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Proof of Lemma 3.21

Proof. Based on the reassignment procedure described in REASSIGN, the vehicles V can be divided2

into several subsets S = {S1, S2, . . . , St}, where Si consists of all vehicles that participate in3

the chain swapping (line 6-10 of REASSIGN) in one iteration. We assume S is nonempty, since4

otherwise we have Mnew = Mold. Note that (1) if a vehicle v appears in Si in some iteration, it will5

be assigned to Mfair(v) after that iteration and will never appear again in Sj for any j > i. Hence6

we have Si ∩ Sj = ∅ for any i 6= j; (2) there might be vehicles who do not participate in any7

swapping procedure. Hence
⋃
i Si may not necessarily equal to V . We define the set of vehicles8

Vo = V\
⋃

1≤i≤t Si. Note that ∀v ∈ Vo, wv,Mnew(v) = wv,Mold(v).9

We further define pi = |Si| and Ei(M) as the partial efficiency of vehicles in Si of the assignment10

M , i.e. Ei(M) =
∑
v∈Si

(hv + wv,M(v)).11

We focus on an arbitrary set Si. When pi = 1, it trivially holds that Ei(Mnew) ≥ Ei(Mold). When12

pi ≥ 2, in the following we quantify how much efficiency loss occurs during the swapping.13

Let us first define the set of pi vehicles {vj}1≤j≤pi indexed based on the swapping order, such that14

Mnew(vj) = Mold(vj+1), 1 ≤ j < pi. Thus, we have15

Ei(Mold)− Ei(Mnew) = wv1,Mold(v1) − wvpi ,Mnew(vpi )
+

∑
2≤j≤pi

(
wvj ,Mold(vj) − wvj−1,Mold(vj)

)
≤ wv0,Mold(v0) − wvpi−1,Mnew(vpi−1) + (pi − 1)∆

≤ f + (pi − 1)∆
(1)

Next, we know from REASSIGN that every vehicle v in the swapping chain is reassigned to request16

Mfair(v) in the output assignment Mnew. Thus, we have17

Ei(Mnew) =
∑
v∈Si

(
hv + wv,Mnew(v)

)
≥
∑
v∈Si

Fopt ≥ piFopt

This implies18

E(Mnew) ≥
∑

1≤i≤|S|

Ei(Mnew) ≥ 2|S| · Fopt ⇒ |S| ≤
E(Mnew)

2Fopt
(2)

Let us now consider all available vehicles v ∈ V . For simplicity, we define the set of vehicles19

Vo = V\
⋃

1≤i≤t Si. Therefore, from equation (1) and (2), and the fact that for every v ∈ Vo,20
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wv,Mnew(v) = wv,Mold(v), we have21

E(Mold)− E(Mnew) =
∑

1≤i≤|S|

(Ei(Mold)− Ei(Mnew))

≤
∑

1≤i≤|S|

(f + (pi − 1)∆)

≤ |S| · f + n∆

≤ f · E(Mnew)

2Fopt
+ n∆

Rearrange the terms in the last inequality and we obtain22

E(Mnew) ≥
2Fopt

2Fopt + f
(E(Mold)− n∆)

which is exactly what stated in the lemma.23

Proof of Theorem 3.324

Proof. For any 0 ≤ λ ≤ 1 and α > 2
2+λ , consider the following problem instances.25

v1 r1

v2 r2

λ− ε

1

1

hv1 = 0

hv2 = 1

Here ε is set as min{ 12 (2 + λ− 2
α ), λ}. Because α > 2

2+λ , this guarantees λ ≥ ε > 0.26

Note that this problem instance has ∆ = 0. There are only two feasible assignments in this instance:27

• the efficient assignment Meff (marked by solid lines) assigns r1 to v1 and r2 to v2 and gives28

Eopt = 2 + λ− ε;29

• the fair assignment Mfair (marked by dashed lines) assigns r2 to v1 and leaves r1 unmatched,30

and gives Fopt = 1.31

Note that among these two assignments, Mfair is the only one with fairness value at least λ, and we32

have33

E(Mfair)

Eopt − n∆
=

2

2 + λ− ε
<

2

2 + λ− (2 + λ− 2
α )

= α.

Thus in this problem instance, any assignment that satisfies the fairness requirement stated in the34

lemma cannot satisfy the efficiency requirement.35
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