(S)) 9 j 2 [p], S ⇢ [p]j}. (25)

In order to further reduce the total number of estimators we must control, we will introduce the notion667

of an invariant set. First, recall the definition of �j(S) (cf. Definition A.3) and for any j 2 [p] and668

S ⇢ [d]j define the error (or noise) for the associated neighbourhood regression as the following669

residual:670

"j(S) := Xj � �j(S)
TX.

The support set of �j(S) is denoted by mj(S) := supp(�j(S)) and the error variance by !2
j (S) :=671

var("j(S)).672

Definition B.1. For any S ⇢ [p]j , define a collection of subsets by673

Tj(S) := {T ⇢ [p]j : �j(T ) = �j(S)} = {T ⇢ [p]j : mj(T ) = mj(S)},

where �j(S) and mj(S) are defined in Definition A.3. If T 2 Tj(S), we call T an invariant set of S674

for j, or S-invariant for short.675

In other words, for any j, Tj(S) is the collection of candidate sets T ⇢ [p]j such that the projection676

of Xj onto {Xi, i 2 T} is invariant. With some abuse of terminology, let us refer to mj(T ) =677

supp(�j(T )) as the support of neighbourhood T (for node j). An equivalent description of Tj(S) is678

the set of neighbourhoods T whose support (for node j) is the same and equals mj(S).679

The following lemma illustrates a crucial property of invariant sets:680

Lemma B.2. T1, T2 2 Tj(S) =) T1 [ T2 2 Tj(S).681

This justifies the following definition:682

Definition B.2. The unique largest element of Tj(S) shall be denoted by Mj(S). Formally,683

Mj(S) :=
[

Tj(S) =
[

{T ⇢ [p]j : �j(T ) = �j(S)}.

The name “S-invariant set” comes from the fact that for any T 2 Tj(S), we have the following useful684

identities:685

�j(mj(S)) = �j(S) = �j(T ) = �j(Mj(S)), (26)
"j(mj(S)) = "j(S) = "j(T ) = "j(Mj(S)). (27)
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The reason for introducing invariant sets is that it is generally sufficient to study the neighbourhood686

problem for Mj(S) in the sense that once we have model selection consistency for each estimator687

in b⇥�(xj ,X;Mj(S)), the same is guaranteed for estimators based on every other neighbourhood688

in Tj(S). In fact, we have the following result, which says that model selection properties of the689

S-restricted estimators are monotone with respect to those sets S that contain the true support.690

Lemma B.3. Suppose that Z 2 Rn⇥m is fixed and consider the regression problem y = Z✓⇤ +w691

for some ✓⇤ 2 Rm. If supp(✓⇤) ⇢ S ⇢ U , then we have the following inclusion: A(Z, ✓⇤;S) ⇢692

A(Z, ✓⇤;U). In particular, A(w, Z, ✓⇤;S) ⇢ A(w, Z, ✓⇤;U) where A(Z, ✓⇤;S) and A(w, Z, ✓⇤;S)693

are defined in (21)–(22).694

We are interested in the model selection failure of b�j(S) for �j(S), which can be stated as695
n
supp(b�j(S)) 6= supp(�j(S))

for some b�j(S) 2 b⇥�(xj ,X;S)
o
= A(e"j(S),X,�j(S);S) (28)

in the notation introduced in (22).696

Corollary B.4. Suppose X
iid⇠ Np(0,⌃). For any S ⇢ [p]j , we have697

A
⇣
e"j(S),X,�j(S);S

⌘
⇢ A

⇣
e"j(Mj(S)),X,�j(Mj(S));Mj(S)

⌘
.

Lemma B.4 is a deterministic statement about the events defined in (28), and proves that in order to698

control the neighbourhood regression problem for some set S ⇢ [p]j , it suffices to control the strictly699

harder problem given by Mj(S).700

B.3 A bound on false selection701

For any ⌃ � 0 and fixed node Xj , define the following collections of subsets:702

mj(⌃) := {mj(S) : S ⇢ [p]j}, (29)
Mj(⌃) := {Mj(S) : S ⇢ [p]j}. (30)

Note that |mj(⌃)| = |Mj(⌃)|. As long as it is clear whether the argument is a set S or a matrix ⌃,703

this should not cause any confusion with mj(S) and Mj(S).704

For any neighbourhood S ⇢ [p]j , recall that the associated error variance is given by !2
j (S) =705

var("j(S)). With some more abuse of notation, let706

�j(S) := ��(XS , (�j(S))S , !
2
j (S)). (31)

Note that we must restrict the SEM coefficients �j(S) to the subset S in order for this exponent to be707

well-defined. Since supp(�j(S)) ⇢ S, this does not change anything. The following general result708

gives a uniform upper bound on the probability of false selection for any neighbourhood problem in709

terms of the maximal sets Mj(T ).710

Proposition B.5. Fix j 2 [p] and ⌃ � 0. Then we have711

P
�
supp(b�j(S)) 6= supp(�j(S)), 9S ⇢ [p]j

�


X

T2mj(⌃)

Ee��j(Mj(T )),

where mj(⌃) is defined by (29) and �j( · ) is defined by (31).712

The proof of this result can be found in Appendix C.7. The following result—which is proved in the713

course of proving Proposition B.5—will also be useful when proving Theorem 3.1:714

Corollary B.6. Fix j 2 [p], S ⇢ [p]j and ⌃ � 0. Then we have715

P
�
supp(b�j(T )) 6= supp(�j(T )), 9T 2 Tj(S)

�
 Ee��j(Mj(S)),

where �j( · ) is defined by (31).716

Proposition B.5 says that to control the probability of false selection uniformly for all 2p�1 neigh-717

bourhoods S of the node j, it suffices to control a much smaller class of problems given by the718

neighbhourhoods Mj(T ) for each support set T 2 mj(⌃).719
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B.4 Uniform support recovery720

The following result is a key ingredient in the proofs of both Theorem 3.1 and 4.1. It establishes an721

upper bound on the probability of false selection, uniform over all S and j.722

Theorem B.1. Suppose X
iid⇠ Np(0,⌃) with ⌃ � 0. Then723

P
�
supp(b�j(S)) = supp(�j(S)), 8 j 2 [p], S ⇢ [p]j

�
� 1� p

✓
p

d

◆
Ee� �(X,⌃).

Proof. For any T 2 mj(⌃), Lemma B.3 applied with S = Mj(T ) and U = [p] yields724

�j(Mj(T )) � ��(X, �j(T ), !
2
j (T )).

Recalling d(⌃) and ⌧⇤(⌃) in Definition 4.1, we have k�j(T )k0  d(⌃) and ⌧⇤(�j(T )) � ⌧⇤(⌃), as725

well as !2
j (T )  �2

max. The previous expression combined with (23) implies:726

�j(Mj(T )) �  �(X,⌃) for all T 2 Mj(⌃). (32)

Combining Proposition B.5, (32) and a union bound over j 2 [p],727

P
�
supp(b�j(S)) 6= supp(�j(S)), 9 j 2 [p], S ⇢ [p]j

�


pX

j=1

X

T2mj(⌃)

E exp(��j(Mj(T ))

 p

✓
p

d

◆
E exp(� �(X,⌃)), (33)

since there are at most
�p
d

�
subsets in mj(⌃).728

B.5 Proof of Theorem 3.1729

Define `(B) = kX�XBk2F /(2n). There are two terms that we need to control: (i) The fluctuations730

|`(B) � E`(B)| and (ii) The population loss E`( bB). The fluctuations (i) are controlled by the731

following proposition, which is proved in Appendix C.8, and may be of independent interest due to732

its uniform control of an unbounded, subexponential empirical process:733

Proposition B.7. Let `(B) = kX �XBk2F /(2n) and let �1(G) and �2(G) be defined by (8) and734

(9). Assume �1  1. Then there is a constant (⌃; s), depending only on ⌃ and s, such that735

|`(B)� E`(B)|  �1
⇥
1 + 6(⌃; s)�2

⇤
E`(B) for all B 2 DG (34)

with probability at least 1� ↵, where736

↵ := 2p�1
⇣9�1p

s

⌘�s
+
⇣ep
2s

⌘�s
. (35)

For (ii), we have the following lemma:737

Lemma B.8. For any ⇡ 2 Sp, we have738

E`(B) � E`( eB(⇡)) = tr e⌦(⇡) for all B 2 Dp[⇡], (36)

where equality holds if and only if B = eB(⇡).739

Lemma B.8 implies, in particular, that E`( bB) � E`( eB(b⇡)).740

By Condition 3.1(a), we have eB(⇡0) = eBmin and e⌦(⇡0) = e⌦min for all ⇡0 2 ⇧0. For any two741

permutations ⇡0,⇡ 2 Sp and ⌘ > 0, define a function742

h(⇡0,⇡; ⌘) = (1� ⌘) tr e⌦(⇡0)� (1 + ⌘) tr e⌦(⇡)� ⇢�( eB(⇡)). (37)
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so that we have, recalling (7),743

�(⌘) := inf
⇡0 /2⇧0

sup
⇡2⇧0

h(⇡0,⇡; ⌘).

Recall that s is the maximum degree of G and define ↵ = 2p�1(9�1p/s)�s + (2p/s)�s. Since744

�1  1 (and hence n & s log p), Proposition B.7 and Lemma B.8 together imply that for any ⇡ 2 ⇧0745

and b⇡ 2 b⇧, we have with probability 1� ↵746

(1� �3)E`( eB(b⇡)) + ⇢�( bB)  `( bB) + ⇢�( bB)

 `( eB(⇡)) + ⇢�( eB(⇡))

 (1 + �3)E`( eB(⇡)) + ⇢�( eB(⇡))

where �3 := �1[1+6(⌃; s)�2]. Observing that E`( eB(⇡)) = tr e⌦(⇡), we thus have h(b⇡,⇡; �3)  0,747

where h is given by (37).748

We now show that b⇧ ⇢ ⇧0. Indeed, suppose b⇡ /2 ⇧0 for some b⇡ 2 b⇧. Then by Condition 3.1(b),749

�(�3) = �(⌘) > 0, whence750

sup
⇡2⇧0

h(b⇡,⇡; �3) � inf
⇡0 /2⇧0

sup
⇡2⇧0

h(⇡0,⇡; �3) = �(�3) > 0,

which contradicts h(b⇡,⇡; �3)  0. Thus b⇧ ⇢ ⇧0.751

By Lemma B.1(b) it suffices to show that752

P
�
supp(b�j(Sj(b⇡))) 6= supp(�j(Sj(b⇡))) 9 j 2 [p]

�
= O(e�k log p). (38)

Since the minimum-trace DAG is unique, for any ⇡,⇡0 2 ⇧0, it follows that mj(Sj(⇡)) =753

supp(e�min,j) = mj(Sj(⇡0)) and hence Mj(Sj(⇡)) = Mj(Sj(⇡0)). Using b⇧ ⇢ ⇧0, we have754

P
�
supp(b�j(Sj(b⇡))) 6= supp(�j(Sj(b⇡))) 9 j 2 [p]

�

 P
�
supp(b�j(Sj(⇡0)) 6= supp(�j(Sj(⇡0))) 9 j 2 [p], 9⇡0 2 ⇧0

�

= P
�
supp(b�j(Sj(⇡0)) 6= supp(e�min,j) 9 j 2 [p], 9⇡0 2 ⇧0

�


pX

j=1

Ee��j(Mj(supp(e�min,j))),

where we used Corollary B.6 in the last line. Finally, apply known bounds (see Appendix A.3.3) to755

deduce �j(Mj(supp(e�min,j))) & k log p whenever n & k log p, which is implied since k  s and756

we have assumed already that n & s log p. (If `1-regularization is used, this is where we also need to757

assume ⇣(G) < 1 in Condition 2.1.) This implies the desired results with probability758

1� 2p�1
⇣9�1p

s

⌘�s
�
⇣2p
s

⌘�s
�O(e�k log p) = 1�O(e�k log p),

where we used k  s to simplify the probability bound. This completes the proof.759

B.6 Proof of Theorem 4.1760

The support recovery claim follows immediately from (25), Theorem B.1, and known bounds on761

the support recovery properties of penalized regression (see Section A.3.3 for discussion). Thus it762

remains to control ⇢�( bB) and ⇢�( eB(b⇡)) by ⇢�( eB(⇡0)).763

The first step is the following lemma, which is a version of the standard basic inequality adapted to764

the current setting:765

20



Lemma B.9. Let E(⇡) := X�X eB(⇡). For any ⇡ 2 Sp and b⇡ 2 b⇧,766

1

2n
kX( eB(b⇡)� bB)k2F + ⇢�( bB)  1

2n
kE(⇡)k2F � 1

2n
kE(b⇡)k2F

+
1

n
tr
⇣
E(b⇡)TX( eB(b⇡)� bB)

⌘

+ ⇢�( eB(⇡)).

(39)

The proof of Lemma B.9 can be found in Appendix C.10. Lemma B.9 helps to reduce the analysis to767

three terms:768

(B.9a) The difference in residuals kE(⇡)k2F /(2n) � kE(b⇡)k2F /(2n) explains the origin of the769

minimum-trace permutation: We would like to make kE(⇡)k2F /(2n) as small as possible770

in order to minimize this difference. By standard concentration arguments, kE(⇡)k2F /n771

is close to its expectation, tr e⌦(⇡). Hence, we choose ⇡ to minimize tr e⌦(⇡). The details772

of this argument are in Appendix D.3; the explicit upper bound we use is detailed in773

Proposition D.8.774

(B.9b) The quantity tr(E(b⇡)TX( eB(b⇡)� bB))/n can be bounded using the Gaussian width condition775

(Definition D.1). There is a subtlety regarding whether to decompose this along rows or776

columns; see Lemma D.6.777

(B.9c) The penalty on bB can be replaced with ⇢�( eB(b⇡)) by showing that ⇢�( bB) & ⇢�( eB(b⇡))778

(Lemma D.7).779

Once we have establish control of these three terms (the details of which are found in Appendix D),780

we can prove the following bound in terms of the constants � (cf. Definition D.1) and a2 (cf.781

Condition 4.1):782

Proposition B.10. Assume n > 8 (d+ 1) log p. Under Condition A.1 on ⇢�, further assume783

⌧⇤(D(⌃)) � ⌧�
⇣2(1 + �)

1� 3�

⌘
for some � 2 (0, 1/3).

Let eBmin = eB(⇡0) be a minimum-trace DAG satisfying Condition 4.1. Then784

2�

1� �
⇢�( eB(b⇡))

(i)
 ⇢�( bB)

(ii)
 2

1� �

⇣
1 +

10

a2

⌘
⇢�( eB(⇡0)), (40)

with probability at least 1� c1e�c2 min{n, (d+1) log p} � p
�p
d

�
Ee� �(X,�2

max;�).785

The proof of Proposition B.10 follows from a series of standard concentration arguments (Ap-786

pendix D), and can be found in Appendix D.4.787

Finally, the desired bounds on ⇢�( bB) and ⇢�( eB(b⇡)) follow from Proposition B.10 by taking � =788

(a1 � 2)/(3a1 + 2) 2 (0, 1/3), and using Proposition D.3 to complete the probability bound.789

C Proofs of technical results790

C.1 Proof of Lemma 2.1791

Consider the following program:792

min
pX

j=1

x2
j subject to

pX

j=1

log x2
j = C. (41)

The solution to this program is given by x2
j = eC/p for all j = 1, . . . , p. In other words, the minimum793

is attained by a constant vector. It is straightforward to verify that log det e⌦(⇡) = log det⌃ and794

hence log det e⌦(⇡) =
P

j log e!2
j (⇡) is constant for all ⇡ 2 Sp. Thus for any ⇡ 2 Sp, the vector795

(e!2
1(⇡), . . . , e!2

p(⇡)) 2 Rp is feasible for (41), which implies that tr e⌦(⇡) is minimized whenever796

e!2
1(⇡) = · · · = e!2

p(⇡). Finally, uniqueness of eB(⇡0) follows from Theorem 1 in Peters and Bühlmann797

[47].798
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C.2 Proof of Lemma A.1799

We need the following simple lemma, which follows since P⇡A = PAPT for some permutation800

matrix P :801

Lemma C.1. A = MNMT () P⇡A = (P⇡M)(P⇡N)(P⇡M)T .802

Recall the modified Cholesky decomposition of A (also called the LDLT decomposition): A = LDLT803

for a lower triangular matrix L, with unit diagonal entries, and a diagonal matrix D. When A is804

positive definite, the pair (L,D) is unique and we refer to it as the Cholesky decomposition of A.805

Let us denote the set of all pairs ( eB, e⌦) satisfying ⌃�1 = (I� eB)e⌦�1(I� eBT ) (equivalently, (3)) as806

D0. Next, note that eB 2 D if and only if P⇡ eB is lower triangular for some permutation ⇡. Lemma C.1807

implies that ( eB, e⌦) 2 D0 iff (I � P⇡ eB,P⇡e⌦�1) is a Cholesky decomposition of P⇡⌃�1 for some ⇡.808

Now, (I�P⇡ eB(⇡), P⇡e⌦(⇡)�1) is also a Cholesky decomposition of P⇡⌃�1. Since the Cholesky de-809

composition is unique for positive definite matrices, we have ( eB, e⌦) 2 D0 iff ( eB, e⌦) = ( eB(⇡), e⌦(⇡))810

for some ⇡, which gives the desired result, since D(⌃) is the projection of D0 onto its first coordinate.811

C.3 Proof of Lemma B.1812

The first conclusion (a) follows from elementary properties of conditional expectation and the identity813

E(Xj |XSj(⇡)) =
e�j(⇡)TX.

To prove (b), fix b⇡ 2 b⇧ and let Sj = Sj(b⇡). If b�j 2 b⇥�(xj ,X;Sj) for each j, then evidently814

bB = [ b�1 | · · · | b�p ] minimizes Q(B) over D[b⇡] (cf. (18)). For the reverse direction, recall that815

XSj is the n ⇥ |Sj | matrix formed by extracting the columns in Sj , and similarly for (�j)Sj . For816

any B 2 D[⇡] we have (�j)Sc
j
= 0 for each j, so we can write fix b⇡ 2 b⇧ and let Sj = Sj(b⇡). If817

b�j 2 b⇥�(xj ,X;Sj) for each j, then evidently bB = [ b�1 | · · · | b�p ] minimizes Q(B) over D[b⇡]. For818

the reverse direction, recall that XSj is the n⇥ |Sj | matrix formed by extracting the columns in Sj ,819

and similarly for (�j)Sj . For any B 2 D[⇡] we have (�j)Sc
j
= 0 for each j, so we can write820

1

2n
kX�XBk2F + ⇢�(B) =

pX

j=1

n 1

2n
kxj �X�jk22 + ⇢�(�j)

o

=
pX

j=1

n 1

2n
kxj �XSj (�j)Sjk22 + ⇢�((�j)Sj )

o
.

Then bB 2 minD[⇡] Q(B) if and only if821

b�j 2 argmin
�

1

2n
kxj �X�k22 + ⇢�(�) subject to �Sc

j
= 0.

In other words, b�j 2 b⇥�(xj ,X;Sj) for each j. Since b⇡ 2 b⇧ was arbitrary, the desired claim follows.822

C.4 Proof of Lemma B.2823

The proof relies on the following property of L2 projections: For any two sets S,R ⇢ [p]j , we have824

�j(S [R) = �j(S) () "j(S) ?? Xi, 8i 2 R. (42)

To lighten the notation, let S⇤ = mj(S). Note that �j(S) = �j(S⇤) since supp(�j(S)) = S⇤. It825

follows from (42) that "j(S⇤) ?? Xi for i 2 S \ S⇤. Similarly, since supp(�j(Tk)) = S⇤, we have826

"j(S⇤) ?? Xi for i 2 Tk \ S⇤ and k = 1, 2. It follows that827

"j(S
⇤) ?? Xi, 8i 2 (T1 \ S⇤) [ (T2 \ S⇤)

hence the application of (42) in the reverse direction yields828

�j(T1 [ T2) = �j
�
S⇤ [ (T1 \ S⇤) [ (T2 \ S⇤)

�
= �j(S

⇤) = �j(S).

22



C.5 Proof of Lemma B.3829

It suffices to show
A(Z, ✓⇤;U)c ⇢ A(Z, ✓⇤;S)c.

Suppose w 2 A(Z, ✓⇤;U)c, i.e., supp(e✓) = supp(✓⇤) := S⇤ for any e✓ 2 b⇥�(Z✓⇤ + w,Z;U). We830

wish to show that for any b✓ 2 b⇥�(Z✓⇤ + w,Z;S), it must also be true that supp(b✓) = S⇤. Let831

F (✓) =
1

2n
kZ(✓⇤ � ✓) + wk22 + ⇢�(✓)

denote the objective function in Definition A.4 of b⇥�(y, Z;S) with y = Z✓⇤ + w. Since supp(b✓) ⇢832

S ⇢ U , b✓ is feasible for the U -restricted problem, whence833

F (e✓)  F (b✓)

for any e✓ 2 b⇥�(Z✓⇤ +w,Z;U). But e✓ is also feasible for the S-restricted problem since supp(e✓) =834

S⇤ ⇢ S, so that835

F (e✓) � F (b✓) =) F (e✓) = F (b✓).

Since the value F (e✓) is by definition the global minimum of F for the U -restricted problem and836

supp(b✓) ⇢ U , b✓ must be a global minimizer of F for the U -restricted problem, i.e., b✓ 2 b⇥�(Z✓⇤ +837

w,Z;U), whence supp(b✓) = S⇤ as desired.838

C.6 Proof of Corollary B.4839

By Lemma B.3 and the fact that S ⇢ Mj(S), we have840

A
⇣
e"j(S),X,�j(S);S

⌘
⇢ A

⇣
e"j(S),X,�j(S);Mj(S)

⌘
. (43)

Using (26) and (27), we have the following identity:841

A
⇣
e"j(S),X,�j(S);Mj(S)

⌘
= A

⇣
e"j(Mj(S)),X,�j(Mj(S));Mj(S)

⌘
.

Plugging this into (43) yields the desired result.842

C.7 Proof of Proposition B.5843

Throughout, for simplicity, let844

AS := A(e"j(S),X,�j(S);S).

Fix S ⇢ [p]j and let ✓⇤ = �j(S), s⇤ = |mj(S)| = k✓⇤k0 and "⇤ = e"j(S) so that AS =845

A("⇤,X, ✓⇤;S). Note that A("⇤,X, ✓⇤;S) represents the following model selection failure:846

supp(b✓) 6= supp(✓⇤) 9 b✓ 2 b⇥�(X✓⇤ + "⇤,X;S).

Since supp(✓⇤) ⇢ S, we can restrict X and ✓⇤ to S, so that the above is equivalent to847

supp(b✓) 6= supp(✓⇤S) 9 b✓ 2 b⇥�(XS✓
⇤
S + "⇤,XS).

which is the same event as A("⇤,XS , ✓⇤S). To summarize, AS = A("⇤,XS , ✓⇤S).848

Since "⇤ is independent of XS by Lemma B.1(a), by conditioning on XS we are dealing with a fixed849

design regression problem with Gaussian noise "⇤ = e"j(S) ⇠ Nn(0,!2
j (S)In). We obtain850

P(AS) = E
h
P
�
A("⇤,XS , ✓

⇤
S)
� �� XS

�i

 E exp[���(XS , ✓
⇤
S ,!

2
j (S))]

= E exp(��j(S)),

(44)
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where the last line uses (31). Now we have851

�
supp(b�j(T )) 6= supp(�j(T )), 9T 2 Tj(S)

 
=

[

T2Tj(S)

AT = AMj(S), (45)

where the first equality is by (28) and the second follows from Corollary B.4. Note that this is the key852

step where the reduction occurs. Hence, combining (45) with (44) we have853

P
� [

S⇢[p]j

AS

�
= P

� [

S⇢[p]j

AMj(S)

�

= P
⇣ [

T2mj(⌃)

AMj(T )

⌘


X

T2mj(⌃)

P(AMj(T )) 
X

T2mj(⌃)

E exp(��j(Mj(T ))),

which is the desired probability bound.854

C.8 Proof of Proposition B.7855

We work with the column decomposition of the loss856

`j(�) :=
1

n
kX(ej � �)k22,

E`j(�) =
1

2
(ej � �)T⌃(ej � �),

where ej 2 Rp is the jth standard basis vector. The overall loss can be written as857

`(B) =
nX

j=1

`j(�j)

where �j is the jth column of B. Let us also define so that858

J(�) =
1

n
kX�k22, and, EJ(�) := �T⌃�

so that `j(�) = 1
2J(ej � �) and E`j(�) = 1

2EJ(ej � �). It is easier to work with J . Let XT
i be the859

ith row of X. Then, J(�) = 1
2n

Pn
i=1(X

T
i �)

2.860

Let K = DG and Kj denote the set of �j for B 2 K. Define861

B�j
0 (s) = {x 2 Rp : kxk  s, xj = 0}. (46)

Note that �j 2 B�j
0 (s) for every B 2 DG and in particular e�j(⇡) 2 B�j

0 (s) if eB(⇡) 2 DG. Finally,862

define863

(⌃; s) :=
k⌃k(2s+2)

r(s+1)
min (⌃)

(47)

where864

k⌃k(s) := max
S:|S|=s

k⌃Sk, (48)

r(s)min(⌃) := inf
S:|S|=s

rmin(⌃S). (49)

Proof of Proposition B.7. For any � 2 Kj , we have865

kej � �k2 = 1 + k�k2. (50)

For any t  1, applying Lemma C.5 we have that on the event B2s (defined in (53))866

|`j(�)� E`j(�)|  t J(�) + 3�2 (1 + k�k22) " k⌃k(2s) for all � 2 Kj (51)
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fails with probability at most 2
� 3ep

s"

�s
e�cnt2 . A further union bound over j = 1, . . . , p gives that867

|`j(�)� E`j(�)|  t J(�) + 3�2 (1 + k�k22) " k⌃k(2s),
for all � 2 Kj and all j 2 [p]

(52)

fails with probability at most868

2p
⇣3ep
s"

⌘s
e�cnt2 + P(Bc

2s)  2p
⇣3ep
s"

⌘s
e�cnt2 +

⇣ep
2s

⌘�c12s
=: T1 + T2,

where we invoked Lemma C.4 to bound P(Bc
2s). Take t = " and let N = p1/s3ep/s so that the first869

term in the bound is870

T1 := 2
⇣N
"

⌘s
e�cn"2 .

Take "871

"2 =
2

c

s

n
logN  1

which gives the following bound,872

T1  2
�
"N
��s

= 2p�1
�
�1

3ep

s

��s
.

where we note that with our choices, we have t = " = �1 as defined in (8).873

Note that for any � 2 Kj , (1 + k�k2) r(s+1)
min (⌃)  2`j(�), which implies 1 + k�k2 874

2`j(�)/r
(s+1)
min (⌃). Plugging this upper bound into (52) and summing over j gives (34), where875

(⌃; s) is defined by (47). The proof is complete.876

Below we prove the various technical lemmas required in the previous proof.877

Lemma C.2. We have878

P
⇣
|J(�)� EJ(�)| � t · J(�)

⌘
 2 exp

h
� 1

8 n ·min(t2, t)
i
, t � 0.

Proof. Note that XT
i �/

p
EJ(�) ⇠ N(0, 1) iid for each i = 1, . . . , n. Then,879

J(�)

EJ(�) =
1

n

nX

i=1

⇣ XT
i �p

EJ(�)

⌘2
⇠ �2

n

and the claim follows from �2 concentration.880

Let B2s be the following event:881

B2s :=
n
gn,s(")  "

p
�2k⌃k1/2(2s), 8" > 0

o
. (53)

where882

gn,s(") = sup
kuk2.", kuk0.s

1p
n
kXuk2, and (54)

k⌃k(s) := max
S:|S|=s

k⌃Sk. (55)

Lemma C.3. For any c1 > 0, with probability at least 1� (ep/s)�c1se�u2/2,883

gn,s(")  "k⌃k1/2(s)

⇣
1 + C

r
s log(ep/s)

n
+

up
n

⌘
, 8" > 0.

where C =
p
2(c1 + 1) + 1.884
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Proof. Note that gn,s(") = " gn,s(1) which is obtained by the change of variable u ! "u. We have885

gn,s(1) = max
S:|S|=s

sup
kuk21

1p
n
kXSuk2.

Let WS = XS⌃
�1/2
S so that WS ⇠ N(0, Is). Then886

P
�
kWSk >

p
s+

p
n+ t

�
 exp(�t2/2).

We also have kXSuk2 = k⌃1/2
S WSuk2 = k⌃1/2

S kkWSkkuk2. Thus,887

gn,s(1)  max
S:|S|=s

k⌃1/2
S k · max

S:|S|=s

1p
n
kWSk

and hence888

P
✓

max
S:|S|=s

1p
n
kWSk >

r
s

n
+ 1 +

tp
n

◆

✓
p

s

◆
exp(�t2/2)

Taking t =
p
2(c1 + 1)s log(ep/s) + u, the above probability is bounded by889

✓
p

s

◆
e�t2/2  (ep/s)s(ep/s)�(c1+1)se�u2/2 = (ep/s)�c1se�u2/2

Letting C =
p
2(c1 + 1) + 1 and noting that kA1/2k = kAk1/2, the result follows.890

Lemma C.4. Let B2s be defined as in (53). Then P(Bc
2s)  (ep/(2s))�c12s.891

Proof. Apply Lemma C.3 with s replaced with 2s and u = 0, and note that892

2s log(ep/(2s)) = 2s[log(ep/s)� log 2]  2s log(ep/s),

we observe that B2s fails with probability at most (ep/(2s))�c12s.893

Define the Lq balls894

Bq(r) := {x 2 Rp : kxkq  r}.

Lemma C.5. For any t  1: On the event B2s,895

|J(�)� EJ(�)|  t J(�) + 3�2 k�k22 " k⌃k(2s), for all � 2 B0(s) (56)

fails with probability at most 2
� 3ep

s"

�s
e�cnt2 .896

Proof. Write (56) in the form g(�)  0 and observe that g is homogeneous of order two: g(r�) =897

r2g(�) for any r 2 R and � 2 Rp. Thus, it is enough to establish the bound for � 2 B2(1). The898

general case is then obtained by applying the bound to �/k�k2.899

Let Nj ✓ B0(s) \ B2(1) be an "-net for B0(s) \ B2(1) in `2 norm. Then, |Nj | 
�p
s

�
(3/")s. For900

any �,�0 2 B0(s) \ B2(1), using901

��kxk2 � kyk2
�� 

��kxk � kyk
��(kxk+ kyk)  kx� ykkx+ yk

we have on event B2s,902

��J(�)� J(�0)
�� =

���
1

n
kX�k22 �

1

n
kX�0k22

���

 1

n
kX(� � �0)k2 · kX(� + �0)k2

 gn,2s(k� � �0k2) · gn,2s(k� + �0k2)

 p
�2k⌃k1/2(2s)k� � �0k2 ·

p
�2k⌃k1/2(2s)k� + �0k2

 2�2k⌃k(2s)k� � �0k2,
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where we have used k�+�0k2  k�k+ k�0k  2. A similar bound holds for the expectation EJ(�),903

i.e.904

��EJj(�)� EJj(�0)
�� =

���k⌃1/2�k22 � k⌃1/2�0k22
���

 k⌃1/2(� � �0)k2 · k⌃1/2(� + �0)k2
 k⌃k1/2(2s)k� � �0k2 · k⌃k1/2(2s)k� + �0k2
 2k⌃k(2s)k� � �0k2.

It follows that for any f(·), with � = 2(�2 + 1),905

sup
� 2B0(s)\B2(1)

�
|J(�)� EJ(�)|� f(�)

�

 �k⌃k(2s) "+ sup
� 2Nj

(|J(�)� EJ(�)|� f(�)) .
(57)

We now have, for any t � 0,906

P
⇣n

sup
� 2B0(s)\B2(1)

h
|J(�)� EJ(�)|� tEJ(�)

i
� �k⌃k(2s)"

o
\ B2s

⌘

 P
⇣n

sup
� 2Nj

h
|J(�)� EJ(�)|� tEJ(�)

i
� 0
o
\ B2s

⌘

 2|Nj | exp
h
�c n ·min(t2, t)

i
.

Noting that |Nj | 
� ep

s

�s� 3
"

�s and �  3�2 completes the proof.907

C.9 Proof of Lemma B.8908

We will need the following lemma, whose proof is a straightforward calculation:909

Lemma C.6. Let D be a diagonal matrix and A = (aij) = (I � L)(I � L)T where L is a strictly910

lower triangular matrix. Then tr(AD) � tr(D) with equality if and only if A = I (i.e. L = 0).911

We now prove Lemma B.8. Write P for the permutation matrix corresponding to ⇡. Now suppose912

that B 2 Dp[⇡], so that PBPT = L and P eB(⇡)PT = eL are strictly lower triangular matrices. Then913

E
⇥
`(B)

⇤
= 1

2 tr
⇥
(I � eB(⇡))�1(I �B)(I �B)T (I � eB(⇡))�T e⌦(⇡)

⇤

= 1
2 tr

⇥
P (I � eB(⇡))�1(I �B)(I �B)T (I � eB(⇡))�T e⌦(⇡)PT

⇤

= 1
2 tr

⇥
(I � eL)�1(I � L)(I � L)T (I � eL)�TP e⌦(⇡)PT

⇤
.

Note that (I� eL)�1(I�L) is lower triangular, so that (I� eL)�1(I�L)(I�L)T (I� eL)�T := A is914

of the form A = (I �L)(I �L)T for some strictly lower triangular matrix L. In particular, restricted915

to Dp[⇡], E
⇥
`(B)

⇤
is of the form tr(AD) for the diagonal matrix D := P e⌦(⇡)PT . Inequality (36)916

then follows from Lemma C.6.917

Finally, if there is equality in (36), then Lemma C.6 implies that (I � eL)�1(I � L)(I � L)T (I �918

eL)�T = I , or919

(I � L)(I � L)T = (I � eL)T (I � eL),

and the desired claim follows from the uniqueness of the Cholesky decomposition.920

C.10 Proof of Lemma B.9921

Observe that for any ⇡ 2 Sp,922

Q( bB)  Q( eB(⇡)). (58)
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Moreover, we have the following alternative expression for Q:923

Q(B) =
1

2n
kX( eB(b⇡)�B) +E(b⇡)k2F + ⇢�(B), for any b⇡ 2 b⇧. (59)

Thus, using (58) and (59),924

0  Q( eB(⇡))�Q( bB)

=
1

2n
kE(⇡)k2F � 1

2n
kX( eB(b⇡)� bB)�E(b⇡)k2F + ⇢�( eB(⇡))� ⇢�( bB)

=
1

2n
kE(⇡)k2F � 1

2n
kE(b⇡)k2F � 1

2n
kX( eB(b⇡)� bB)k2F

+
1

n
tr
⇣
E(b⇡)TX( eB(b⇡)� bB)

⌘
+ ⇢�( eB(⇡))� ⇢�( bB).

Since (58) holds for any ⇡, this completes the proof.925

D Auxiliary results926

This section provides some additional results which are needed to prove Proposition B.10. This927

involves several steps: 1) Bounding the estimation error k bB� eB(b⇡)kr (Section D.1), 2) Controlling the928

terms (B.9b) and (B.9c) (Section D.2), and 3) Controlling (B.9a), which invokes the minimum-trace929

permutations ⇧0 (Section D.3). After dealing with these prerequisites, we prove Proposition B.10 in930

Appendix D.4.931

For any � 2 (0, 1), � � 0, �0 > 0, and ⇡ 2 Sp, define the following event:932

G(�0,�;⇡) =
(

1

2n
kE(⇡)k2F � 1

2n
kE(b⇡)k2F  �0⇢�( eB(⇡))

)
. (60)

The idea is to show that on this event (along with (74) and (75)), the desired conclusions hold. In933

Appendix D.3, we provide an explicit bound on the probability of G(�0,�;⇡).934

D.1 Uniform deviation bounds935

The purpose of this section is to control the estimation error k bB� eB(b⇡)kr via Proposition D.2, which936

is needed in the proof of Lemma D.7. This lemma—which is also proved in this Appendix—is a key937

prerequisite in the proof of Proposition B.10.938

We start by establishing a general bound on the `r (r = 1, 2) estimation errors for a fixed design939

regression problem with a general regularizer ⇢�. The objective here is to derive conditions under940

which we can guarantee such bounds for a fixed design problem, and then show that these conditions941

hold uniformly for all neighbourhood problems. The conditions we will need are familiar from the942

literature: A Gaussian width condition and a restricted eigenvalue condition.943

For the rest of this subsection, we let Z 2 Rn⇥m and w 2 Rn be a fixed matrix and fixed vector,944

respectively.945

Definition D.1 (Gaussian width). We say that the Gaussian width (GW) condition holds for (w,Z)946

relative to ⇢� if there is a numerical constant � 2 (0, 1) such that947

1

n
|hw,Zui|  �


1

2n
kZuk22 + ⇢�(u)

�
, 8u 2 Rm,

in which case we write (w,Z) 2 GW⇢�(�). If this inequality is strict for all u 6= 0, we write948

(w,Z) 2 GW�
⇢�(�).949

We will be interested in the case where both w and Z are allowed to be random but independent.950

In this setting, for Gaussian designs considered in this paper, the GW condition holds with high951

probability for the `1 penalty (this follows from a standard Hölder inequality argument), and has952
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similarly been shown to hold for penalties induced by `q norms for 0  q  1 [49]. Zhang and Zhang953

[74] provide a version of this condition that applies to general nonconvex regularizers.954

Before we proceed, let us note the following key relation between model selection consistency and955

the GW condition:956

Lemma D.1. Consider the setup of Lemma B.3, namely, the regression problem y = Z✓⇤ +w but957

with ✓⇤ = 0. Then958

A(w/�, Z, 0)c =
�
(w, Z) 2 GW�

⇢�(�)
 
.

Proof. If (w, Z) 2 GW�
⇢�(�), then for any u 6= 0,959

�

2n
kZuk22 �

1

n
wTZu+ �⇢�(u) > 0

() 1

2n
kw/� � Zuk22 + ⇢�(u) >

1

2n
kw/�k22.

The latter inequality implies960

{0} = argmin
u

kw/� � Zuk22/(2n) + ⇢�(u),

that is, 0 is the unique global minimizer of the right hand side. Recalling the definition of961

A
�
w/�, Z, 0

�
in (22), we obtain the desired result.962

Thus, in order to ensure the GW condition for (w, ZS), it suffices to show that the corresponding963

regression problem is model selection consistent when the true coefficients are all set to zero and the964

noise variance is inflated by a factor of 1/�2. [74] refer to this property as null-consistency.965

For any set A ⇢ [m] and ⇠ > 0, define the following “cone”:966

C⇢�(A, ⇠) := {u 2 Rm : ⇢�(uAc)  ⇠⇢�(uA)}. (61)

This definition also depends on the ambient dimension m; when we wish to emphasize this we will967

write Cm
⇢�(A, ⇠). The term “cone” here is used in an extended sense, in analogy with the `1 cone968

found in previous work.969

Definition D.2 (Generalized restricted eigenvalue). The generalized restricted eigenvalue (RE)970

constant of Z with respect to ⇢� over a subset A is971

�2⇢�(Z,A; ⇠) := inf

⇢
kZuk22
nkuk22

: u 2 C⇢�(A, ⇠), u 6= 0

�
. (62)

In the sequel, we often suppress the dependence of the generalized RE constants on � and ⇠, writing972

�2⇢(Z,A) = �2⇢�(Z,A; ⇠). Note that the usual restricted eigenvalue is equivalent to the special case973

⇢� = �k · k1 [3].974

Consider the usual linear regression set up, y = Z✓⇤ + w, where ✓⇤ 2 Rm and we define S⇤ =975

supp(✓⇤). The following general result establishes that the two conditions (w,Z) 2 GW⇢(�) and976

�2⇢(Z, S
⇤) > 0 are sufficient to bound the deviation b✓ � ✓⇤:977

Theorem D.1. Assume (w,Z) 2 GW⇢�(�) for some ⇢� satisfying Condition A.1 and � 2 (0, 1). Let978

⇠ = ⇠(�) := (1 + �)/(1� �) and assume �2 := �2⇢(Z, S
⇤; ⇠) > 0. Then any b✓ 2 b⇥�(Z✓⇤ + w,Z)979

satisfies980

kb✓ � ✓⇤k2  C2(⇢�, ⇠,�) · k✓⇤k1/20 , (63)

kb✓ � ✓⇤k1  C1(⇢�, ⇠,�) · k✓⇤k0. (64)

Remark D.1. The constants in the previous theorem are given by981

C2(⇢�, ⇠,�) =
2 ⇠

�2
�, C1(⇢�, ⇠,�) =

2 ⇠(1 + ⇠)

�2
�.
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Proof. Recall that S⇤ := supp(✓⇤). To lighten notation, for any vector u let u1 := uS⇤ , u2 := u(S⇤)c ,982

and also� := b✓� ✓⇤. Then invoking the subadditivity of ⇢� (this is a consequence of Condition A.1),983

⇢�(b✓)� ⇢�(✓
⇤) = ⇢�(�+ ✓⇤)� ⇢�(✓

⇤)

= ⇢�(�1 + ✓⇤1) + ⇢�(�2)� ⇢�(✓
⇤
1)

� �⇢�(�1) + ⇢�(�2). (65)

It is straightforward to derive984

1

2n
ky � Zb✓k22 �

1

2n
ky � Z✓⇤k22 =

1

2n
kZ�k2 � 1

n
hw,Z�i. (66)

Since (w,Z) 2 GW⇢�(�), we can invoke the GW condition with u = �,985

� 1

n
hw,Z�i � � 1

n
|hw,Z�i| � �� 1

2n
kZ�k2 � �⇢�(�). (67)

It follows that986

0 � 1

2n
ky � Zb✓k22 �

1

2n
ky � Z✓⇤k22 + ⇢�(b✓)� ⇢�(✓

⇤)

� 1

2n
kZ�k2 � 1

n
hw,Z�i � ⇢�(�1) + ⇢�(�2)

� 1� �

2n
kZ�k2 � �⇢�(�)� ⇢�(�1) + ⇢�(�2)

=
1� �

2n
kZ�k2 � (1 + �)⇢�(�1) + (1� �)⇢�(�2)

= (1� �)
h 1

2n
kZ�k2 + ⇢�(�2)� ⇠⇢�(�1)

i
, (68)

where the first inequality by optimality of b✓, the second by (66), and the third by (67). The next987

line follows from an an application of ⇢�(�) = ⇢�(�1) + ⇢�(�2). Since � < 1 by assumption, it988

follows that ⇢�(�2)  ⇠⇢�(�1) which implies � 2 C⇢(S⇤, ⇠(�)).989

Recalling the definition (62) of �2⇢(Z, S⇤), we conclude that 1
2nkZ�k22 � �2

2 k�k22 which combined990

with (68), dropping ⇢�(�2), gives991

0 � �2

2
k�k22 � ⇠⇢�(�1).

Combining with the following (note k�1k0  k✓⇤k0),992

⇢�(�1)  ⇢0�(0+)k�1k1  ⇢0�(0+)k✓⇤k1/20 k�k2 (69)

and re-arranging proves (63). For (64), since � 2 C⇢(S⇤, ⇠(�)), we construct a set M ⇢ [p] with993

|M | = |S⇤| = k✓⇤k0 such that � 2 C1(M, ⇠(�)). Then994

k�k1 = k�Mk1 + k�Mck1  (1 + ⇠)k�Mk1
 (1 + ⇠)k✓⇤k1/20 k�Mk2

 2 ⇠(1 + ⇠)

�2
· ⇢0�(0+)k✓⇤k0.

The GW condition is quantified by the constant � 2 (0, 1), and the restricted eigenvalue condition995

depends on the free parameter ⇠ > 0; these two are linked via the relation ⇠(�) = (1 + �)/(1� �)996

and play subtle roles in the proof. A slightly modified version of this result first appeared in Zhang997

and Zhang [74], under different assumptions. The particular version presented here is important to998

derive uniform bounds for all permutations, which we discuss next.999

In analogy with (23), define the following model selection exponent:1000

 �(X,�2
max; �) := inf

0��max

��(X, 0, �2/�2). (70)
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We often suppress the dependence on � and write  �(X,�2
max). Note that, in view of Lemma D.1,1001

 �(X,�2
max) describes the conditional probability, given X, that (�w,X) violates a GW condition,1002

where w ⇠ Nn(0, In) is independent of X. More precisely,1003

sup
0��max

P
⇥
(�w,X) /2 GW�

⇢�(�)
�� X
⇤
= sup

0��max

exp[���(X, 0, �2/�2)]

= exp[� �(X,�2
max)].

We also recall the relation1004

⇠ = ⇠(�) =
1 + �

1� �
. (71)

Proposition D.2. Assume that ⌃ � 0 and ⇢� satisfies Condition A.1. Suppose X
iid⇠ Np(0,⌃),1005

� 2 (0, 1), and define ⇠ by (71). Then there exist constants c0, c1, c2 > 0 such that the following1006

holds: If1007

n > c0
�2
max(1 + ⇠)2

rmin(⌃)
d log p,

then with probability at least 1� c1 exp(�c2n)� p
�p
d

�
E exp(� �(X,�2

max; �)),1008

kb�j(S)� �j(S)k2  C2(⇢�, ⇠, rmin(⌃)) · k�j(S)k1/20 , (72)

kb�j(S)� �j(S)k1  C1(⇢�, ⇠, rmin(⌃)) · k�j(S)k0, (73)

uniformly over all j 2 [p] and S ⇢ [p]j .1009

For future reference, inspection of the proof shows that the conclusion of Proposition D.2 holds on1010

E(�,�) \R(�), where1011

E(�,�) =
n�
e"j(S),XS

�
2 GW�

⇢�(�), 8j 2 [p], S ⇢ [p]j
o
, (74)

R(�) =
n
�2⇢(XS ,mj(S)) � rmin(⌃) > 0, 8j 2 [p], S ⇢ [p]j

o
. (75)

For regularizers that satisfy the lower bound in Condition A.1(c) we have the following control on1012

the exponent  �(X,�2
max):1013

Proposition D.3. Assume that X iid⇠ Np(0,⌃), and that ⇢� satisfies Condition A.1(c). Then there1014

exist constants c > 0 and C = C(⇢
1
, ⇢

0
) such that for any � 2 (0, 1), if1015

� � C��1�maxk⌃k1/4
r

(d+ 1) log p

n
(76)

then E exp(� �(X,�2
max; �))  c exp(�min{2(d+ 1) log p, n}).1016

The proof of Proposition D.3 follows from an argument similar to that in [74] and is omitted for1017

brevity. In order to prove Proposition D.2, we need the following two intermediate results, providing1018

uniform control on RE constants and GW conditions. Recall E(�,�) as defined in (74).1019

Proposition D.4 (Uniform GW control). For any � 2 (0, 1) and � > 0,1020

P[E(�,�)] � 1� p

✓
p

d

◆
E exp

⇥
� �(X,�2

max; �)
⇤
.

Proof. Fix � 2 (0, 1). By analogy with (31), for any neighbourhood S ⇢ [p]j , let1021

⇠j(S) := ��(XS , 0, !
2
j (S)/�

2) �  �(X,�2
max; �), (77)

where the inequality follows from (70) and !2
j (S)  �2

max. We follow the proof of Proposition B.5,1022

but with �j(S) replaced with 0, and e"j(S) replaced with e"j(S)/�. To simplify, let E = E(�,�),1023

Fj
S :=

n�
e"j(S),XS

�
2 GW�

⇢�(�)
o
,
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and note that E =
Tp

j=1

T
S⇢[p]j

(Fj
S)

c. According to Lemma D.1, we have1024

Fj
S = A

�
e"j(S)/�,X, 0;S

�
= A

�
e"j(S)/�,XS , 0

�

where the second equality is by the same argument in the proof of Proposition B.5. Since e"j(S)/� ⇠1025

N
�
0, [!2

j (S)/�
2]In

�
independent of XS , we conclude, using Definition A.6, that1026

P
�
Fj

S | XS

�
= exp[�⇠j(S)],

hence P(Fj
S)  E exp[� �(X,�2

max)], 8S ⇢ [p]j , using the inequality in (77). The events Fj
S are1027

monotonic in S according to Corollary B.4. (The division of "j(S) by � does not change anything in1028

that proof.) It follows that1029

Ec =
p[

j=1

[

S ⇢ [p]j

Fj
S ⇢

p[

j=1

[

T 2mj(⌃)

Fj
Mj(T ).

Taking the union bound, and using |mj(⌃)| 
�p
d

�
and1030

P
⇥
Fj

Mj(T )

⇤
 E exp[� �(X,�2

max)], 8T 2 mj(⌃),

finishes the proof.1031

Proposition D.5 (Uniform RE control). Assume X
iid⇠ Np(0,⌃), ⌃ � 0, and ⇢� satisfies Condi-1032

tion A.1. There exist universal constants c0, c1, c2 > 0, such that if1033

n > c0
�2
max(1 + ⇠)2

rmin(⌃)
d(⌃) log p

then with probability at least 1� c1 exp(�c2n),1034

inf
1jp

inf
S ⇢ [p]j

inf
A⇢S
|A|d

�2⇢(XS , A; ⇠) � rmin(⌃).

The proof of this proposition follows from the results in Raskutti et al. [48] and is omitted. Recalling1035

the definition of R(�) in (75), combined with mj(S) = k�j(S)k0  d (cf. Definition 4.1), Propo-1036

sition D.5 implies that R(�) holds with probability at least 1 � c1 exp(�c2n). Let us show how1037

Proposition D.2 follows.1038

Proof of Proposition D.2. Recall the definitions of E(�,�) in (74) and R(�) in (75). Propositions D.41039

and D.5 guarantee that1040

P
�
R(�) \ E(�,�)

�
� 1� c1 exp(�c2n)� p

✓
p

d

◆
E exp(� �(X,�2

max; �)).

Thus, it suffices to deduce (72) and (73) whenever we are on the event R(�) \ E(�,�). The case1041

�j(S) = 0 follows from Proposition D.4 and Lemma D.1, and the case �j(S) 6= 0 follows from1042

Theorem D.1 applied to the corresponding neighbourhood regression problems.1043

D.2 Some intermediate lemmas1044

Recall the definitions of E(�,�) and R(�) in (74)–(75). We start with the following extension of GW1045

bounds:1046

Lemma D.6. Let b� := bB � eB(b⇡). On E(�,�), we have1047

1

n

����� tr
⇣
E(b⇡)TXb�

⌘����� < �
h 1

2n
kXb�k2F + ⇢�(b�)

i
. (78)

32



Proof. Let b�j := b�j � e�j(b⇡) be the jth column of b�. Then1048

1

n

����� tr
⇣
E(b⇡)TXb�

⌘����� 
1

n

pX

j=1

|he"j(b⇡),Xb�ji|. (79)

According to (74), on E(�,�), we have (e"j(S),XS

�
2 GW�

⇢�(�) for all S ⇢ [p]j . In particular,1049

applying with S = Sj(b⇡) and using u = b�j in the Definition D.1 of GW, we have1050

1

n
|he"j(b⇡),Xb�ji| < �

h 1

2n
kXb�jk22 + ⇢�(b�j)

i
, 8j

Summing over j and plugging into (79) yields (78).1051

For any matrix A = (aij) 2 Rp⇥p and S ⇢ [p] ⇥ [p], let AhSi denote the p ⇥ p matrix formed by1052

zero-ing the elements outside of S, i.e.1053

(AhSi)ij =

⇢
aij , (i, j) 2 S,
0, (i, j) /2 S.

In analogy with Condition 4.1 on signal strength, let us define1054

⌧�(↵;⌃) := inf
n
⌧ :

�2

⇢�(⌧)
 rmin(⌃)

↵

o
(80)

where we often suppress the dependence on ⌃. Note that we can write Condition 4.1 equivalently as1055

⌧⇤ � ⌧�(a1).1056

The next lemma is used to lower bound ⇢�( bB). The `0 case is easy to prove; for completeness we1057

prove this for `1 and MCP.1058

Lemma D.7. Assume that ⇢� satisfies Condition A.1, is right-differentiable with ⇢0�(0+) = �, and1059

⌧⇤ � ⌧�
⇣ 2⇠

1� �1

⌘
, for some �1 2 (0, 1) (81)

where ⇠ = ⇠(�) is defined by (71). Then, on R(�) \ E(�,�),1060

⇢�( bB) � �1⇢�( eB(b⇡)) + ⇢�
⇣
( bB � eB(b⇡))hsupp( eB(b⇡))ci

⌘
. (82)

Proof. To lighten the notation, let � = bB � eB(b⇡), S1 = supp( eB(b⇡)), �1 = �hS1i, and �2 =1061

�hSc
1i. We have1062

⇢�(�1)  �k�1k1  �k eB(b⇡)k1/20 k�1k2. (83)

Since we are on R(�) \ E(�,�), Proposition D.2 yields the `2 deviation bound (72), which we use1063

with S = Sj(b⇡). Plugging into (83) and using k�1k2  k�k2,1064

⇢�(�1)  �C2(⇢�, ⇠, rmin(⌃)) · k eB(b⇡)k0. (84)

Trivially, we have ⇢�( eB(b⇡)) � ⇢�(⌧⇤)k eB(b⇡)k0, so that by (84)1065

⇢�(�1) 
�C2(⇢�, ⇠, rmin(⌃))

⇢�(⌧⇤)
· ⇢�( eB(b⇡))  (1� �1)⇢�( eB(b⇡)), (85)

where the last inequality follows from (81). Finally, note that1066

⇢�( bB) � ⇢�( eB(b⇡)) + ⇢�(�2)� ⇢�(�1)

� �1⇢�( eB(b⇡)) + ⇢�(�2).

where the first inequality is by arguments similar to those leading to (65) and the second is by (85).1067
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Remark D.2. [62] use a slightly weaker beta-min condition in which only a constant fraction of the1068

edges of each DAG are assumed to be sufficiently large. Lemma D.7 and the ensuing arguments carry1069

through under such an assumption: Under Condition 3.5 in [62], we can use1070

⇢�( eB(b⇡)) � (1� ⌘1)⇢�(⌧⇤)k eB(b⇡)k0,

between (84) and (85) and obtain a bound similar to (82), with only the constants modified.1071

The conclusion of Lemma D.7 is stronger than what we need in the sequel. We only use the weaker1072

inequality ⇢�( bB) � �1⇢�( eB(b⇡)) implied by (82).1073

D.3 A bound on the sample residuals1074

In this section, we prove the following result, which is used in the proof of Proposition B.10:1075

Proposition D.8. Assume n > 4(C+1)(d+1) log p for some C > 0 and let ⇡0 be a minimum-trace1076

permutation such that1077

⇢�( eB(⇡0))

tr e⌦(⇡0)
� 1

�0

r
50(C + 1)(d+ 1) log p

n
. (86)

Then for any �0 > 0, P(G(�0,�;⇡0)) � 1� 2e�C(d+1) log p, i.e.1078

P
 

1

2n
kE(⇡0)k2F � 1

2n
kE(b⇡)k2F > �0⇢�( eB(⇡0))

!
 2e�C(d+1) log p.

Define two functions by1079

hn(u) := �u2

n
+

2up
n+ 1

+
1

n+ 1
, Hn(u) :=

u2

n
+

2up
n
. (87)

These functions bound the deviations in the normed residuals e"j(⇡), and will be used repeatedly in1080

the sequel. We note that1081

Hn(u) + hn(u) 
5up
n
, u � n�1/2. (88)

Lemma D.9. Suppose w ⇠ Nn(0,�2In). Then for any 0 < u < n/
p
n+ 1,1082

�2
⇣
1� hn(u)

⌘
 1

n
kwk22  �2

⇣
1 +Hn(u)

⌘
(89)

with probability at least 1� 2e�u2/2.1083

Proof. For z ⇠ Nn(0, In), we have the following useful bounds [see, e.g., 24, Corollary 1.2]:1084

np
n+ 1

 Ekzk2 =
p
2
�(n+1

2 )

�(n2 )


p
n.

Gaussian concentration implies that for any u > 0, both1085

�
kwk2  �(n/

p
n+ 1� u)

 
, and

�
kwk2 � �(

p
n+ u)

 

hold with probability at most e�u2/2. Thus,1086

P
✓
�2
⇣ np

n+ 1
� u
⌘2

 kwk22  �2
�p

n+ u
�2
◆

� 1� 2e�u2/2. (90)

Re-writing (90) using (87) yields the desired result.1087
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Lemma D.10. Suppose X
iid⇠ Np(0,⌃). Then for any ⇡ 2 Sp and 0 < u < n/

p
n+ 1,1088

1

2
tr e⌦(⇡)

⇣
1� hn(u)

⌘
 1

2n
kE(⇡)k2F  1

2
tr e⌦(⇡)

⇣
1 +Hn(u)

⌘
(91)

with probability at least 1� 2p
�p
d

�
e�u2/2.1089

Proof. Note that for any ⇡ 2 Sp,1090

1

2n
kE(⇡)k2F =

1

2n

pX

j=1

ke"j(⇡)k22 =
1

2n

pX

j=1

ke"j(Sj(⇡))k22 . (92)

Thus it suffices to bound the deviations in ke"j(S)k2 for S ⇢ [p]j . Consider the following events1091

Gj(S) :=

⇢
!2
j (S)

2

⇣
1� hn(u)

⌘
 1

2n
ke"j(S)k22 

!2
j (S)

2

⇣
1 +Hn(u)

⌘�

and let G :=
Tp

j=1

T
S⇢[p]j

Gj(S). By Lemma D.9, we have P(Gj(S)) � 1 � 2e�u2/2, for all1092

S 2 [p]j . By a monotonicity argument (cf. (27)), we have G =
Tp

j=1

T
S2mj(⌃)

Gj(Mj(S)).1093

Applying the union bound and using (13),1094

P(Gc)  2p

✓
p

d

◆
e�u2/2. (93)

Summing the inequalities defining Gj(Sj(⇡)), over j, we conclude that (91) holds on G. The proof is1095

complete.1096

Consider the (random) collection of permutations1097

S0p = S0p(�0;u) :=
⇢
⇡ 2 Sp :

1

2
tr e⌦(⇡)

h
1 +Hn(u)

i

�1

2
tr e⌦(b⇡)

h
1� hn(u)

i
 �0⇢�( eB(⇡))

�
.

Lemma D.11. For any ⇡ 2 S0p(�0;u) and 0 < u < n/
p
n+ 1, we have1098

P
✓

1

2n
kE(⇡)k2F � 1

2n
kE(b⇡)k2F > �0⇢�( eB(⇡))

◆
 2p

✓
p

d

◆
e�u2/2.

Proof. Lemma D.10 implies that1099

1

2n
kE(⇡)k2F � 1

2n
kE(b⇡)k2F  1

2
tr e⌦(⇡)

h
1 +Hn(u)

i
� 1

2
tr e⌦(b⇡)

h
1� hn(u)

i

with probability at least 1�2p
�p
d

�
e�u2/2. Since ⇡ 2 S0p, the right-side is bounded above by �0⇢� eB(⇡)1100

by definition, which establishes the claim.1101

Lemma D.12. 1� hn(u) > 0 for all u 6= 0, n > 0.1102

Proof. Since (u+
p
n)2 + 1 > 0, re-writing this inequality yields1103

u2

n
+ 1 >

2up
n
+

1

n
>

2up
n+ 1

+
1

n+ 1

=) 1 +
u2

n
� 2up

n+ 1
� 1

n+ 1
> 0

Comparing with (87) yields the claim.1104
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Proof of Proposition D.8. Lemma D.11 implies that for a choice of1105

u =
p
2(C + 1)(d+ 1) log p, we have1106

P
✓

1

2n
kE(⇡)k2F � 1

2n
kE(b⇡)k2F > �0⇢�( eB(⇡))

◆
 2p

✓
p

d

◆
e�(C+1)(d+1) log p

 2e�C(d+1) log p

for any ⇡ 2 S0p. Thus the claim will follow if we can show that ⇡0 2 S0p. Note that1107

tr e⌦(⇡0)
h
1 +Hn(u)

i
� tr e⌦(b⇡)

h
1� hn(u)

i

(i)
 tr e⌦(⇡0)

h
Hn(u) + hn(u)

i

(ii)
 tr e⌦(⇡0)

r
50(C + 1)(d+ 1) log p

n
(iii)
 �0⇢�( eB(⇡0)),

where (i) follows from tr e⌦(⇡0)  tr e⌦(b⇡) and Lemma D.12, (ii) follows by using (88) with1108

u =
p

2(C + 1)(d+ 1) log p, and (iii) follows from assumption (86). Hence, ⇡0 2 S0p and the proof1109

is complete.1110

D.4 Proof of Proposition B.101111

Proof. Recall the definition of G(�0,�;⇡) in (60). Fix some ⇡0 such that eB(⇡0) := eBmin satisfies1112

Condition 4.1 with a2 > 0. Taking (arbitrarily) C = 1 and �0 = 10/a2 in Proposition D.8, we have1113

P
⇥
G(�0,�;⇡0)c

⇤
 2e�(d+1) log p.

Combined with Propositions D.5 and D.4, we obtain1114

P
�
G(�0,�;⇡0) \ E(�,�) \R(�)

�

� 1� c1 exp(�c2 min{n, (d+ 1) log p})� p

✓
p

d

◆
E exp(� �(X,�2

max; �)).

Thus, we may assume we are on G(�0,�;⇡0) \ E(�,�) \ R(�). Since we are on E(�,�), we can1115

combine Lemma D.6 with Lemma B.9 (applied with ⇡ = ⇡0) to deduce (recall b� := bB � eB(b⇡))1116

1

2n
kXb�k2F + ⇢�( bB)  �

2n
kXb�k2F + �⇢�(b�)

+
1

2n
kE(⇡0)k2F � 1

2n
kE(b⇡)k2F + ⇢�( eB(⇡0)).

Dropping the prediction loss terms (those involving kXb�k2F ), and using that we are on G(�0,�;⇡0)1117

to bound 1
2nkE(⇡0)k2F � 1

2nkE(b⇡)k2F , we have after rearranging,1118

⇢�( bB)  (1 + �0)⇢�( eB(⇡0)) + �⇢�( bB � eB(b⇡)) (94)

 (1 + �0)⇢�( eB(⇡0)) + �⇢�( eB(b⇡)) + �⇢�( bB).

Let �1 = 2�/(1� �), so that ⇠/(1� �1) = (1 + �)/(1� 3�) (cf. (71)). Furthermore, since � < 1/31119

by assumption, �1 < 1, so that Lemma D.7 implies ⇢�( bB) � �1⇢�( eB(b⇡)) which gives (i) in (40).1120

Since ⇢�( eB(b⇡))  (1/�1)⇢�( bB), the bounds in (94) imply that1121

⇢�( bB)  (1 + �0)⇢�( eB(⇡0)) +
�

�1
⇢�( bB) + �⇢�( bB).

Rearranging we get1122

⇢�( bB) 
⇥
1� �(1 + �1)/�1

⇤�1
(1 + �0)⇢�( eB(⇡0)).

We have [1� �(1 + �1)/�1]�1(1 + �0) =
2

1�� (1 +
10
a2
), using �0 = 10/a2 and �1 = 2�/(1� �) as1123

before. This proves (ii) in (40).1124
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