
A Comparison between Bounds

We first use simulation to show our proposed bound is higher than the one from PixelDP [18].

In PixelDP, the upper bound for the size of attacks is indirectly defined: if p(1) ≥ e2�p(2) + (1 + e�),
where � > 0 and δ > 0 are two tuning parameters, and the added noise has the distribution N(0,σ2I),
then the classifier is robust to attacks whose �2 size is less than σ�√

2 log(1.25/δ)
.

As both our and their bound are determined by the models and data only through p(1) and p(2), it
is sufficient to compare them with simulation for different p(1) and p(2) as long as p(1) ≥ p(2) ≥ 0,
p(1)+p(2) ≤ 1 and p(1)+p(2) ≥ 0.2 are satisfied, i.e., p(1) and p(2) are valid first and second largest
output probabilities.

For fixed σ, � and δ are tuning parameters that affect the result. For a fair comparison, we use a grid
search to find � and δ that maximizes their bound.

Figure 5: The upper bounds under different p(1) and p(2). Our bound (red) is strictly higher than the
one from PixedDP (blue).

The simulation result in Figure 5 shows our bound is strictly higher than the one from PixelDP. In
particular, when p(1) and p(2) are far apart, which is the most common case in practice, our bound is
more than twice as high as theirs.

B Proof of Lemma 1

Lemma 1 Let P = (p1, . . . , pk) and Q = (q1, . . . , qk) be two multinomial distributions over the
same index set {1, . . . , k}. If the indexes of the largest probabilities do not match on P and Q, that is
argmaxi pi �= argmaxj qj , then

Dα(Q�P ) ≥ − log

�
1− p(1) − p(2) + 2

�
1

2

�
p1−α
(1) + p1−α

(2)

�� 1
1−α

�
(2)

where p(1) and p(2) are the largest and the second largest probabilities in pi’s.

Proof Think of this problem as finding Q that minimizes Dα(Q�P ) such that argmaxpi �= argmaxqi
for fixed P = (p1, . . . , pk). Without loss of generality, assume p1 ≥ p2 ≥ · · · ≥ pk.

It is equivalent to solving the following problem:

min�
qi=1,argmaxqi �=1

1

1− α
log

�
k�

i=1

pi

�
qi
pi

�α
�
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As the logarithm is a monotonically increasing function, we only focus on the quantity s(Q�P ) =
�k

i=1 pi

�
qi
pi

�α

part for fixed α.

We first show for the Q that minimizes s(Q�P ), it must have q1 = q2 ≥ q3 ≥ · · · ≥ qk. Note here
we allow a tie, because we can always let q1 = q1 − � and q2 = q2 + � for some small � to satisfy
argmaxqi �= 1 while not changing the Renyi-divergence too much by the continuity of s.

If qj > qi for some j ≥ i, we can define Q� by mutating qi and qj , that is Q� =
(q1, . . . , qi−1, qj , qi+1 . . . , qj−1, qi, qj+1, . . . , qk), then

s(Q�P )− s(Q��P )

=pi

�
qαi − qαj

pαi

�
+ pj

�
qαj − qαi

pαj

�

=(p1−α
i − p1−α

j )(qαi − qαj ) > 0

which conflicts with the assumption that Q minimizes s(Q�P ). Thus qi ≥ qj for j ≥ i. Since q1
cannot be the largest, we have q1 = q2 ≥ q3 ≥ · · · ≥ qk.

Then we are able to assume Q = (q0, q0, q3, . . . , qk), and the problem can be formulated as

min
q0,q2,...,qk

p1

�
q0
p1

�α

+ p2

�
q0
p2

�α

+

k�

i=3

pi

�
qi
pi

�α

subject to 2q0 + q3 + · · ·+ qk = 1

subject to qi − q0 ≤ 0 i ≥ 1

subject to − qi ≤ 0 i ≥ 0

which forms a set of KKT conditions. Using Lagrange multipliers, one can obtain the solution

q0 = q∗

1−p1−p2−2q∗ and qi =
pi

1−p1−p2−2q∗ for i ≥ 3, where q∗ =
�

p1−α
1 +p1−α

2

2

� 1
1−α

.

Plug in these quantities, the minimized Renyi-divergence is

− log

�
1− p1 − p2 + 2

�
1

2

�
p1−α
1 + p1−α

2

�� 1
1−α

�

Thus, we obtain the lower bound of Dα(Q�P ) for argmaxpi �= argmaxqi.

C Proof of Theorem 2

A simple result from information theory:

Lemma 4 Given two real-valued vectors x1 and x2, the Rényi divergence of N(x1,σ
2I) and

N(x2,σ
2I) is

Dα(N(x1,σ
2I)�N(x2,σ

2I)) =
α�x1 − x2�22

2σ2
(3)

Theorem 2 Suppose we have x ∈ X , and a potential adversarial example x� ∈ X such that
�x− x��2 ≤ L. Given a k-classifier f : X → {1, . . . , k}, let f(x+N(0,σ2I)) ∼ (p1, . . . , pk) and
f(x� +N(0,σ2I)) ∼ (p�1, . . . , p

�
k).

If the following condition is satisfied, with p(1) and p(2) being the first and second largest probabilities
in pi’s:

sup
α>1

�
−

2σ2

α
log

�
1 − 2M1

�
p(1), p(2)

�
+ 2M1−α

�
p(1), p(2)

���
≥ L

2 (4)

then argmaxi pi = argmaxj p
�
j
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Proof From lemma 4, we know for x and x� such that �x− x��2 ≤ L, with a k-class classification
function f : X → {1, . . . , k}:

Dα(f(x
� +N(0,σ2))�f(x+N(0,σ2)))

≤Dα(x
� +N(0,σ2)�x+N(0,σ2))

≤αL2

2σ2

if N(0,σ2) is a standard Gaussian noise. The first inequality comes from the fact that Dα(Q�P ) ≥
Dα(g(Q)�g(P )) for any function g.

Therefore, if we have

− log
�
1− 2M1

�
p(1), p(2)

�
+ 2M1−α

�
p(1), p(2)

��
≥ αL2

2σ2
(5)

It implies
Dα(f(x

� +N(0,σ2))�f(x+N(0,σ2)))

≤− log
�
1− 2M1

�
p(1), p(2)

�
+ 2M1−α

�
p(1), p(2)

�� (6)

Then from Lemma 1 we know that the index of the maximums of f(x + N(0,σ2)) and
f(x� + N(0,σ2)) must be the same, which means they have the same prediction, thus implies
robustness.

D Details and Additional Results of the Experiments

In this section, we explain the details of our implementation of our models and include additional
experimental results.

D.1 Gradient-Free methods

We include results for Boundary Attack [9] which is a gradient-free attack method. Boundary attack
explores adversarial examples along the decision boundary using a rejection sampling approach.
Their construction of adversarial examples do not require information about the gradient of models,
thus is an important complement to gradient-based methods.

We test Boundary attacks on MNIST and CIFAR10 and compare them to other attacks considered.
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Figure 6: MNIST: Comparisons the adversarial robustness of STN against various types of attacks
for both �2 (left) and �∞ (right).

From the plots, one can see Boundary attack is not effective in attacking our models. This is consistent
with the observation from [38] that gradient-free method is not effective against randomized models.
Nevertheless, we include the results as a sanity check.
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Figure 7: CIFAR-10: Comparisons the adversarial robustness of STN against various types of attacks
for both �2 (left) and �∞ (right).
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