
Supplementary Appendix for “Online Sampling from
Log-Concave Distributions"

A Results in the offline setting

In the offline setting, we have access to all the ft’s from the start. Our goal is simply to generate a
sample from the single target distribution πT (x) ∝ e−

∑T
t=1 ft(x) with TV error ε. Since we do not

assume that the ft’s are given in any particular order, we replace Assumption 2 which depends on the
order in which the functions are given, with an assumption (Assumption 4) on the target

∑T
t=1 ft(x)

which does not depend on the ft’s ordering. In place of working with the sequence of distributions
π1, π2 . . . which depend on the ft’s ordering, we introduce an inverse temperature parameter β > 0

and consider the distributions πβT (x) ∝ e−β
∑T
t=1 ft(x). In place of Assumption 2, we assume:

Assumption 4 (Bounded second moment with exponential concentration (with constants
A, k > 0)). For all 1

T ≤ β ≤ 1 and all s ≥ 0, PX∼πβT (‖X − x?‖ ≥ s√
βT

) ≤ Ae−ks.

Assumption 4 says the distributions πβT become more concentrated as β increases from 1/T to 1. By
sampling from a sequence of distributions πβT where we gradually increase β from 1/T to 1 at each
epoch, our offline algorithm (Algorithm 3 in the supplementary material) is able to approach the
target distribution πT = π1

T when starting from a cold start that is far from a sublevel set containing
most of the probability measure of πT , without requiring strong convexity. Moreover, since scaling
by β does not change the location of the minimizer x? of β

∑T
t=1 ft(x), we can drop Assumption 3.

Theorem A.1 (Offline variance-reduced SGLD). Suppose that f1, . . . , fT satisfy Assumptions 1
and 4. Then there exist b, η, and imax which are polynomial in d, L,C, ε−1 and poly-logarithmic in
T , such that Algorithm 3 generates a sample XT such that ‖L(XT )− πT ‖TV ≤ ε. Moreover, the
total number of gradient evaluations is polylog(T )× poly(d, L,C,D, ε−1) + Õ(T ).

See Theorem D.2 for precise dependencies. The theorem could also be stated with a f0, but we
omitted it for simplicity. As in the online setting, we do not assume strong convexity. Further, our
additive dependence on T in Theorem A.1 is tight up to log factors, since the number of gradient
evaluations needed to sample from a distribution satisfying Assumptions 1-3 is at least Ω(T ) due to
information theoretic requirements (we show this informally in supplementary Appendix H).

Compared to previous work in this setting, our results are the first to obtain an additive dependence
on T and polynomial dependence on the other parameters without assuming strong convexity. While
the results of [CFM+18] for SAGA-LD and CV-LD have additive dependence on T , their results
require the functions f1, . . . , fT to be strongly convex. Since the basic Dikin walk and basic Langevin
algorithms compute all T functions or all T gradients every time the Markov chain takes a step, and
the number of steps in their Markov chain depends polynomially on the other parameters such as d
and L, the number of gradient (or function) evaluations required by these algorithms is multiplicative
in T . Even though the basic SGLD algorithm computes a mini-batch of the gradients at each step,
roughly speaking the batch size at each step of the chain should be ΩT (T ) for the stochastic gradient
to have the required variance, implying that basic SGLD also has multiplicative dependence on T .

B Proof of online theorem (Theorem 2.1)

First we formally define what we mean by “almost independent”.

Definition B.1. We say that X1, . . . , XT are ε-approximate independent samples from probability
distributions π1, . . . , πT if for independent random variables Yt ∼ πt, there exists a coupling between
(X1, . . . , XT ) and (Y 1, . . . , Y T ) such that for each t ∈ [1, T ], Xt = Y t with probability 1− ε.

B.1 Bounding the variance of the stochastic gradient

We first show that the variance reduction in Algorithm 2 reduces the variance from the order
of t2 to t2 ‖x− x′‖2, where x′ is a past point. This will be on the order of t if we can ensure
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‖x− x′‖ = OT

(
1√
t

)
. Later, we will bound the probability of the bad event that ‖x− x′‖ becomes

too large.
Lemma B.2. Fix x ∈ Rd and {uk}1≤k≤t and let S be a multiset chosen with replacement from
{1, . . . , t}. Let

gt = ∇f0(x) +

[
t∑

k=1

∇fk(uk)

]
+
t

b

∑
k∈S

[∇fk(x)−∇fk(uk)]. (4)

Then

E

∥∥∥∥∥gt −
t∑

k=0

∇fk(x)

∥∥∥∥∥
2
 ≤ t2

b
L2 max

k
‖x− uk‖2 (5)

∥∥∥∥∥gt −
t∑

k=0

∇fk(x)

∥∥∥∥∥
2

≤ 4t2L2 max
k
‖x− uk‖2 . (6)

Proof. Let V be the random variable given by

V =
t

b

[
(∇fk(uk)−∇fk(x))− E

k∈[t]
[∇fk(uk)−∇fk(x)]

]
, (7)

where k ∈ [t] is chosen uniformly at random. Let V1, . . . , Vb be independent draws of V . Note that

the distribution of
∥∥∥gt −∑t

k=0∇fk(x)
∥∥∥2

is the same as that of
∥∥∥∑b

j=1 Vj

∥∥∥2

. Because the Vj are
independent,

E

∥∥∥∥∥gt −
t∑

k=0

∇fk(x)

∥∥∥∥∥
2
 = E


∥∥∥∥∥∥

b∑
j=1

Vj

∥∥∥∥∥∥
2
 = tr

E


 b∑
j=1

Vj

 b∑
j=1

Vj

>

 (8)

= tr

E

 b∑
j=1

VjV
>
j

 =

b∑
j=1

E
[
tr(VjV

>
j )
]

= bE[‖V ‖2]. (9)

We calculate

E[‖V ‖2] =
t2

b2
Vark∈[t] (∇fk(uk)−∇fk(x)) (10)

≤ t2

b2

(
E

k∈[t]

[
‖∇fk(uk)−∇fk(x)‖2

])
(11)

≤ t2

b2
L2 max

k
‖x− uk‖2 . (12)

Combining (9) and (12) gives the first part.

The final part follows because (12) implies
∥∥∥∑b

j=1 Vj

∥∥∥2

≤ 4t2L2 maxk ‖x− uk‖2.

B.2 Bounding the escape time from a ball

Lemma B.3. Suppose that the following hold:

1. F : Rd → R is convex, differentiable, and L-smooth, with a minimizer x? ∈ Rd.

2. ζi is a random variable depending only on X0, . . . , Xi such that E[ζi|X0, . . . , Xi] = 0, and
whenever ‖Xj − x?‖ ≤ r for all j ≤ i, ‖ζi‖ ≤ S.

Let X0 be such that ‖X0 − x?‖ ≤ r and define Xi recursively by
Xi+1 = Xi − ηgi +

√
ηtξi (13)

where gi = ∇F (Xi) + ζi (14)
ξi ∼ N(0, Id), (15)
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and define the event G := {‖Xj − x?‖ ≤ r ∀ 1 ≤ j ≤ imax}. Then for r2 > ‖X0 − x?‖2 +

imax[2η2(S2 + L2r2) + ηd] and Cξ ≥
√

2d,

P(Gc) ≤ imax

[
exp

(
− (r2 − ‖X0 − x?‖2 − imax[2η2(S2 + L2r2) + ηd])2

2imax(2ηSr + 2
√
ηCξ(r + ηS + ηLr) + ηC2

ξ )2

)
(16)

+ exp

(
−
C2
ξ − d
8

)]
. (17)

Proof. Note that if ‖x− x?‖ ≤ r, then because F is L-smooth, ‖∇F (x)‖ ≤ L ‖x− x?‖ ≤ Lr. If
‖Xi − x?‖ ≤ r and ‖ζi‖ ≤ S, then

‖Xi+1 − x?‖2 − ‖Xi − x?‖2 (18)

= ‖Xi − x? − ηgi +
√
ηξi‖2 − ‖Xi − x?‖2 (19)

= −2η 〈gi, Xi − x?〉+ η2 ‖gi‖2 + 2
√
η 〈Xi − x? − ηgi, ξi〉+ η ‖ξi‖2 (20)

= −2η 〈∇Ft(Xi), Xi − x?〉︸ ︷︷ ︸
≤0 by convexity

−2η 〈ζi, Xi − x?〉+ η2 ‖gi‖2 + 2
√
η 〈Xi − x? − ηgi, ξi〉+ η ‖ξi‖2

(21)

≤ −2η 〈ζi, Xi − x?〉+ 2η2
(
‖∇F (xi)‖2 + ‖ζi‖2

)
+ 2
√
η 〈Xi − x? − ηgi, ξi〉+ η ‖ξi‖2 (22)

≤ −2η 〈ζi, Xi − x?〉+ 2η2(L2r2 + S2) + 2
√
η 〈Xi − x? − ηgi, ξi〉+ η ‖ξi‖2 (23)

= 2η2(L2r2 + S2) + ηd−2η 〈ζi, Xi − x?〉+ 2
√
η 〈Xi − x? − ηgi, ξi〉+ η(‖ξi‖2 − d)︸ ︷︷ ︸

(∗)

. (24)

Note that (*) has expectation 0 conditioned on X0, . . . , Xi. To use Azuma’s inequality, we need our
random variables to be bounded. Also, recall that we assumed ‖Xi − x?‖ is bounded above by r.
Thus, we define a toy Markov chain coupled to Xi as follows. Let X ′0 = X0 and

X ′i+1 =

{
X ′i, if ‖X ′i − x?‖ ≥ r
X ′i − ηgi +

√
ηξ′i, otherwise

(25)

where gi = ∇F (X ′i) + ζi, (26)

ξ′i = min(Cξ, ‖ξi‖)
ξi
‖ξi‖

, (27)

ξi ∼ N(0, Id). (28)

Then Y ′i := ‖X ′i − x?‖
2 − i[2η2(S2 + L2r2) + ηd] is a supermartingale with differences upper-

bounded by

Y ′i+1 − Y ′i ≤
{

0, ‖X ′i − x?‖ ≥ r
−2η 〈ζi, X ′i − x?〉+ 2

√
η 〈X ′i − x? − ηgi, ξ′i〉+ η(‖ξi‖2 − d), ‖X ′i − x?‖ < r

(29)

≤ 2ηSr + 2
√
η(r + η(S + Lr))Cξ + η(C2

ξ − d) (30)

≤ 2ηSr + 2
√
ηCξ(r + ηS + ηLr) + ηC2

ξ . (31)

By Azuma’s inequality, for λ > 0 and for r2 > ‖X0 − x?‖2 + i[2η2(S2 + L2r2) + ηd],

P
(
‖X ′i − x?‖

2 − ‖X0 − x?‖2 − i[2η2(S2 + L2r2) + ηd] > λ
)

(32)

≤ exp

(
− λ2

2i(2ηSr + 2
√
ηCξ(r + ηS + ηLr) + ηC2

ξ )2

)
(33)

=⇒ P (‖X ′i − x?‖ > r) (34)

≤ exp

(
− (r2 − ‖X0 − x?‖2 − i[2η2(S2 + L2r2) + ηd])2

2i(2ηSr + 2
√
ηCξ(r + ηS + ηLr) + ηC2

ξ )2

)
. (35)
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If ‖Xi − x?‖ ≥ r for some i ≤ imax, then either ‖X ′i − x?‖ ≥ r for some i ≤ imax, orXi otherwise
becomes different from X ′i, which happens only when ξi ≥ Cξ for some i ≤ imax. Thus by the
Hanson-Wright inequality, since Cξ ≥

√
2d,

P (I ≤ imax) (36)

≤
imax∑
i=1

P(‖X ′i − x?‖
2
> r2) +

imax∑
i=1

P(‖ξi‖ > Cξ) (37)

≤ imax

[
exp

(
− (r2 − ‖X0 − x?‖2 − imax[2η2(S2 + L2r2) + ηd])2

2imax(2ηSr + 2
√
ηCξ(r + ηS + ηLr) + ηC2

ξ )2

)
(38)

+ exp

(
−
C2
ξ − d
8

)]
. (39)

B.3 Bounding the TV error

Lemma B.6 will allow us to carry out the induction step for the proof of the main theorem.

We will use the following result of [DMM19]. Note that this result works more generally with
non-smooth functions, but we will only consider smooth functions. Their algorithm, Stochastic
Proximal Gradient Langevin Dynamics, reduces to SGLD in the smooth case. We will apply this
Lemma with our variance-reduced stochastic gradients in Algorithm 1.
Lemma B.4 ([DMM19], Corollary 18). Suppose that f : Rd → R is convex and L-smooth.
Let Fi be a filtration with ξi and g(xi) defined on Fi, and satisfying E[g(xi)|Fi−1] = ∇f(xi),
supx Var[g(x)|Fi−1] ≤ σ2 < ∞. Consider SGLD for f(x) run with step size η and stochastic
gradient g(x), with initial distribution µ0 and step size η; that is,

xi+1 = xi − ηg(xi) +
√
ηξi, ξi ∼ N(0, I). (40)

Let µn denote the distribution of xn and let π be the distribution such that π ∝ e−f . Suppose

η ≤ min

{
ε

2(Ld+ σ2)
,

1

L

}
, (41)

n ≥
⌈
W 2

2 (µ0, π)

ηε

⌉
. (42)

Let µ = 1
n

∑n
k=1 µk be the “averaged” distribution. Then KL(µ|π) ≤ ε.

Remark B.5. The result in [DMM19] is stated when g(x) is independent of the history Fi, but the
proof works when the stochastic gradient is allowed to depend on history, as in SAGA. For SAGA, Fi
contains all the information up to time step i, including which gradients were replaced at each time
step.

Note [DMM19] is derived by analogy to online convex optimization. The optimization guarantees
are only given at the point x̄ equal to the average of the xt (by Jensen’s inequality). For the sampling
problem, this corresponds to selecting a point from the averaged distribution µ.

Define the good events

Gt =

{
∀s ≤ t, ∀0 ≤ i ≤ is, ‖Xs

i − x?s‖ ≤
R√

s+ L0/L

}
, (43)

Ht =

{
∀s ≤ t s.t. s is a power of 2 or s = 0, ‖Xs − x?s‖ ≤

C1√
s+ L0/L

}
. (44)

Gt is the event that the Markov chain never drifts too far from the current mode (which we want, in
order to bound the stochastic gradient of SAGA), and Ht is the event that the samples at powers of 2
are close to the respective modes (which we want because we will use them as reset points). Roughly,
Gct will involve union-bounding over bad events whose probabilities we will set to be O

(
ε
T

)
and Hc

t

will involve union-bounding over bad events whose probabilities we will set to be O
(

ε
log2(T )

)
.
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Lemma B.6 (Induction step). Suppose that Assumptions 1, 2, and 3 hold with c = L0

L and L0 ≥ L.
Let Xτ

i be obtained by running Algorithm 2 with C ′ = 2.5(C1 + D), C1 ≥ C, and R ≥ 2(C1 + D).
Suppose ηt = η0

t+L0/L
and ε2 > 0 is such that

η0 ≤
ε2

2

Ld+ 9L2(R + D)2/b
, imax ≥

20(C1 + D)2

η0ε2
2

. (45)

Suppose ε1 > 0 is such that for any τ ≥ 1,

P (Gτ |Gτ−1 ∩Hτ−1) ≥ 1− ε1. (46)

Suppose t is a power of 2. Then the following hold.

1. For t < τ ≤ 2t, P(Gτ |Gt ∩Ht) ≥ 1− (τ − t)ε1.

2. Fix Xs
i for s ≤ t, 0 ≤ i ≤ imax such that Gt ∩Ht holds (i.e., condition on the filtration Ft

on which the algorithm is defined). Then

‖L(Xτ )− πτ‖TV ≤ (τ − t)ε1 + ε2. (47)

3. We have for τ = 2t,

P (Gτ ∩Hτ |Gt ∩Ht) ≥ 1− (tε1 + ε2 +Ae−kC1). (48)

These also hold in the case t = 0 and τ = 1, when L0 ≥ L.

Proof. Let Ft(x) =
∑t
k=0 fk(x).

First, note that Hτ−1 = · · · = Ht, because Hs is defined as an intersection of events with indices
≤ s, that are powers of 2. (See (44).) Moreover, Gτ is a subset of Gτ−1 for each τ , by (43).

Proof of Statement 1. The first statement holds by induction on τ and assumption on ε1. We need
to show P (Gcτ |Gt ∩Ht) ≤ (τ − t)ε1 by induction. Assuming it is true for τ , we have by the union
bound that

P(Gcτ+1|Gt, Ht) ≤ P(Gcτ+1 ∩Gτ |Gt ∩Ht) + P(Gcτ |Gt ∩Ht) (49)
≤ P(Gcτ+1|Gτ ∩Gt ∩Ht) + P(Gcτ |Gt ∩Ht). (50)

Now the event Gτ ∩Gt ∩Ht is the same as the event Gτ ∩Hτ , by the previous paragraph. Thus this
is ≤ ε+ (τ − t)ε, completing the induction step.

Proof of Statement 2. For the second statement, note that for t < τ ≤ 2t,

‖Xτ
0 − x?τ‖ ≤

∥∥Xτ
0 −Xt

∥∥+
∥∥Xt − x?t

∥∥+ ‖X?
t − x?τ‖ (51)

≤ 2.5(C1 + D)√
τ + L0/L

+
C1√

t+ L0/L
+

D√
t+ L0/L

(52)

≤ 4(C1 + D)√
τ + L0/L

. (53)

where in the 2nd inequality we used that

1. Algorithm 2 ensures that ‖Xτ
0 −Xt‖ ≤ C′√

τ+L0/L
= 2.5(C1+D)√

τ+L0/L
(The algorithm resets Xτ

0

to Xt if ‖Xτ
0 −Xt‖ is greater than C′√

τ+L0/L
, making the term 0. This is the place where

the resetting is used.),

2. the definition of Ht, and

3. the drift assumption (Assumption 3).
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In the 3rd inequality we used that
√
t ≥

√
τ/2 ≥

√
τ/1.5.

Therefore

W 2
2 (δXτ0 , πτ ) ≤ 2 ‖Xτ

0 − x?τ‖
2

+ 2W 2
2 (δxτ , πτ ) ≤ 32(C1 + D)2

τ + L0/L
+

2C2

τ + L0/L
≤ 40(C1 + D)2

τ + L0/L
.

(54)

where the second moment bound comes from Assumption 2 and C ≤ C1.

Define a toy Markov chain coupled to Xτ
i as follows. Let X̃s

j = Xs
j for s < τ , X̃τ

0 = Xτ
0 , and

X̃τ
i+1 =

X̃τ
i − ηgτi +

√
ηξi, when

∥∥∥X̃τ
j − x?τ

∥∥∥ ≤ R√
τ+L0/L

for all 0 ≤ j ≤ i

X̃τ
i − η∇Fτ (X̃i), otherwise.

(55)

where gτi is the stochastic gradient for X̃τ
i in Algorithm 1 and ξi ∼ N(0, Id). By Lemma B.2, the

variance of gτi is at most τ
2L2

b max( τ+1
2 ,0)≤(s,j)≤(τ,i)

∥∥∥X̃τ
i − X̃s

j

∥∥∥2

. (The ordering on ordered pairs

is lexicographic. Note s > t
2 because Algorithm 2 refreshes all gradients that were updated at time

t
2 .) If the first case of (55) always holds, we bound (using the condition that Gt holds)∥∥∥X̃τ

i − X̃s
j

∥∥∥ ≤ ∥∥∥X̃τ
i − x?τ

∥∥∥+ ‖x?τ − x?s‖+
∥∥∥x?s − X̃s

j

∥∥∥ (56)

≤ R√
τ + L0/L

+
D√

s+ L0/L
+

R√
s+ L0/L

(57)

≤ 3R + 2D√
τ + L0/L

<
3(R + D)√
τ + L0/L

(58)

=⇒ τ2L2

b
max

( t+1
2 ,0)≤(s,j)≤(τ,i)

∥∥∥X̃τ
i − X̃s

j

∥∥∥2

≤ 9τL2(R + D)2

b
. (59)

We can apply Lemma B.4 with ε = 2ε2
2, L ← [ L(τ + L0/L), σ2 ≤ 9τL2(R+D)2

b , W 2
2 (µ0, π) ≤

40(C1+D)2

τ+L0/L
. Note that ητ ≤ ε22

(τ+L0/L)(Ld+9L2(R+D)2/b) ≤
ε22

(τL+L0)d+9L2τ(R+D)2/b does sat-
isfy (41), as Fτ =

∑τ
k=0 fk is (τL + L0)-smooth by Assumption 1. Let i ∈ [imax] be uniform

random on [imax], and X̃τ = X̃τ
i ; note that the distribution µ̃ of X̃τ is the mixture distribution of

X̃τ
1 , . . . , X̃

τ
imax

. Under the conditions on η, imax, by Pinsker’s inequality and Lemma B.4,

‖L(X̃τ )− πτ‖TV ≤
√

1

2
KL(µ̃|πτ ) ≤ ε2. (60)

Note that under Gτ , Xs
i = X̃s

i for all i ≤ imax and s ≤ τ , so

‖L(Xτ )− πτ‖TV ≤ P(Gcτ |Ft) + ‖L(X̃τ
i )− πτ‖TV ≤ (τ − t)ε1 + ε2. (61)

This shows Statement 2.

Proof of Statement 3. For Statement 3, note that by Assumption 2,

PX∼π2t

[
‖X − x?2t‖ ≥

C1√
2t+ L0/L

]
≤ Ae−kC1 . (62)

Combining (61) and (62) for τ = 2t gives (48).

Finally, note that the proof goes through when t = 0, τ = 1.
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B.4 Setting the constants; Proof of main theorem

Proof of Theorem 2.1. We set the parameters η0, imax of Algorithm 2, as follows:

ε1 =
ε

3T
, (63)

ε2 =
ε

3 dlog2(T ) + 1e
, (64)

C1 =

(
2 +

1

k

)
log

(
A

ε2k2

)
, (65)

R =
10000(C1 + D)

√
d

ε2
log

(
max

{
L,C1 + D,

1

ε1

})
, (66)

η0 =
ε2

2

2L2(R + D)2
, (67)

imax =

⌈
20(C1 + D)2

η0ε2
2

⌉
=

⌈
40L2(R + D)2(C1 + D)2

ε4
2

⌉
. (68)

We can check that η0 = Θ̃
(

ε4

L2 log6(T )(C+D)2d

)
, and imax = Õ

(
(C+D)2 log2(T )

η0ε2

)
(where Θ̃ and Õ

hide polylogarithmic dependence on d, L,C,D, ε−1 and log(T ), as claimed in Theorem 2.1. The
constants have not been optimized.

We will choose parameters and prove by induction that for t = 2a, a ∈ N0, t ≤ T ,

P(Gt ∩Ht) ≥ 1− tε1 − 2(a+ 1)ε2. (69)

We will also show that (69) implies that if t = 2a + b for 0 < b ≤ 2a,

P(Gt ∩H2a) ≥ 1− tε1 − 2(a+ 1)ε2, (70)
‖L(Xt)− πt‖TV ≤ tε1 + (2a+ 3)ε2. (71)

With the values of ε1 and ε2, (71) gives the theorem, except for the ε-approximate independence of
the samples. To obtain approximate independence, note that the distribution of Xt conditioned on the
filtration F1 ⊆ · · · ⊆ Ft−1, where the filtration Fτ includes both the random batch S as well as the
points in the Markov chain up to time τ , satisfies ‖(L(Xt)|Ft−1)− πt‖TV ≤ tε1 + (2a+ 3)ε2. This
implies that the samplesX1, X2, . . . , Xt are ε-approximately independent with ε = tε1 +(2a+3)ε2.

Let η0,R be constants to be chosen, and for any t ∈ N, let

ηt =
η0

t+ L0/L
, (72)

rt =
R√

t+ L0/L
, (73)

St = 6
√
tL(R + D), (74)

We claim that it suffices to choose parameters so that the following hold for each t, 1 ≤ t ≤ T , and
some Cξ ≥

√
2d:

ε1 ≥ imax

[
exp

−
(
r2
t −

16(C1+D)2

t+L0/L
− imax[2η2

t (S2
t + L2t2r2

t ) + ηtd]
)2

2imax(2ηtStrt + 2
√
ηtCξ(rt + ηtSt + ηtL(t+ L0/L)rt) + ηtC2

ξ )2


(75)

+ exp

(
−
C2
ξ − d
8

)]
, (76)

η0 ≤
ε2

2

Ld+ 9L2(R + D)2/b
, (77)

imax ≥
20(C1 + D)2

η0ε2
2

, (78)
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Ae−kC1 ≤ ε2, (79)

C1 ≥
(

2 +
1

k

)
log

(
A

ε2k2

)
. (80)

We first complete the proof assuming that these inequalities hold. Then we show that with the
parameter settings in (63)–(68), these inequalities hold.

Suppose that for some t < T the inequalities (75)-(80) hold and the event Gt ∩ Ht occurs. We
will apply Lemma B.3 to the call of the SAGA-LD algorithm in Algorithm 2, at epoch t+ 1 with
F (x) =

∑t+1
s=0 fs(x), to show that the conditions of Lemma B.6 are satisfied with rt+1 and St+1.

We will then apply Lemma B.6 inductively to complete the proof of Theorem 2.1.

We first show that the assumption (46) of Lemma B.6 is satisfied for any ε1 satisfying inequality (75).
The first condition of Lemma B.3 holds by assumption on the fs’s. To see that the second condition
holds for the values rt+1 and St+1, note that by (58) and Lemma B.2, when the event Gt∩Ht occurs,
and when

∥∥Xi
t+1 − x?t+1

∥∥ ≤ rt+1, the stochastic gradient gt+1
i in (55) satisfies

∥∥gt+1
i

∥∥ ≤ St+1.
Therefore, by Lemma B.3 and by inequality (75) we have P (Gt+1|Gt ∩Ht) ≥ 1− ε1. Hence, we
have that inequality (46) of Lemma B.6 is satisfied for any ε1 satisfying inequality (75).

Next, we note that assumption (45) of Lemma B.6 is satisfied since Inequalities (77), (78), and (80)
ensure that η0, imax, and C satisfy the inequalities in (45).

Therefore we have that all the conditions of Lemma B.6 are satisfied. Recall we are proving (69) by
induction for t = 2a. By the above, we know we can apply Lemma B.6 for any t < T .

Base case of induction. We show (69) holds for t = 1. By assumption
∥∥X0 − x?0

∥∥ ≤ C1√
L0/L

so H0 holds and the t = 0 case of Lemma B.6 shows P(G1) ≥ 1 − ε1 and P(G1 ∩ H1) ≥
1− (ε1 + ε2 +Ae−kC1) ≥ 1− (ε1 + 2ε2), using (79) for the last inequality.

(69) implies (70), (71). This follows from parts 1 and 2 of Lemma B.6, as follows. Let At =
Gt ∩Ht. Let t = 2a + b, 0 < b ≤ 2a.

For (70), using part 1 of Lemma B.6 and the induction hypothesis,

P((Gt ∩H2a)c) ≤ P(Gct |A2a) + P(Ac2a) (81)
≤ (t− 2a)ε1 + [2aε1 + 2(a+ 1)ε2] = tε1 + 2(a+ 1)ε2. (82)

For (71), note that by part 2 of of Lemma B.6, conditioned on A2a , ‖L(Xt)− πt‖TV ≤ (t− 2a)ε1 +
ε2. Without the conditioning,

‖L(Xt)− πt‖TV ≤ [(t− 2a)ε1 + ε2] + P(Ac2a) (83)
≤ [(t− 2a)ε1 + ε2] + [2aε1 + 2(a+ 1)ε2] ≤ 2aε1 + (2a+ 3)ε2. (84)

Induction step. We show that if (69) holds for t, then it holds for 2t. We work with the complements.
By a union bound,

P(Ac2t) ≤ P(Ac2t ∩At) + P(Act) ≤ P(Ac2t|At) + P(Act). (85)

The first term is bounded by Part 3 of Lemma B.6 and (79), P (Ac2t|At) ≤ tε1 + ε2 + ε2. The second
term is bounded by the induction hypothesis, which says P (Act) ≤ tε1 + 2(a + 1)ε2. Combining
these gives P (Ac2t) ≤ 2tε1 + 2(a+ 2)ε2, completing the induction step.

Showing inequalities. Setting C1, η0, and imax as in (65), (67), and (68) (with R to be deter-

mined), we get that (77), (78), and (79) are satisfied, as R ≥
√

d
L , b ≥ 9 imply ε2

2

2L2(R+D)2 ≤

ε2
2

Ld+9L2(R+D)2/b . Moreover, setting Cξ =

√
2d+ 8 log

(
2imax

ε1

)
makes imax exp

(
−C

2
ξ−d
8

)
≤ ε1

2 .

It suffices to show that our choice of R makes

ε1

2imax
≥ exp

− (r2 − 16(C1+D)2

t+L0/L
− imax[2η2

t (S2
t + L2(t+ L0/L)2r2

t ) + ηtd])2

2imax(2ηtStrt + 2
√
ηtCξ(rt + ηtSt + ηtL(t+ L0/L)rt) + ηtC2

ξ )2

 (86)
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It suffices to show

log

(
2imax

ε1

)
≤

(r2
t −

16(C1+D)2

t+L0/L
− imax[2η2

t (S2
t + L2(t+ L0/L)2r2

t ) + ηtd])2

2imax(2ηtStrt + 2
√
ηtCξ(rt + ηtSt + ηtL(t+ L0/L)rt) + ηtC2

ξ )2
(87)

⇐ r2
t ≥
√

2imax

(
2ηtStrt + 2

√
ηtCξ(rt + ηtSt + ηtL(t+ L0/L)rt) + ηtC

2
ξ

)√
log

(
2imax

ε1

)
(88)

+
16(C1 + D)2

t+ L0/L
+ imax[2η2

t (S2
t + L2(t+ L0/L)2r2

t ) + ηtd] (89)

Substituting (72), (73), and (74), this is equivalent to

R2

t+ L0

L

≥
√

2imaxη0

t+ L0

L

[(
2
√
η06
√
tL(R + D)R√
t+ L0

L

+ 2Cξ

R +
η06
√
tL(R + D)√
t+ L0

L

+ η0LR


(90)

+
√
η0C

2
ξ

)√
log

(
2imax

ε1

)
(91)

+
16(C1 + D)2

t+ L0

L

+
imaxη0

t+ L0

L

[
2η0

t+ L0

L

(
36tL2(R + D)2 + L2

(
t+

L0

L

)
R2

)
+ d

]]
(92)

⇐ R2 ≥
√

2imaxη0(12
√
η0L(R + D)R + 2Cξ(R + 6η0L(R + D) + η0LR) (93)

+
√
η0C

2
ξ )

√
log

(
2imax

ε1

)
(94)

+ 16(C1 + D)2 + imaxη0

[
2η0

t+ L0

L

(36tL2(R + D)2 + L2

(
t+

L0

L

)
R2) + d

]
(95)

Using η0 =
ε22

2L2R2 , imax =
⌊

20(C1+D)2

η0ε22

⌋
≤ 40(C1+D)2

η0ε22
, and imaxη0 ≤ 40(C1+D)2

ε22
, the RHS is at

most√
2imaxη0

(
12
√
η0L(R + D)R + 2Cξ(R + 7η0L(R + D)) +

√
η0C

2
ξ

)√
log

(
2imax

ε1

)
(96)

+ 16(C1 + D)2 + imaxη0

[
2η0(37L2(R + D)2) + d

]
(97)

≤
√

80(C1 + D)

ε2

(
6
√

2ε2R + 2Cξ

(
R +

7ε2
2

2LR

)
+

ε2C
2
ξ√

2LR

)√
log

(
2imax

ε1

)
(98)

+ 16(C1 + D)2 +
40(C1 + D)2

ε2
2

(37ε2
2 + d). (99)

Let Q = log
(

2imax

ε1

)
. It suffices to show each of the 5 terms is at most R2

5 . Below, we use

Cξ ≤ 4

√
d log

(
2imax

ε1

)
.

R2

5
≥ 24

√
10(C1 + D)R

√
Q ⇐ R ≥ 120

√
10(C1 + D)

√
log

(
2imax

ε1

)
(100)

R2

5
≥ 8
√

5(C1 + D)Cξ
ε2

(
R +

7ε2

2LR

)√
Q ⇐ R2 ≥ 160

√
5(C1 + D)

ε2

(
R +

7ε2

2LR

)√
dQ

(101)
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R2

5
≥

2
√

10(C1 + D)C2
ξ

LR

√
Q ⇐ R3 ≥ 160

√
10(C1 + D)

L
dQ

3
2 (102)

R2

5
≥ 16(C1 + D)2 (103)

R2

5
≥ 40(C1 + D)2

(
40 +

d

ε2
2

)
(104)

It remains to check each of these five inequalities. First, we bound Q.

imax ≤
40L2(R + D)2 (C1 + D)

2

ε2
4

, (105)

2imax

ε1
≤ 80L2(R + D)2 (C1 + D)

2

ε2
4ε1

(106)

≤ 100L2R2 (C1 + D)
2

ε2
4ε1

(107)

≤ 1010L2(C1 + D)4d

ε6
2ε1

log2

(
max

{
L,C1 + D,

1

ε1

})
(108)

log

(
2imax

ε1

)
≤ 24 + 16 log

(
max

{
L,C1 + D,

1

ε1

})
(109)

≤ 40 log

(
max

{
L,C1 + D,

1

ε1

})
(110)

It remains to check (100)–(104). We check (100), (101), and (102):

120
√

10(C1 + D)
√
Q ≤ 120

√
10(C1 + D)

√
40 log

(
max

{
L,C1 + D,

1

ε1

})
≤ R (111)

Using R ≥
√

7ε2
2L =⇒ 7ε2

2LR ≤ R,

160
√

5(C1 + D)

ε2

(
R +

7ε2

2LR

)√
dQ ≤ 320

√
10(C1 + D)

√
dR

ε2
40 log

(
max

{
L,C1 + D,

1

ε1

})
≤ R2

(112)

160
√

10(C1 + D)

L

(
R +

7ε2

2LR

)√
dQ

3
2 ≤ 80

√
10(C1 + D)d

L

(
40 log

(
max

{
L,C1 + D,

1

ε1

})) 3
2

≤ R3.

(113)

The last two inequalities (103), (104) are immediate from the definition of R.

C Overview of offline result

C.1 Overview of offline algorithm

Similarly to the online Algorithm 2, our offline Algorithm 3 also calls the variance-reduced SGLD
Algorithm 1 multiple times. In the offline setting, all functions f1, . . . , fT are given from the start,
so there is no need to run Algorithm 1 on subsets of the functions. Instead, we run SAGA-LD on
βf1, . . . , βfT , where the inverse temperature β is doubled at each epoch, from roughly β = 1

T to
β = 1. There are logarithmically many epochs, each taking imax = ÕT (1) Markov chain steps.

Note that we cannot just run SAGA-LD on f1, . . . , fT . The temperature schedule is necessary
because we only assume a cold start and do not assume strong convexity; in order for our variance-
reduced SGLD to work, the initial starting point must be ÕT (1/

√
T) rather than ÕT (1) away from

the minimum. The temperature schedule helps us get there by roughly halving the distance to
the minimum each epoch; the step sizes are also halved at each epoch. Moreover, one also cannot
substitute a deterministic convex optimization algoritihm for initialization in our setting, since without
strong convexity, deterministic convex optimization promises a point close in function value but not
Euclidean distance. In contrast, our algorithm gives, with high probability, a point close enough in
Euclidean distance if Assumption 2 holds.

22



Algorithm 3 Offline variance-reduced SGLD
Input: T ∈ N and gradient oracles for functions ft : Rd → R, 1 ≤ t ≤ T .
Input: step size η, batch size b > 0, imax > 0, an initial point X0 ∈ Rd
Output: A sample X

1: Set X← [ X0 and set β = 1/T . . Start at a high temperature, T .
2: while β < 1 do
3: Run Algorithm 1 with step size η/βT , batch size b, number of steps imax, initial point X, and

functions βft, 1 ≤ t ≤ T .
4: Set X← [ Xβ , where Xβ is the output of Algorithm 1.
5: β ←[ max{2β, 1}. . Double the temperature.
6: end while
7: Return X.

C.2 Proof overview of offline result

For the offline problem, the desired result – sampling from πT with TV error ε using Õ(T ) +
poly(d, L,C, ε−1) log2(T ) gradient evaluations – is known either when we assume strong convexity,
or we have a warm start. We show how to achieve the same additive bound without either assumption.

Without strong convexity, we do not have access to a Lyapunov function which guarantees that the
distance between the Markov chain and the mode x? of the target distribution contracts at each
step, even from a cold start. To get around this problem, we sample from a sequence of log2(T )

distributions πβT ∝ e−β
∑T
t=1 ft(x), where the inverse “temperature" β doubles at each epoch from

1
T to 1, causing the distribution πβT to have a decreasing second moment and to become more

“concentrated" about the mode x? at each epoch. This temperature schedule allows our algorithm to
gradually approach the target distribution, even though our algorithm is initialized from a cold start
x0 which may be far from a sub-level set containing most of the target probability measure. The
same martingale exit time argument as in the proof for the online problem shows that at the end of
each epoch, the Markov chain is at a distance from x? comparable to the (square root of the) second
moment of the current distribution πβT . This provides a “warm start" for the next distribution π2β

T ,
and in this way our Markov chain approaches the target distribution π1

T in log2(T ) epochs.

The total number of gradient evaluations is therefore T log2(T ) + b× imax, since we only compute
the full gradient at the beginning of each of the log2(T ) epochs, and then only use a batch size b for
the gradient steps at each of the imax steps of the Markov chain. As in the online case, b and imax

are poly-logarithmic in T and polynomial in the various parameters d, L,C, ε−1, implying that the
total number of gradient evaluations is Õ(T ) + poly(d,C,D, ε−1, L) log2(T ), in the offline setting
where our goal is only to sample from π1

T .

The proof of Theorem A.1 is similar to the proof of Theorem 2.1, except for some differences as
to how the stochastic gradients are computed and how one defines the functions “Ft". We define

Ft := βt
∑T
k=1 fk, where βt =

{
2t−1/T, 0 ≤ s ≤ log2(T ) + 1

1, t = dlog2(T )e+ 1.
. We then show that for this

choice of Ft the offline assumptions, proof and algorithm are similar to those of the online case.

D Proof of offline theorem (Theorem A.1)

The proof of Theorem A.1 is similar to the proof of Theorem 2.1, except for some key differences as
to how the stochastic gradients are computed and how one defines the functions “Ft".

We define Fβ := βF = β
∑T
k=1 fk, where the β’s will range over the sequence

βt =

{
2t/T, 0 ≤ t ≤ log2(T )

1, t = dlog2(T )e . (114)

For this choice of Fβ , the offline assumptions, proof and algorithm are similar to those of the online
case.

Differences in assumptions. We have that Fβ is βTL-smooth, which (except for Lemma B.2) is
the only way in which Assumption 1 is used in the proof of Theorem 2.1.

23



Moreover, Assumption 4 for the offline case implies that πβT ∝ e−Fβ satisfies Assumption 2 with
constants C and k for every t. Since the minimizer x?β of Fβ does not change with t, x?β satisfies
Assumption 3 with constant D = 0.

Differences in algorithm. The step size used in Algorithm 3 is η
βT , the same step size used

in Algorithm 2. Thus, we note that Algorithm 3 is similar to Algorithm 2 except for a few key
differences:

1. The way in which the stochastic gradient gβi is computed is different. Specifically, in the
offline algorithm our stochastic gradient is computed as

gβi = s+
βT

b

∑
k∈S

(Gknew −Gk). (115)

where S is a multiset of size b chosen with replacement from {1, . . . , T} (rather than from
{1, . . . , t}).

2. There are logarithmically many epochs.

We now give the proof in some detail.

Letting Xβ
i be the iterates at inverse temperature β, define

Gβ =

{
∀i,
∥∥∥Xβ

i − x
?
∥∥∥ ≤ R√

βT

}
. (116)

Lemma D.1 (Analogue of Lemma B.6). Assume that Assumptions 1 and 4 hold. Let C =(
2 + 1

k

)
log
(
A
k2

)
, C1 ≥ C, and suppose

η0 ≤
ε2

2

Ld+ 4L2R2/b
, (117)

imax ≥
5C2

1

η0ε2
2

. (118)

Suppose ε1 > 0 is such that

P
(
∀0 ≤ i ≤ imax,

∥∥∥Xβ
i − x

?
∥∥∥ ≤ R√

βT
|
∥∥∥Xβ

0 − x?
∥∥∥ ≤ C1√

βT

)
≥ 1− ε1. (119)

Suppose
∥∥∥Xβ

0 − x?
∥∥∥ ≤ 2C1√

βT
. Then

1.
∥∥∥L(Xβ)− πβT

∥∥∥
TV
≤ ε1 + ε2.

2. For i ∈ [imax] chosen at random,

P
(∥∥∥Xβ

i − x
?
∥∥∥ ≤ C1√

βT

)
≥ 1− (ε1 + ε2 +Ae−kC1). (120)

Proof. First we calculate the distance of the starting point from the stationary distribution,

W 2
2 (δXβ0

, πβT ) ≤ 2
∥∥∥Xβ

0 − x?
∥∥∥2

+ 2W 2
2 (δx? , π

β
T ) ≤ 8C2

1

βT
+

2C2

βT
≤ 10C2

1

βT
. (121)

Define a toy Markov chain coupled to Xβ
i as follows. Let X̃β

0 = Xβ
0 and

X̃β
i+1 =

{
X̃β
i − ηg

β
i +
√
ηξi, when

∥∥∥X̃τ
j − x?

∥∥∥ ≤ R√
βT

for all 0 ≤ j ≤ i
X̃β
i − ηβ∇F (X̃i), otherwise.

(122)

By Lemma B.2, the variance of gβi is at most β
2T 2L2

b max0≤j≤i

∥∥∥X̃β
i − X̃

β
j

∥∥∥2

. If
∥∥∥Xβ

i − x?
∥∥∥ ≤

R√
βT

for all 0 ≤ i ≤ imax, then
∥∥∥X̃β

i − X̃
β
j

∥∥∥ ≤ 2R√
βT

for all 0 ≤ i, j ≤ imax. Then we can apply
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Lemma B.4 with ε = 2ε2
2, L← [ LβT , σ2 ≤ (βT )2L2

b
4R2

βT = 4βTL2R2

b , and W 2
2 (µ0, π) ≤ 10C2

1

βT . By
Pinsker’s inequality, for random i ∈ [imax],∥∥∥L(X̃β

i )− πβT
∥∥∥

TV
≤
√

1

2
KL(µ̃|πτ ) ≤ ε2. (123)

Under Gβ , Xβ
i = X̃β

i for all i ≤ imax and s ≤ τ , so

‖L(Xβ
i )− πβT ‖TV ≤ P(Gcβ) +

∥∥∥L(X̃β
i )− πβT

∥∥∥
TV
≤ ε1 + ε2. (124)

This shows part 1.

For part 2, note that by Assumption 2,

PX∼πβT

[
‖X − x?‖ ≥ C1√

βT

]
≤ Ae−kC1 . (125)

Combining (124) and (125) gives part 2.

Theorem D.2 (Theorem A.1 with parameters). Suppose that Assumptions 1 and 4 hold, with L ≥ 1,
k ≤ 1, and

∥∥X0 − x?
∥∥ ≤ C. Suppose Algorithm 3 is run with parameters η0, imax given by

ε1 =
ε

3 dlog2(T ) + 1e
, (126)

C1 =

(
2 +

1

k

)
log

(
A

ε2k2

)
, (127)

R =
10000C1

√
d

ε1
log

(
max

{
L,C1 + D,

1

ε1

})
(128)

η0 =
ε2

1

2L2R2
, (129)

imax =

⌈
5C2

1

η0ε2
1

⌉
=

⌈
10L2R2C2

1

ε4
1

⌉
, (130)

with any constant batch size b ≥ 4. Then it outputs X1 such that X1 is a sample from π̃T satisfying
‖π̃T − πT ‖TV ≤ ε, using Õ(T ) + poly log(T ) poly(d, L,C, ε−1) gradient evaluations.

proof of Theorem A.1. The proof is similar to the proof of Theorem 2.1, and we omit the details. We
show by induction that

P
(∥∥∥Xβs

i − x
?
∥∥∥ ≤ R√

βsT

)
≥ 1− 2sε1. (131)

The base case follows from C ≤ C1 ≤ R. The induction step follows from noting first that∥∥∥Xβs
i − x

?
∥∥∥ ≤ R√

βsT
=⇒

∥∥∥Xβs+1

0 − x?
∥∥∥ ≤ 2R√

βs+1T
, (132)

noting that the conditions imply (for ηβ = η0√
βT

, rt = R√
βT

, St = 4
√
βTLR, and Cξ =√

2d+ 8 log
(

2imax

ε1

)
) that

ε1 ≥ imax

[
exp

− (r2
β −

4C2
1

t+L0/L
− i[2η2

t (S2
β + L2t2r2

β) + ηβd])2

2imax(2ηβSβrβ + 2
√
ηβCξ(rβ + ηβSβ + ηβLtrt) + ηβC2

ξ )2

 (133)

+ exp

(
−
C2
ξ − d
8

)]
. (134)

Then using Lemma B.3, we get that (119) is satisfied with ε1, and the induction step follows from
part 2 of Lemma D.1.

Finally, once we have
∥∥X1

0 − x?
∥∥ ≤ R√

T
, the conclusion aboutX1 follows from part 1 of Lemma D.1.

25



E Proof for logistic regression application

E.1 Theorem for general posterior sampling, and application to logistic regression

We show that under some general conditions—roughly, that we see data in all directions—the
posterior distribution concentrates. We specialize to logistic regression and show that the posterior
for logistic regression concentrates under reasonable assumptions.

The proof shares elements with the proof of the Bernstein-von Mises theorem (see e.g. [Nic12]),
which says that under some weak smoothness and integrability assumptions, the posterior distribution
after seeing iid data (asymptotically) approaches a normal distribution. However, we only need to
prove a weaker result—not that the posterior distribution is close to normal, but just αT -strongly log
concave in a neighborhood of the MLE, for some α > 0; hence, we get good, nonasymptotic bounds.
This is true under more general assumptions; in particular, the data do not have have to be iid, as long
as we observe data “in all directions.”
Theorem E.1 (Validity of the assumptions for posterior sampling). Suppose that ‖θ0‖ ≤ B,
xt ∼ Px(·|x1:t−1, θ0). Let ft, t ≥ 1 be such that Px(xt|x1:t−1, θ) ∝ e−ft(θ) and let πt(θ) be
the posterior distribution, πt(θ) ∝ e−

∑t
k=0 ft(θ). Suppose there is M,L, r, σmin, Tmin > 0 and

α, β ≥ 0 such that the following conditions hold:

1. For each t, 1 ≤ t ≤ T , ft(θ) is twice continuously differentiable and convex.

2. (Gradients have bounded variation) For each t, given x1:t−1,
‖∇ft(θ)− E[∇ft(θ)|x1:t−1]‖ ≤M. (135)

3. (Smoothness) Each ft is L-smooth, for 1 ≤ t ≤ T .

4. (Strong convexity in neighborhood) Let

ÎT (θ) : =
1

T

T∑
t=1

∇2ft(θ). (136)

Then for T ≥ Tmin, with probability ≥ 1− ε
2 ,

∀θ ∈ B(θ0, r), ÎT (θ) � σminId. (137)

5. f0(θ) is α-strongly convex and β-smooth, and has minimum at θ = 0.

Let θ?T be the minimum of
∑T
t=0 ft(θ), i.e., the mode for θ after observing x1:T . Letting

C = max

{
1,M

√
2d log

(
2d

ε

)
,

4d

σmin

}
,

and c = α
σmin

, if T ≥ Tmin is such that C
√
T+βB

σminT+α + C√
T+c

< r, then with probability 1 − ε, the
following hold:

1. ‖θ?T − θ0‖ ≤ C
√
T+βB

σminT+α .

2. For C ′ ≥ 0, Pθ∼πT
(
‖θ − θ?T ‖ ≥ C′√

T+c

)
≤ K1

σminC
√
T+c

(
(LT+β)e

d

) d
2

e
1
2σminC

2−σminCC
′

2

for some constant K1.

The strong convexity condition is analogous to a small-ball inequality [KM15, Men14] for the sample
Fisher information matrix in a neighborhood of the true parameter value. In the iid case we have
concentration (which is necessary for a central limit theorem to hold, as in the Bernstein-von Mises
Theorem); in the non-iid case we do not necessarily have concentration, but the small-ball inequality
can still hold.

We show that under reasonable conditions on the data-generating distribution, logistic regression
satisfies the above conditions. Let φ(x) = 1

1+e−x be the logistic function. Note that φ(−x) =

1− φ(x).

Applying Theorem E.1 to the setting of logistic regression, we will obtain the following.
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Lemma E.2. In the setting of Problem 2.2 (logistic regression), suppose that ‖θ0‖ ≤ B, ut ∼ Pu
are iid, where Pu is a distribution that satisfies the following: for u ∼ Pu,

1. (Bounded) ‖u‖2 ≤M with probability 1.

2. (Minimal eigenvalue of Fisher information matrix)

I(θ0) : =

∫
Rd
φ(u>θ0)φ(−u>θ0)uu> dPu � σId, (138)

for σ > 0.

Let

C = max

{
1, 2M

√
2d log

(
2d

ε

)
,

4ed

σ

}
. (139)

Then for t > max

{
M4 log( 2d

ε )
8σ2 , 4M2

(
2eC
σ + 1

)2
, 4eMBα

σ

}
, we have

1. ∇fk(θ) is M2

4 -Lipschitz for all k ∈ N.

2. For any C ′ ≥ 0, and c = 2eα
σ ,

Pθ∼πt
(
‖θ − θ?t ‖ ≥

C ′√
T + c

)
≤ K1

σC
√
T + c


(
M2

4 T + α
)
e

d


d
2

e
1
4eσC

2−σCC′4e

(140)

for some constant K1.

3. With probability 1− ε, ‖θ?t − θ0‖ ≤ C
√
t+αB

σt/2e+α .

Remark E.3. We explain the condition I(θ0) =
∫
Rd φ(u>θ0)φ(−u>θ0)uu> dPu � σId. Note

that φ(x)φ(−x) can be bounded away from 0 in a neighborhood of x = 0, and then decays to 0
exponentially in x. Thus, I(θ0) is essentially the second moment, where we ignore vectors that are
too large in the direction of ±θ0.

More precisely, we have the following implication:

Eu[uu>1φ(u>θ0)≤C1
] � σId =⇒

∫
Rd
φ(u>θ0)φ(−u>θ0)uu> dPu �

1

φ(C1)(1− φ(C1))
σId.

(141)

Theorem 2.3 is stated with C1 = 2.

E.2 Proof of Theorem E.1

Proof of Theorem E.1. Let E be the event that (137) holds.

Step 1: We bound ‖θ?T − θ0‖ with high probability.

We show that with high probability
∑T
t=0∇ft(θ0) is close to 0. Since

∑T
t=0∇ft(θ?T ) = 0, the

gradient at θ0 and θ?T are close. Then by strong convexity, we conclude θ0 and θ?T are close.

First note that E[ft(θ)|x1:t−1] =
∫
Rd − logPx(xt|x1:t−1, θ) dPx(·|x1:t−1, θ0) is a KL diver-

gence minus the entropy for Px(·|x1:t−1, θ0), and hence is minimized at θ = θ0. Hence
1
T

∑T
t=1 E[∇ft(θ0)|x1:t−1] = 0. Thus by Lemma I.1 applied to

T∑
t=1

∇ft(θ0) =

T∑
t=1

[∇ft(θ0)− E[∇ft(θ0)|x1:t−1]] , (142)
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we have by Chernoff’s inequality that

P

(∥∥∥∥∥
T∑
t=1

∇ft(θ0)

∥∥∥∥∥ ≥ C√
T

)
≤ 2de−

C2

2M2d ≤ ε

2
(143)

when C2

2M2d ≥ log
(

4d
ε

)
, which happens when C ≥M

√
2d log

(
4d
ε

)
.

Let A be the event that
∥∥∥ 1
T

∑T
t=1∇ft(θ0)

∥∥∥ < C√
T

. Then under A,

∥∥∥∥∥ 1

T

T∑
t=0

∇ft(θ0)

∥∥∥∥∥ > − C√
T
− 1

T
β ‖θ0‖ ≥ −

C√
T
− βB

T
. (144)

Let w =
θ?T−θ0
‖θ?T−θ0‖

. Under the event E ,

1

T

T∑
t=0

∇ft(θ0 + sw)>w ≥ − C√
T
− βB

T
+
(
σmin +

α

T

)
min{s, r}. (145)

Hence, if s, r > C
√
T+βB

σminT+α , then
∑T
t=0∇ft(θ0) 6= 0. Considering s = ‖θ?T − θ0‖, this means that

‖θ?T − θ0‖ ≤
C
√
T + βB

σminT + α
. (146)

Step 2: For c = α
σmin

, we bound Pθ∼πT (‖θ − θ?T ‖ ≥ C′√
T+c

).

Under E , 1
T

∑T
t=1 ft(θ) is σmin-strongly convex for θ ∈ B

(
θ?T ,

C√
T+c

)
⊂ B(θ0, r), and f0(θ) is

α-strongly convex.

Let r′ = r− C
√
T+βB

σminT+α . UnderA, B(θ?T , r
′) ⊂ B(θ0, r). Thus under E ∩A, letting w(θ) :=

θ−θ?T
‖θ−θ?T‖

,

∀θ ∈ B(θ?T , r
′) ⊂ B(θ0, r),

T∑
t=0

∇ft(θ)>w(θ) ≥ (Tσmin + α) ‖θ − θ?T ‖ . (147)

Suppose T is such that C√
T+c

< r′, i.e., C
√
T+βB

σminT+α + C√
T+c

< r. By shifting, we may assume that∑T
t=0 ft(θ

?
T ) = 0. Because ft(θ) is L-smooth for 1 ≤ t ≤ T and β-smooth for t = 0,

T∑
t=0

ft(θ) ≤
LT + β

2
‖θ − θ?T ‖

2
. (148)

Then for all θ ∈ B
(
θ?T ,

C√
T+c

)c
,

T∑
t=0

ft(θ) ≥
T∑
t=0

ft

(
θ?T +

C√
T + c

w(θ)

)
+

T∑
t=0

[
ft(θ)− ft

(
θ?T +

C√
T + c

w(θ)

)]
(149)

≥ 1

2
(Tσmin + α)

C2

T + c
+ (Tσmin + α)

C√
T + c

(
‖θ − θ?T ‖ −

C√
T + c

)
(150)

≥ 1

2
σminC

2 + σminC
√
T + c

(
‖θ − θ?T ‖ −

C√
T + c

)
. (151)
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Thus for any C ′ ≥ 0,∫
Rd
e−
∑T
t=0 ft(θ) dθ ≥

∫
Rd
e−

LT+β
2 ‖θ−θ?T ‖

2

dθ =

(
2π

LT + β

) d
2

, (152)∫
B
(
θ?T ,

C′√
T+c

)c e−∑T
t=0 ft(θ) dθ ≤

∫
B
(
θ?T ,

C′√
T+c

)c e− 1
2σminC

2

e
−σminC

√
T+c

(
‖θ−θ?T ‖− C√

T+c

)
dθ

(153)

=

∫ ∞
C′√
T+c

Vold−1(Sd−1)γd−1e
1
2σminC

2

e−σminC
√
T+cγ dγ (154)

=

∫ ∞
C′√
T+c

Vold−1(Sd−1)e
1
2σminC

2

e−(σminC
√
T+cγ−(d−1) log γ) dγ.

(155)

Now, when C ≥ max{ 2(d−1)
σmin

, 1}, we have that

σminC
√
T + cγ − (d− 1) log γ ≥ σminC

√
T + cγ − (d− 1)γ (156)

≥ σminC
√
T + cγ − σminC

√
T + cγ

2
(157)

=
σminC

√
T + cγ

2
. (158)

Then by Stirling’s formula, for some K1,

(155) ≤ Vold−1(Sd−1)e
1
2σminC

2

∫ ∞
C′√
T+c

e−
σminC

√
T+cγ

2 dγ (159)

≤ 2π
d
2

Γ
(
d
2

)e 1
2σminC

2 2

σminC
√
T + c

e−
σminCC

′
2 (160)

≤ K1

σminC
√
T + c

(
2πe

d

) d
2

e
1
2σminC

2−σminCC
′

2 . (161)

We bound Pθ∼πT
(
‖θ − θ?T ‖ ≥ C′√

T+c

)
. By (152) and (155),

Pθ∼πT
(
‖θ − θ?T ‖ ≥

C ′√
T + c

)
=

∫
θ∈B

(
θ?T ,

C′√
T+c

)c e−∑T
t=0 ft(θ) dθ∫

Rd e
−
∑T
t=0 ft(θ) dθ

(162)

≤ K1

σminC
√
T + c

(
LT + β

2π

) d
2
(

2πe

d

) d
2

e
1
2σminC

2−σminCC
′

2

(163)

=
K1

σminC
√
T + c

(
(LT + β)e

d

) d
2

e
1
2σminC

2−σminCC
′

2 , (164)

as needed. The requirements on C are C ≥ max

{
1,M

√
2d log

(
4d
ε

)
, 2d
σmin

}
, so the theorem

follows.

E.3 Online logistic regression: Proof of Lemma E.2 and Theorem 2.3

To prove Lemma E.2, we will apply Theorem E.1. To do this, we need to verify the conditions in
Theorem E.1.
Lemma E.4. Under the assumptions of Lemma E.2,

1. (Gradients have bounded variation) For all t, ‖∇ft(θ)‖ ≤M and
‖∇ft(θ)− E∇ft(θ)‖ ≤ 2M .
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2. (Smoothness) For all t, ft is 1
4M

2-smooth.

3. (Strong convexity in neighborhood) for T ≥ M4 log( dε )
8σ2 ,

P

(
∀θ ∈ B

(
θ0,

1

M

)
,

T∑
t=1

∇2ft(θ) �
σ

2e
TId

)
≥ 1− ε. (165)

Proof. First, we calculate the Hessian of the negative log-likelihood.

If ft(θ) = − log φ(yu>θ), then

∇ft(θ) =
−yφ(yu>θ)φ(−yu>θ)

φ(yu>θ)
u = −yφ(−yu>θ)u, (166)

∇2ft(θ) = φ(−yu>θ)φ(yu>θ)uu>. (167)

Note that ‖∇ft(θ)‖ ≤ ‖u‖ ≤M , so the first point follows.

To obtain the expected values, note that y = 1 with probability φ(u>θ0), and y = −1 with probability
1− φ(u>θ0), so that

E[∇2ft(θ)] = E(u,y)[φ(−yu>θ)φ(yu>θ)uu>] (168)

= Eu[φ(u>θ0)φ(−yu>θ)φ(yu>θ)uu> + (1− φ(u>θ0))φ(−yu>θ)φ(yu>θ)uu>]
(169)

= Eu[φ(u>θ)(1− φ(u>θ))uu>]. (170)

Suppose that Eu[φ(u>θ)(1− φ(u>θ))uu>] � σI .

Next, we show that
∑T
t=1∇2ft(θ0) is lower-bounded with high probability.

Note that
∥∥∇2ft(θ0)

∥∥ =
∥∥φ(−yu>θ0)φ(yu>θ0)uu>

∥∥
2
≤ 1

4M
2. (So the second point follows.) By

the Matrix Chernoff bound,

P

(
T∑
t=1

∇f2
t (θ0) 6� σ

2
TId

)
≤ de−

2·42
M4 T(σ2 )

2

= de−
8σ2T
M4 ≤ ε, (171)

when T ≥ M4 log( dε )
8σ2 .

Finally, we show that if the minimum eigenvalue of this matrix is bounded away from 0 at θ0, then it
is also bounded away from 0 in a neighborhood. To see this, note

φ(x+ c)(1− φ(x+ c))

φ(x)(1− φ(x))
=

ex+c

(1 + ex+c)2

(1 + ex)2

ex
≥ ec

e2c
= e−c. (172)

Therefore, if
∑T
t=1∇2ft(θ0) � σ′Id, then for ‖θ − θ0‖2 ≤

1
M , |u>θ − u>θ0| < 1 so by (172),

T∑
t=1

∇2ft(θ) =

T∑
t=1

φ(u>t θ)(1− φ(u>t θ))utu
>
t (173)

�
T∑
t=1

e−1φ(u>t θ0)(1− φ(u>t θ0))utu
>
t �

σ′

e
Id. (174)

Therefore,

P

(
∀θ ∈ B

(
θ0,

1

M

)
,

T∑
t=1

∇2ft(θ) 6�
σ

2e
TId

)
≤ P

(
T∑
t=1

∇f2
t (θ0) 6� σ

2
TId

)
≤ ε. (175)

30



Proof of Lemma E.2. Part 1 was already shown in Lemma E.4.

Lemma E.4 shows that the conditions of Theorem E.1 are satisfied with M ←[ 2M , L = M2

4 , r = 1
M ,

σmin = σ
2e , Tmin =

M4 log( 2d
ε )

8σ2 . Also, α = β. We further need to check that the condition on t

implies that C
√
t+βB

σmint+α
+ C√

t
< 1

M . We have, noting σmin ≤ L (the strong convexity is at most the
smoothness),

C
√
t+ βB

σmint+ α
+

C√
t
≤
(

C

σmin
+ 1

)
1√
t+ α

L

+
βB

σmin

(
t+ α

σmin

) , (176)

so it suffices to have each entry be < 1
2M , and this holds when t > 4M2

(
C
σmin

+ 1
)2

=

4M2
(

2eC
σ + 1

)2
and t > 2MBβ

σmin
= 4eMBα

σ .

Parts 2 and 3 then follow immediately.

Proof of Theorem 2.3. Redefine σ such that I(θ0) � σId holds. (By Remark E.3, this σ is a
constant factor times the σ in Theorem 2.3) Theorem 2.3 follows from Theorem 2.1 once we
show that Assumptions 1, 2, and 3 are satisfied. Assumption 1 is satisfied with L0 = α and
L = M2

4 . The rest will follow from Lemma E.2 except that we need bounds to cover the case

t ≤ Tmin := max

{
M4 log( 2d

ε )
8σ2 , 16e2M2C2

σ2 , 4eMBα
σ

}
as well.

Showing that Assumption 2 holds. Note L ≥ σ so C′√
T+α

L

≥ C′√
T+ 2eα

σ

. For t > Tmin,

part 2 of Lemma E.2 shows Assumption 2 is satisfied with c = α
L (where L = M2

4 ), A1 =

K1

σC

((
M2

4 T+α
)
e

d

) d
2

e
1
4eσC

2

and k1 = σC
4e .

For t ≤ Tmin, we use Lemma F.10 of [GLR18], which says that if p(x) ∝ e−f(x) in Rd and f is
κ-strongly convex and K-smooth, and x? = argminx f(x), then

Px∼p

‖x− x?‖2 ≥ 1

κ

(
√
d+

√
2t+ d log

(
K

κ

))2
 ≤ e−t. (177)

In our case,
∑t
s=0 fs(x) is α-strongly convex and α+ TminL-smooth, so

Px∼p (‖x− x?‖ ≥ γ) ≤ exp

[
−

[
(γ
√
κ−
√
d)2 − d log

(
K
κ

)
2

]]
(178)

= e
d
2 (−1+log(Kκ ))eγ

√
κd− γ

2κ
2 (179)

≤ e
d
2 (−1+log(Kκ ))−

(
γ−2
√

d
κ

)√
κd
. (180)

Thus for t ≤ Tmin,

Pθ∼πt(‖θ − θ?t ‖ ≥ γ) ≤ A2e
−k2γ (181)

with A2 = e
d
2 (−1+log(Kκ )) = e

d
2

(
−1+log

(
TminL+α

α

))
(182)

k2 =

√
κd√

Tmin + α
L

=

√
αd√

Tmin + α
L

. (183)

Take A = max{A1, A2} and k = min{k1, k2} and note that log(A), k−1 are polynomial in all
parameters and log(T ).
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Showing that Assumption 3 holds. For t > Tmin, part 3 of Lemma E.2 shows that with probability
at least 1− ε, (using L ≥ σ)

‖θ?t − θ0‖ ≤
C
√
t+ αB

σt/2e+ α
≤

 C

σ/2e
+

αB

σ/2e ·
√
t+ 2eα

σ

 1√
t+ α

L

. (184)

Now consider t ≤ Tmin. Since Ft is strongly convex, the minimizer θ?t of Ft is the unique point
where ∇Ft(θ?t ) = 0. Moreover, ‖

∑t
k=1∇fk(θ)‖ ≤ TminM for t ≤ Tmin. Therefore, since f0

is α-strongly convex, we have that ‖∇Ft(θ)‖ =
∥∥∥∇f0(θ) +

∑t
k=1∇fk(θ)

∥∥∥ > 0 for all ‖θ‖ >
TminMα−1. Therefore, we must have that ‖θ?t ‖ ≤ TminMα−1 for all t ≤ Tmin, and hence that

‖θ?t − θ0‖ ≤ TminMα−1 + B ∀t ≤ Tmin. (185)

Set D = 2 max

{
(TminMα−1 + B)

√
Tmin + α

L ,
C
σ/2e +

√
αB√
σ/2e

}
. Then Equations (184) and

(185) and the triangle inequality would imply that if t < τ , then ‖θ?t − θ?τ‖ ≤ D√
t+α

L

. To get

Assumption 3 to hold with probability at least 1 − ε for all t, τ < T , substitute ε ←[ εT . D is
polynomial in all parameters and log(T ).

F Discussion and future work

Comparison to using a regularizer. Recall that one issue in proving Theorem 2.1 is that we don’t
assume the ft are strongly convex. One way to get around this is to add a strongly convex regularizer,
and use existing results for Langevin in the strongly convex case. In the online case, one would have
to add εt||x− x̂t||2 to the objective, where x̂t is an estimate of the mode x?t . Assuming we have such
an estimate, using results on Langevin for strong convexity, to get ε TV-error, we also require Õ

(
1
ε6

)
steps per iteration. (Specifically, use [DMM19, Corollary 22], with strong convexity m = εt to get
that Õ

(
1
ε3

)
iterations are required to get KL-error ε, and apply Pinsker’s inequality.)

Preconditioning. Note our result does not hold if the covariance matrix of the ut’s distribution be-
comes much more ill-conditioned over time, as is the case in certain Thompson sampling applications
[RVRK+18].

We would like to obtain similar bounds under more general assumptions where the covariance matrix
could change at each epoch and be ill-conditioned. This type of distribution arises in reinforcement
learning applications such as Thompson sampling [DFE18], where the data is determined by the user’s
actions. If the user favors actions in certain “optimal" directions, in some cases the distribution may
have a much smaller covariance in those directions than in other directions, causing the covariance
matrix of the target distribution to become more ill-conditioned over time.

Improved bounds for strongly convex functions. Suppose that we dropped the requirement of
independence. Note that if we use SAGA-LD with the last sample from the previous epoch, we have
a warm start for the previous distribution, and would be able to achieve TV error that decreases as T
with ÕT (1) time per epoch. It seems possible to reduce the TV error toO

(
ε

t
1
6

)
this way, and possibly

to O
(
ε

t
1
4

)
with stronger drift assumptions. These guarantees may also extend to subexponential

distributions.

Distributions over discrete spaces. There has been work on stochastic methods in the setting
of discrete variables [DSCW18] that could potentially be used to develop analogous theory in the
discrete case.

Non-compact distributions One can also consider the problem of sampling from log-densities
which are a sum of T functions with compact support (online sampling from such distributions was
considered in [NR17], but their running time bounds are not logarithmic in T at each epoch). One
cannot directly apply our results to compactly supported log-densities, since they do not satisfy
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our Lipschitz gradient assumption (Assumption 1). At the very least we would have to modify our
algorithm, for example by rejecting steps proposed by our algorithm that would otherwise cause the
Markov chain to leave the support of the target distribution. A more challenging issue would be that
restricting the distribution to a compact support can cause the distribution’s covariance matrix to
become increasingly ill-conditioned as the number of functions t increases, even if the support is
convex. To get around this problem we would need to modify our algorithm by including an adaptive
pre-conditioner which changes along with the changing target distribution.

Necessity of drift condition (Assumption 3). Since we do not assume that the individual functions
fk are strongly convex, the mode (or, alternatively, the mean) of the target distribution cannot be
controlled by the mode (or mean) of the individual functions. For instance, in logistic regression,
all of the individual functions have “mode” at ±∞ in the direction of the data vector. Therefore,
unlike in the strongly convex case, a condition on the mode of each individual function fk does not
suffice for many non-strongly convex applications including logistic regression. Rather, the mode
depends on the probability distribution from which the individual functions are drawn. We show that
Assumption 3 holds in Section 2.4 for the special case of Bayesian logistic regression, and give more
general conditions for when Assumption 3 holds in Theorem E.1.

G A simple example where our assumptions hold

As a simple example to motivate our assumptions, we consider the Bayesian linear regression
model yt = z>t θ0 + wt, where yt ∈ R1 is the dependent variable, zt ∈ Rd the independent
variable, and wt ∼ N(0, 1) the unknown noise term. The Bayesian posterior distribution for the
coefficient θ0 is πt(θ) ∝ e−

∑t
k=1 fk(θ) = e−[θ−µ]>Σ−1[θ−µ] where fk(θ) = (yk − zkθ)2 for each

k, Σ−1 =
∑T
k=1 zkz

>
k and µ = Σ1/2

∑T
k=1 ykzk. Hence, the posterior πt has distribution N(µ,Σ).

While computing Σ requires at least T ×d2, computing a stochastic gradient with batch size b requires
d× b operations. Therefore, one can hope to sample in fewer than T × d2 operations (we prove this
in Theorem 2.1).

We now show that our assumptions hold for this example. For simplicity, we assume that the
dimension d = 1, zt = 1 for all t, and assume an improper “flat" prior, that is, f0 = 0. At each epoch
t ∈ {1, . . . , T}, the Bayesian posterior distribution for the coefficient θ0 is πt(θ) ∝ e−

∑t
k=1 fk(θ),

which a simple computation shows is the normal distribution with mean θ0 +
∑t
k=0 wk
t and variance

1
2t ≤

1
t+1 . Thus, Assumption 1 is satisfied with L = 1 and Assumption 2 is satisfied with C = 2.

To verify Assumption 3, we note that x?t =
∑t
k=1 wk
t , and thus x?t ∼ N(0, 1

t ). We can then apply
Gaussian concentration inequalities to show that D = 4 log

1
2 ( log(T )

δ ) with probability at least 1− δ.

H Hardness

Hardness of optimization with stochastic gradients. The authors of [AWBR09] consider the
problem of optimizing an L-Lipschitz function F : K → R on a convex body K contained in an
`∞ ball of radius r > 0. Given an initial point in K and access to a first-order stochastic gradient
oracle with variance σ2, they show that any optimization method, given a worst-case initial point in
K, requires at least Ω(L

2σ2d
δ2 ) calls to the stochastic gradient oracle to obtain a random point x̂ such

that E[F (x̂)− F (x?)] ≤ δ.

Hardness in our setting. What is the minimum number of gradient evaluations required to sample
from a target distribution satisfying Assumptions 1–3 with fixed TV error ε > 0, given only access to
the gradients ∇fk, 0 ≤ k ≤ T ? In this section we show (informally) by counterexample that one
needs to compute at least Ω(T ) gradients to sample with TV error ε ≤ 1

20 . As a counterexample,
consider the Bayesian linear regression posterior considered in Section G, with d = 1. Suppose
that one only computes stochastic gradients using gradients with index in a random set Si =
{τ1, . . . , τT

2
}, of size T

2 , where each element of Si is chosen independently from the uniform
distribution on {1, . . . , T}. Then the mean of these stochastic gradients (conditioned on the subset
Si) are gradients of a function − log(π̂(i)), for which π̂(i) is the density of the normal distribution

N(µi,
1
2t ), where the mean µi =

∑
k∈Si

wk

t ∼ N(0, 1
t ) is itself (conditional on Si) a random variable.
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Now consider two independent random subsets S1 and S2 with corresponding distributions π̂(1) and
π̂(2). The means of the distributions π̂(1) and π̂(2) (conditional on S1 and S2) are independent random
variables µ1, µ2 ∼ N(0, 1

t ). Hence, the difference in their means µ1 − µ2 ∼ N(0, 2
t ) is normally

distributed with standard deviation
√

2√
t
. Thus, with probability at least 1

2 , we have |µ1 − µ2| ≥ 1√
t
.

Therefore, since (conditional on S1, S2) we have π̂(i) ∼ N(µi,
1
2t ) for i ∈ {1, 2}, we must have

that ‖π̂(1) − π̂(2)‖TV ≥ 1
10 whenever |µ1 − µ2| ≥ 1√

t
. That is, ‖π̂(1) − π̂(2)‖TV ≥ 1

10 occurs with
probability at least 1

2 . Therefore, one cannot hope to sample from πT with TV error ε < 1
20 by using

the information from only T
2 gradients. One therefore needs to compute at least Ω(T ) gradients to

sample from πT with TV error ε < 1
20 .

I Miscellaneous inequalities

We give some inequalities used in the proofs in Section E.
Lemma I.1. Suppose that Xt are a sequence of random variables in Rd and for each t,
‖Xt − E[Xt|X1:t−1]‖∞ ≤ M (with probability 1). Let ST =

∑T
t=1 E[Xt|X1:t−1] (a random

variable depending on X1:T ). Then

P

(∥∥∥∥∥
T∑
t=1

Xt − St

∥∥∥∥∥
2

≥ c

)
≤ 2de−

c2T
2M2d . (186)

Proof. By Azuma’s inequality, for each 1 ≤ j ≤ d,

P

(∣∣∣∣∣
T∑
t=1

(Xt)j − (St)j

∣∣∣∣∣ ≥ c
)
≤ 2e−

c2T
2M2 . (187)

By a union bound,

P

(∥∥∥∥∥
T∑
t=1

Xt − St

∥∥∥∥∥
2

≥ c

)
≤

d∑
j=1

P

(∣∣∣∣∣
T∑
t=1

(Xt)j − (St)j

∣∣∣∣∣ ≥ c√
d

)
≤ 2de−

c2T
2M2d . (188)

Lemma I.2. Suppose that π is a distribution with Pθ∼π(‖θ − θ0‖ ≥ γ) ≤ Ae−kγ , for some θ0.
Then

Eθ∼π[‖θ − θ0‖2] ≤
(

2 +
1

k

)
log

(
A

k2

)
.

Proof. Without loss of generality, θ0 = 0. Then

Eθ∼π[‖θ‖2] =

∫ ∞
0

2γPθ∼π(‖θ‖ ≥ γ) dγ (189)

≤ γ0 +

∫ ∞
γ0

2γPθ∼π(‖θ‖ ≥ γ) dγ (190)

≤ γ0 +

∫ ∞
γ0

2γAe−kγ dγ by assumption (191)

= γ0 +A

(
−2γ

k
e−kγ

∣∣∣∞
γ0
−
∫ ∞
γ0

−2

k
e−kγ dγ

)
integration by parts (192)

= A

(
2γ0

k
e−kγ0 +

2

k2
e−kγ0

)
. (193)

Set γ0 =
log( A

k2
)

k . Then this is ≤
(
2 + 1

k

)
log
(
A
k2

)
, as desired.
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