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S1 Content

This document completes the presentation of PA-GAN in the main paper with the following:

• Theoretical proofs for Lemma 1 and Theorem 1 in Sec. S2;
• Implementation details of PA-GAN in Sec. S3;
• Additional ablation studies in Sec. S4;
• Analysis of PA effectiveness as regularizer on the toy example in Sec. S5;
• Exemplar synthetic images in Sec. S6;
• Results for the IS [20] and KID [2] metrics in Sec. S7;
• Network architectures and hyperparameter settings in Sec. S8.

S2 Theoretical Framework of PA-GAN

S2.1 Information Theory Viewpoint on the JS Divergence

Apart from quantifying distributions’ similarity, the JS divergence has an information theory interpre-
tation that inspires our approach. In accordance with the binary classification task of the discriminator,
we introduce a binary random variable s with a uniform distribution Ps. Associating s = 0 and s = 1
respectively with x ∼ Pd and x ∼ Pg, we obtain a joint distribution function

Px,s(x, s)
∆
=

Pd(x)δ[s] + Pg(x)δ[s− 1]

2
, (1)

where δ[·] stands for the Kronecker delta function. The marginal distribution of Px,s with respect to
x (a.k.a. the mixture distribution) is equal to

Pm
∆
= Ps(s = 0)Pd + Ps(s = 1)Pg =

Pd + Pg

2
. (2)

Computing the mutual information of the two random variables s and x based on Px,s is identical to
computing the JS divergence between Pd and Pg, i.e.,

I(x; s) =
EPm

[pd(x) log pd(x)] + EPm
[pg(x) log pg(x)]

2
= DJS (Pd‖Pg) , (3)

where pd(x) and pg(x) are density functions of Pd and Pg with respect to Pm.1 The minimum of the
JS divergence DJS (Pd‖Pg) equal to zero is attainable iff Pd = Pg, while zero mutual information
indicates the independence between x and s, yielding Px,s(x, s) = Pm(x)Ps(s).

Exploiting the equality presented in (3), we proceed with proving Lemma 1, i.e., a series of JS
divergence equalities.

1Both Pd and Pg are absolutely continuous with respect to Pm. Therefore, their densities exist.
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S2.2 Proof for Lemma 1

Lemma 1. Let s ∈ {0, 1} denote a random bit with uniform distribution Ps(s) = δ[s]+δ[s−1]
2 , where

δ[s] is the Kronecker delta. Associating s with x, two joint distributions of (x, s) are constructed as

Px,s(x, s)
∆
=

Pd(x)δ[s] + Pg(x)δ[s− 1]

2
, Qx,s(x, s)

∆
=

Pg(x)δ[s] + Pd(x)δ[s− 1]

2
. (4)

Their JS divergence is equal to

DJS (Px,s‖Qx,s) = DJS (Pd‖Pg) . (5)

Taking (4) as the starting point and with sl being a sequence of i.i.d. random bits of length l, the
recursion of constructing the paired joint distributions of (x, sl)

Px,sl(x, sl)
∆
= Px,sl−1

(x, sl−1)δ[sl]/2 + Qx,sl−1
(x, sl−1)δ[sl − 1]/2

Qx,sl(x, sl)
∆
= Qx,sl−1

(x, sl−1)δ[sl]/2 + Px,sl−1
(x, sl−1)δ[sl − 1]/2

(6)

results into a series of JS divergence equalities for l = 1, 2, . . . , L, i.e.,

DJS (Pd‖Pg) = DJS (Px,s1‖Qx,s1) = · · · = DJS (Px,sL‖Qx,sL) . (7)

Proof. Starting from the single bit s, the two joint distributions Px,s and Qx,s differ from each other
by their opposite way of associating the bit s ∈ {0, 1} with the data and synthetic samples. Their
marginals with respect to x are identical and equal the mixture distribution Pm, being neither the
data nor the model distribution, in contrast to the framework of [6].

The joint distribution Px,s has yielded the mutual information I(x; s) with the equality in (3). By
analogy, we compute the mutual information Ĩ(x; s) between x and s which follow Qx,s with the
equality:

Ĩ(x; s) = DJS (Pd‖Pg) . (8)

The combination of (3) and (8) leads to

DJS (Pd‖Pg) =
I(x; s) + Ĩ(x; s)

2
. (9)

Rewriting mutual information as KL divergence yields:

DJS (Pd‖Pg) =
DKL (Px,s‖PmPs) +DKL (Qx,s‖PmPs)

2
, (10)

where Pm and Ps are the common marginals of Px,s and Qx,s with respect to x and s. By further
identifying

Pm(x)Ps(s) =
Px,s(x, s) + Qx,s(x, s)

2
(11)

and plugging it into (10), we finally reach to

DJS (Pd‖Pg) = DJS (Px,s‖Qx,s) (12)

by the definition of JS divergence.

It is worth noting that the equivalence holds even if the feasible solution set of Pg determined by
G does not include the data distribution Pd. This is of practical interest as it is often difficult to
guarantee the fulfillment of such premise when modeling G by means of neural networks.

Replacing the data and model distributions Pd and Pg respectively with Px,s and Qx,s, we can
systematically add a new bit with the same derivation as above. Repeating this procedure L times
eventually yields the recursively constructed {Px,sl ,Qx,sl}l=1,...,L followed by a sequence of JS
divergence equalities

DJS (Pd‖Pg) = · · · = DJS

(
Px,sl−1

‖Qx,sl−1

)
= · · · = DJS (Px,sL‖Qx,sL) . (13)
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S2.3 Proof for Theorem 1

Theorem 1. The min-max optimization problem of GANs [8] is equivalent to

min
G

max
D

EPx,sl
{log [D(x, sl)]}+ EQx,sl

{log [1−D(x, sl)]} ∀l ∈ {1, 2, . . . , L}, (14)

where the two joint distributions, i.e., Px,sl and Qx,sl , are defined in (6) and the function D maps
(x, sl) ∈ X × {0, 1}l onto [0, 1]. For a fixed G, the optimal D is

D∗(x, sl) =
Px,sl(x, sl)

Px,sl(x, sl) + Qx,sl(x, sl)
=

Pd(x)

Pd(x) + Qd(x)
, (15)

whereas the attained inner maximum equals DJS (Px,sl‖Qx,sl) = DJS (Pd‖Pg) for l = 1, 2, . . . , L.

Proof. Analogous to the proofs for GANs [8, Sec.4], we can construct a binary classification task for
computing JS divergences, i.e.,

DJS (Px,sl‖Qx,sl) = max
D

EPx,sl
{log [D(x, sl)]}+ EQx,sl

{log [1−D(x, sl)]} ∀l, (16)

where the optimal D∗ equals

D∗(x, sl) =
Px,sl(x, sl)

Px,sl(x, sl) + Qx,sl(x, sl)

(a)
=

Pd(x)

Pd(x) + Qd(x)
. (17)

The equality (a) in above is based on the recursive construction of Px,sl and Qx,sl from Pd and Pg.

The equalities in (5) imply that for any given pair (Pd,Pg) the correspondingly constructed joint
distribution pair (Px,sl ,Qx,sl) yields the same JS divergence. For this reason, we can use the two JS
divergences interchangeably as the objective function while optimizing Pg, yielding

min
G

max
D

EPd
{log [D(x)]}+ EPg

{log [1−D(x)]}

≡ min
G

max
D

EPx,sl
{log [D(x, sl)]}+ EQx,sl

{log [1−D(x, sl)]} ∀l. (18)

S2.4 Generalization of Lemma 1

In this work, we base the development of PA on Lemma 1 and Theorem 1. From a broader perspective,
the random bits s can be any generic random variables applicable for generative modelling.
Proposition 1. Let s denote a random variable with two unequal distributions Ps,a and Ps,b. Together
with the two distributions Pd and Pg of x, two joint distributions are constructed as follows:

Px,s(x, s) =
Pd(x)Ps,a(s) + Pg(x)Ps,b(s)

2

Qx,s(x, s) =
Pd(x)Ps,b(s) + Pg(x)Ps,a(s)

2

. (19)

The mutual information I(x; s) and Ĩ(x; s), with respect to Px,s and Qx,s, are minimized to zero if
Pd = Pg. When Ps,a and Ps,b have non-overlapped supports, the JS divergence between Px,s and
Qx,s equals the JS divergence between Pd and Pg, i.e., DJS (Pd‖Pg) = DJS (Px,s‖Qx,s).

Proof. The mutual information between x and s is minimized and equal zero if they are independent.
Under the condition Ps,a 6= Ps,b, the two joint distributions Px,s and Qx,s become factorizable if
Pd = Pg. Analogous to the proof of Lemma 1, the JS divergence between Px,s and Qx,s equals the
mean of I(x; s) and Ĩ(x; s), i.e.,

DJS (Px,s‖Qx,s) =
I(x; s) + Ĩ(x; s)

2
. (20)

Expressing mutual information as KL divergence plus the condition that Ps,a and Ps,b have non-
overlapped supports, we reach to (3) for both I(x; s) and Ĩ(x; s) and thereby conclude the proof.

Lemma 1 is a special case of Proposition 1, namely, Ps,a(s) = δ[s] and Ps,b(s) = δ[s− 1].
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S3 Implementation Details of PA-GAN

S3.1 Input and Feature Space Augmentation

As being presented in Sec. 3.2, we spatially replicate each augmentation bit and perform depth
concatenation with the input x or its learned feature maps at the intermediate hidden layers. After
concatenation along the channel axis, the input layer or the hidden layer then process such augmented
input. For instance, in the case of a convolutional layer, it processes the augmented input as

conv(φ(x), s1, . . . , sl) = conv(φ(x)) +
∑
l

conv(sl) (21)

where the kernel width/height, stride and padding type used for filtering the augmentation bits are the
same as that of φ(x).2 Depending on the augmentation space, here φ(x) collectively denotes either
the input x or its feature maps. When spectral normalization is in use, the power method is applied to
estimate the largest singular value of the filter matrix that processes the augmented input. In case of
augmenting the input to a residual block, the augmentation bits are passed along with x or its feature
maps into the first convolutional layer in the main branch as well as into the shortcut connection. We
bypass the shortcut connection if it is an identity mapping.

When progression scheduling increases the augmentation level, a new set of filter coefficients are
instantiated to process the new augmentation bit according to (21). They are initialized by random
Gaussian variables with the mean and variance computed from the existing filter coefficients for φ(x).
Before filtering, each augmentation bit can be additionally modulated by two trainable parameters
{λl, βl}. The scaling parameter λl is initialized with the mean value of the previous ones, where the
first one, i.e., λ1, is initialized as one. The offset parameters {βl} are always initialized as zeros.

S3.2 Mini-batch Discrimination

Each mini-batch is constructed with the same number of real data samples, synthetic samples and bit
sequences. Each bit sequence is randomly sampled and associated with one real and one synthetic
sample. Based on the checksums of the formed pairs, we can decide their correct class and feed it
into the discriminator to compute the cross-entropy loss. This way of generating (x, s) guarantees a
balanced number of TRUE/FAKE samples, forming the two mini-batches Btr and Bfk.

S3.3 Warm-up Phase of Progression

At the beginning of the new augmentation level the discriminator is ignorant about this disruptive
change and as the bit s = 1 flips the reference label it will lead to about 50% discriminator errors
in one mini-batch. Aiming at a smooth transition from the current augmentation level to the new
one, here we introduce two warm-up mechanisms that are usable when the discriminator exhibits
deficiency in timely coping with the new augmentation level.

The first mechanism instantiates an Adam optimizer, independent of the ones for D and G, to solely
train the newly introduced weights right after progressing to the new level. It takes the D loss and
can use the same learning hyperparameters as those of the D optimizer. After multiple iterations
(e.g., 1k), we continue with the original alternation between the D and G optimizer, where the new
weights together with the existing ones of the discriminator network are handled by the D optimizer.

According to Lemma 1, the augmentation bits shall follow a uniform distribution, i.e., P(s = 1) = p
and P(s = 0) = 1 − p with p = 0.5. As the new augmentation bit taking on the value one causes
discriminator errors, the second mechanism temporally adopts a non-uniform distribution when
kicking off a new augmentation level. Namely, we can on purpose create more 0s than 1s by linearly
increasing p from 0 and 0.5 within a given number of iterations, e.g., 5k.

S3.4 Loss Functions

In this work, we experimented of using PA with the following loss functions of GANs.

2https://github.com/boschresearch/PA-GAN/blob/master/pagan_ops.py
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Non-saturating (NS) loss. The cross-entropy loss for D is given as

min
D
−EPx,sl

{logD(x, sl)} − EQx,sl
{log [1−D(x, sl)]} . (22)

Since both distribution Px,sl and Qx,sl involve synthetic samples, the non-saturating (NS) loss for
G [8] is reformulated as

min
G
−EQx,sl

{logD(x, sl)} − EPx,sl
{log [1−D(x, sl)]} . (23)

During training, the two expectations are approximated by averaging over the samples in the
TRUE/FAKE mini-batches Btr and Bfk, which construction is discussed in Sec. S3.2.

Hinge loss. Instead of cross-entropy loss, D can also be trained using the hinge loss

min
D

EPx,sl
{max [0, 1−D(x, sl)]}+ EQx,sl

{max [0, 1 +D(x, sl)]} . (24)

Accordingly, the G loss is adapted to

min
G

EPx,sl
{D(x, sl)} − EQx,sl

{D(x, sl)} . (25)

WGAN-GP. In the main paper, we have focused on generative modeling with JS divergence. It
is also possible to interchange the JS divergence with the Wasserstein distance and then cast GAN
training into WGAN-GP training [1]. Wasserstein distance is weaker than JS divergence and D
termed critic in WGAN no longer solves the classification task. So, we alternatively exploit the
stochastic model averaging role of the augmentation bits rather than their regularization role.

Briefly, with the Kantorovich-Rubinstein duality, minimizing the Wasserstein distance between Pd

and Pg is transformed into the following two-player game

min
G

max
D

EPx,sl
{D(x, sl)} − EQx,sl

{D(x, sl)} . (26)

Ideally, D in the context of WGAN should be 1-Lipschitz continuous. As a pragmatic relaxation
on this constraint, a gradient penalty (GP) [9] is commonly added to the objective function when
optimizing D.

Within the same mini-batch of x ∼ Pd and x ∼ Pg, we draw M mini-batches s ∼ Ps of the same
size. Combining each of them with the data and synthetic samples, we create M mini-batches for
approximating the expectations in the objective function

EPx,sl
{D(x, sl)} − EQx,sl

{D(x, sl)}

≈ Lm
∆
=

1

|Btr,m|
∑

(x, sl) ∈ Btr,m

D(x, sl)−
1

|Bfk,m|
∑

(x, sl) ∈ Bfk,m

D(x, sl), m = 1, . . . ,M.

(27)

The critic D of WGAN-GP is trained to maximize the averaged loss Lm across the M mini-batches,
making use of stochastic model averaging. The generator G is then trained to minimize the maximum
of {Lm}, m = 1, . . . ,M , i.e. picking the best performing case of the critic, as a good quality of
the critic D is important to the optimization process of G in the context of WGAN. With single bit
augmentation of PA (feat) and two draws per minibatch, we can improve WGAN-GP of SN DCGAN
on CIFAR10 from 25.0 to 23.9 FID. Here, we boost the diversity of the two draws by choosing them
with opposite checksums.

S4 Additional Ablation Studies

In this section, we provide additional ablation studies of PA. Complementary to Table 1 in Sec. 4.1.,
an ablation study on the choice of augmentation space is conducted in Sec. S4.1, evaluating PA across
input, low- and high-level feature space augmentation. One important finding in Sec. 4.2. of the main
paper is that dropout and PA are complementary and mutually beneficial. In Sec. S4.2, we report
our detailed investigation on the dropout regularization followed by evaluation of its combination
with PA across the datasets and architectures. The two time-scale update rule (TTUR) [10], updating
the discriminator and generator with different learning rates, is notoriously helpful to stabilize GAN
training. In Sec. S4.3, we examine the performance of PA under different TTURs and then compare
it with the adaptive learning rate.
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Table S1: Median FIDs of input and feature space augmentation across five random runs. We
experiment with augmenting input and features at different intermediate layers, e.g. featN/4 denotes
layer with the spatial dimension N/4, where N is the input image dimension.

PA
Method Dataset

7 input (N) featN/2 featN/4 featN/8
CIFAR10 26.0 22.2 22.8 22.7 22.6

SN DCGAN - NS Loss
CELEBA-HQ 24.3 20.8 19.6 18.8 18.8

CIFAR10 18.8 16.1 16.3 16.3 -
SA GAN (sBN) - Hinge Loss

CELEBA-HQ 17.8 15.4 15.4 16.4 15.8

Table S2: Median FIDs (across five random runs) of Dropout and SpatialDropout applied on the
input layer or intermediate layers with different keep rates on CIFAR10 using SN DCGAN.

Dropout SpatialDropout
Keep rate

input (N) featN/2 featN/4 featN/8 input (N) featN/2 featN/4 featN/8

1.0 26.0

0.95 25.5 25.6 24.1 25.3 26.0 25.3 24.9 26.0

0.9 26.4 25.1 23.4 24.6 26.2 25.3 24.0 25.8

0.7 28.0 25.6 22.1 24.4 27.6 26.1 23.4 25.3

0.5 27.1 25.9 23.1 24.0 29.7 26.9 24.1 25.4

0.3 27.7 25.6 22.4 24.6 31.3 28.8 24.6 25.8

0.1 32.3 28.6 24.3 23.9 45.7 37.7 28.8 25.8

S4.1 Ablation Study on Augmentation Space

In the main paper, in Table 1 of Sec. 4.1. we reported the FID scores achieved by PA, by augmenting
either the input - PA (input), or its features with spatial dimension N/8 - PA (featN/8), where N
is the input image dimension (see Sec. S8 for the detailed configuration). Here, we further perform
the ablation study on the choice of the augmentation space across two datasets (CIFAR10 and
CELEBA-HQ) and two architectures (SN DCGAN and SA GAN). From Table S1, we observe the
stable performance improvement across all configurations, inline with Table 1 of the main paper. The
performance difference across different feature space augmentations is generally small (less than one
FID point).

S4.2 Ablation Study on Dropout and its Combination with PA

In Sec. 4.2. of the main paper, we have shown the effectiveness of using dropout, particularly, in
combination with the proposed PA. In this part we report further ablations for both techniques.

We start from applying dropout at the input layer and different intermediate layers. Note that, in
contrast to dropout, we apply PA directly on the input and not on the input layer. In addition, we
experiment with different keep rates of the dropout, i.e. {0.1, 0.3, 0, 5, 0.7, 0.9, 0.95}. Table S2
reports the FID scores achieved with different dropout configurations. In contrast to PA (see Table S1
or Table 1 in the main paper), the performance of dropout is very dependent on the applied layer and
the selected keep rate. The feature space with the spatial dimension N/4 together with the keep rate
0.7 is the best performing setting on CIFAR10 with SN DCGAN.

We further note that the binary dropout mask is independently drawn for each entry of the input or
intermediate layer outputs (each convolution feature map activation is "dropped-out" independently).
In addition, we also experiment with the spatial dropout (SpatialDropout) [21], which randomly
drops the entire feature maps instead of individual elements. The results in Tables S2 show that the
entry-wise dropout outperforms the spatial dropout in the context of GAN training, i.e., FID 22.1 vs.
23.4. Therefore we only consider the entry-wise dropout for comparison with PA in the main paper.

In Table 3 of the main paper, we have successfully combined dropout at its best setting with PA on
CIFAR10 with SN DCGAN and SA GAN. Table S3 and S4 additionally report the FID improvements
where dropout is applied at different intermediate layers and keep rates. In all configurations, PA
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Table S3: Median FIDs (across five random runs) of PA together with dropout applied on different
intermediate layers with the keep rate 0.7 and on CIFAR10 and CELEBA-HQ.

-Dropout [19]
Method Dataset PA GAN

featN/8 featN/4 featN/2
∆PA

7 26.0 24.4 22.1 25.6 2.0
SN DCGAN - NS Loss

featN/8 22.6 21.3 20.6 22.5 1.1

7 18.8 − 16.2 17.1 2.2
SA GAN (sBN) - Hinge Loss

CIFAR10

featN/4 16.3 − 15.6 15.7 0.7

7 24.3 − 24.0 − 0.3
SN DCGAN - NS Loss CELEBA-HQ

featN/8 18.8 − 18.1 − 0.7

∆PA 3.8 3.1 2.7 2.3

Table S4: Median FIDs (across five random runs) of PA together with dropout applied on different
intermediate layers and keep rates on CIFAR10 with SN DCGAN.

Dropout input(N) featN/2 featN/4 featN/8
PA(featN/8) 7 3 7 3 7 3 7 3

Keep Rate

0.9 26.4 22.6 25.1 21.9 23.4 21.2 24.6 21.6
0.7 28.0 22.9 25.6 21.3 22.1 20.6 24.4 22.5
0.5 27.1 23.1 25.9 22.3 23.1 21.2 24.0 22.1

∆PA 4.5 3.7 1.9 2.3

Table S5: Median FIDs (across five random runs) of different learning rates (TTURs) on CIFAR10
with SN DCGAN. Italic and bold denotes the best FIDs w/o and with PA respectively, underline denotes
the default learning rate setting of SN DCGAN.

H
HHHHlrg

lrd
PA (featN/8) 10−4 2 × 10−4 4 × 10−4 10−3 ∆PA

10−4 7 27.0 25.8 25 .3 27.0
3.5

3 23.3 22.2 22.6 22.9

2 × 10−4 7 26.7 26.0 26.2 27.2
3.1

3 24.8 22.6 22.3 24.0

4 × 10−4 7 28.7 26.1 26.3 28.2
3.6

3 24.7 23.3 22.9 24.2

10−3 7 28.5 27.0 26.4 27.4
2.9

3 25.7 23.6 23.4 25.0

provides complementary gains. Note that, for CELEBA-HQ Dropout alone in Table S3 only has a
marginal performance improvement over the baseline, whereas its combination with PA leads to larger
performance boost. Overall, Table S3, S4 plus Table 3 in the main paper confirms the effectiveness of
exploiting both techniques. Adding PA is beneficial independent of the dropout settings (keep rate
and applied layer), it helps to reduce the FID sensitivity to the dropout hyperparameter choice.

S4.3 Ablation Study on Learning Rates

Table S5 compares the performance achieved by using different learning rate configurations. The
improvement achieved by PA is consistent across different settings (∼ 3 FID points), showing its
robustness to different update rules. Compared to the best performing TTUR, PA reduces the FID
faster over iterations (see Figure S1) without requiring extra hyperparameter search for the best
update rule.

Table S5 has also shown a stable FID performance of SN DCGAN with the generator learning rate
lrg = 2 × 10−4 and the discriminator learning rate lrd ∈ {10−4, 2 × 10−4, 4 × 10−4}. With
this identification, we fix lrg = 2 × 10−4 and reuse the progression scheduling to adaptively
reduce lrd from 4× 10−4 to 10−4 with the learning rate decay of 0.8 (in our experiments the best
performing learning rate decay among {0.99, 0.95, 0.9, 0.8, 0.7}). Figure S1 shows the effectiveness
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- Adpt lrd
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- PA (featN/8) - Dropout (featN/4)

Figure S1: FID learning curves (mean FIDs with one standard deviation across five random runs) of
PA, TTUR, adaptive learning rate and Dropout on CIFAR10 with SN DCGAN.

of progression scheduling in assisting both the learning rate adaptation and progressive augmentation
for an improved performance. PA outperforms learning rate adaptation as well as the tuned TTUR [10]
, i.e. FID 22.6 vs. 24.0 vs. 25.3. Its combination with Dropout delivers the best performance in this
experiment, i.e., 20.6.

S5 Effectiveness of PA as a Regularizer

Here we exploit progressive augmentation on a toy classification task to empirically illustrate its
regularization benefits discussed in Sec. 3 of the main paper. Specifically, we focus on binary
classification task taking the alike Cat and Dog images from CIFAR10 [12], which represent the
TRUE (real) and FAKE (synthetic) data samples, and train the discriminator network of SN DCGAN
with the cross-entropy loss to tell them apart. Figure S2 depicts the discriminator loss (D loss)
behaviour over iterations on the training and test sets. It shows that the discriminator very quickly
becomes over-confident on the training set and that overfitting takes place after 1k iterations.

In order to regularize the discriminator we exploit the proposed progressive augmentation (PA),
augmenting either the input - PA (input), or its features with spatial dimension N/8 - PA (featN/8),
where N is the input image dimension. For a comparison purpose, we also experiment with the
Dropout [19] regularization applied on featN/4 layer with the keep rate 0.7 (the best performing
rate in our experiments). Both techniques resort to random variables for regularization. The former
randomly removes features, while the latter augments them with additional random bits and adjusts
accordingly the class label. In contrast to Dropout, PA exhibits a long lasting regularization effect by
means of progression. Each rise of D loss coinciding with an iteration at which the augmentation
level increases (every 2k iterations) and then gradually reduces after the discriminator timely adapts to
the new bit. At the level one augmentation, both PA (input) and PA (featN/8) start from the similar
overfitting stage. Combining the bit s directly with high-level features eases checksum computation.
As a result, the D loss of PA (featN/8) reduces faster, but making its future task more difficult due
to overfitting to the previous augmentation level. On the other hand, PA (input) let the bits pass
through all layers, and thus its adaptation to augmentation progression improves over iterations. In
the end, both PA (input) and PA (featN/8) lead to similar regularization effect. In addition, we
compare PA with the Reinit. baseline, where every 2k iterations all weights are reinitialized with
Xavier initialization [7]. Compared to PA, using Reinit. strategy leads to longer adaptation time
(the D loss decay is much slower), potentially providing non-informative signal to the generator and
thus slowing down the training.

In Figure S3 we explore the stochastic nature of Dropout and PA. Each realization of the dropout
mask or the augmentation bit sequence s changes the loss function landscape, varying its gradient
with respect to the synthetic sample (i.e. the Dog class in this case). With the same experimental
setup, we now assess the correlation of the gradients based on the first four eigenvalues of their
correlation matrix - λi, i = 0, . . . , 3, i.e. computing the averaged square roots of their ratios
γ̄

∆
= 1

3

∑3
i=1

√
λ0/λi. Figure S3 depicts the histograms of γ̄ among 103 instances. PA has more

instances with smaller γ̄ in comparison to Dropout, indicating a more diverse set of gradients,
exploitable by the generator to approach the data distribution. In contrast to Dropout, in PA the
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Figure S2: Behaviour of the discriminator loss (D loss) with and w/o PA and in comparison to
Dropout, using the D architecture of SN DCGAN. See Sec. S5 for details.
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Figure S3: Histograms of averaged square roots of eigenvalue ratios computed from gradient
correlation matrices for PA and Dropout. Smaller correlation values indicate a more diverse set of
gradients exploitable by the generator to approach the data distribution. See Sec. S5 for details.

Table S6: KID/IS improvements with PA across different datasets and network architectures, in
accordance with Table 1 in the main paper.

KID

Method PA F-MNIST CIFAR10 CELEBA-HQ T-ImageNet ∆PA

SN DCGAN 7 0.004 0.016 0.011 -
0.003NS Loss input 0.002 0.013 0.007 -

[16] feat 0.002 0.013 0.005 -
SA GAN (sBN) 7 - 0.011 0.006 0.035

0.002Hinge Loss input - 0.008 0.004 0.033
[22] feat - 0.009 0.004 0.033

IS

CIFAR10 T-ImageNet ∆PA

7.6 -
0.27.8 -

7.8 -
8.4 8.8

0.38.7 9.1
8.6 9.2

augmentation random bits determine the target class in binary classification and the discriminator
is trained to comprehend s together with x, leading to the richer loss function landscape. Between
input and feature space augmentation, the former yields more diverse gradients than the latter as s is
passed through all layers.

S6 Exemplar Synthetic Samples

Figure S4 shows a set of synthetic samples that are outcomes of GAN training with and without PA.
PA not only improves sample quality and variation, but also sensibly navigates the image manifold
through latent space interpolation.

S7 Evaluation with Other Performance Measures

In addition to FID, here we measure the quality of synthetic samples by means of kernel inception
distance (KID) [2] and inception score (IS) [20], see Tables S6 and S7 which correspond to Tables 1
and 3 in the main paper. The evaluation framework setup is the same as that with FID and follows [15,
13]. For Fashion-MNIST and CELEBA-HQ, IS computed from the pre-trained Inception network is
not meaningful and thus omitted. Overall, the obtained results show consistent observations with
those that are made in Sec. 4 of the main paper based on the FID measure.
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(a) SN DCGAN (b) SN DCGAN with PA

(c) SA GAN (sBN) (d) SA GAN (sBN) with PA
Figure S4: Synthetic samples from training SN GAN on Fashion-MNIST (28× 28) and SA GAN
(sBN) on CELEBA-HQ (128× 128) with and without using PA. In all cases, i.e., (a), (b), (c) and (d),
the eight images per row are generated through polar-interpolation between two randomly sampled
z1 and z2.
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Table S7: KIDs/ISs of PA, different regularization techniques and their combinations on CIFAR10,
in according with Table 3 in the main paper.

KID

-Label smooth. -GP -GPzero-cent -Dropout -SS
Method PA GAN

[18] [9] [17] [19] [5]
∆PA

SN DCGAN 7 0.016 0.016 0.018 0.017 0.013 −
NS Loss feat 0.013 0.014 0.014 0.014 0.012 −

0.003

SA GAN (sBN) 7 0.011 − 0.010 0.010 0.008 0.008

Hinge Loss feat 0.009 − 0.008 0.008 0.008 0.007
0.001

∆PA 0.003 0.002 0.003 0.003 0.001 0.001

IS

-Label smooth. -GP -GPzero-cent -Dropout -SS
Method PA GAN

[18] [9] [17] [19] [5]
∆PA

SN DCGAN 7 7.6 7.5 7.5 7.5 7.9 −
NS Loss feat 7.8 7.7 7.7 7.7 7.9 −

0.2

SA GAN (sBN) 7 8.4 − 8.5 8.5 8.7 8.6

Hinge Loss feat 8.6 − 8.6 8.7 8.7 8.8
0.1

∆PA 0.2 0.2 0.2 0.2 0.0 0.2

S8 Network Architectures and Hyperparameter Settings

In this work we exploit the implementation provided by [15, 13]3 and [22]4. For the experiments, we
run on single GPU (Nvidia Titan X).

S8.1 Network Architectures

SN DCGAN. Following [16] for spectral normalization (SN), we adopt the same architecture as
in [13] and present its configuration in Table S8. The input and feature (i.e., featN/2, featN/4 and
featN/8) space augmentations respectively take place at the input of the layers with the index 0, 2, 4
and 6. In case of dropout, it is applied to the same intermediate layers plus the output of the layer
0. For Table 1 in the main paper, we pick the featN/8 for all evaluated datasets, whereas Sec. S4.1
presents an ablation study on the augmentation space.

SA GAN (sBN). The ResNet-based discriminator and generator architectures tailored for CIFAR10,
CELEBA-HQ and T-ImageNet are presented in Table S9 and S11, respectively. Taking the ResNet
architecture in [9] for CIFAR10, in [13] for CELEBA-HQ and [3] for IMAGENET as the baseline,
we adapt them by adding the SN and self-attention as proposed in [22]. For the residual and non-local
blocks we use the implementation provided by [22]. As we target unsupervised GAN, the conditional
batch normalization (BN) used by the generator’s residual blocks only takes the input noise vector z
as the conditioning, namely, self-modulation BN (sBN) [4].

For CIFAR10, we have considered the input and feature (i.e., featN/2 and featN/4) space augmen-
tations which respectively take place at the input of the residual blocks with the index 0, 2 and 4,
see Table S9-(a). Note that both residual blocks with the index 3 and 4 have their feature maps of
dimension N/4. We experiment with the feature space augmentation on both of them. They differ
little in performance, thereby we only report the result of the feature space augmentation at the
residual block 4 in Table 1 of the main paper.

For CELEBA-HQ, we empirically observe that it is beneficial to start from a convolutional layer rather
than a residual block at the discriminator. Apart from input and featN/8 space augmentation reported
in Table 1 of the main paper, we have also experimented the other feature space augmentations that
take place at the input of each residual block, see Table S10. At the spatial dimension N , we only

3https://github.com/google/compare_gan
4https://github.com/brain-research/self-attention-gan
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Table S8: SN DCGAN.

(a) Discriminator

# Configuration per Layer
0 3× 3 stride 1 SN Conv, ch = 64, lReLu
1 4× 4 stride 2 SN Conv, ch = 128, lReLu
2 3× 3 stride 1 SN Conv, ch = 128, lReLu
3 4× 4 stride 2 SN Conv, ch = 256, lReLu
4 3× 3 stride 1 SN Conv, ch = 256, lReLu
5 4× 4 stride 2 SN Conv, ch = 512, lReLu
6 3× 3 stride 1 SN Conv, ch = 512, lReLu
7 SN Linear 1 output

(b) Generator

Configuration per Layer
Linear h/8× w/8× 512 output, BN, ReLU
4× 4 stride 2 DeConv, ch = 256, BN, ReLU
4× 4 stride 2 DeConv, ch = 128, BN, ReLU
4× 4 stride 2 DeConv, ch = 64, BN, ReLU
3× 3 stride 1 Deconv, ch = 3, Tanh

Table S9: SA GAN for CIFAR10.

(a) Discriminator

# Configuration per Layer
0 ResBlock, down, ch = 128
1 Non-Local Block (16× 16)
2 ResBlock, down, ch = 128
3 ResBlock, ch = 128
4 ResBlock, ch = 128
5 ReLU, Global sum pooling
6 SN Linear 1 output

(b) Generator

Configuration per Layer
SN Linear 4× 4× 128 output
ResBlock, up, ch = 128
ResBlock, up, ch = 128
Non-local Block (16× 16)
ResBlock, up, ch = 128
BN, RELU
3× 3 stride 1 SN Conv. ch = 3, Tanh

Table S10: SA GAN for CELEBA-HQ.

(a) Discriminator

# Configuration per Layer
0 3× 3 stride 1 SN Conv, ch = 64
1 ResBlock, down, ch = 128
2 ResBlock, down, ch = 128
3 Non-Local Block (32× 32)
4 ResBlock, down, ch = 256
5 ResBlock, down, ch = 256
6 ResBlock, down, ch = 512
8 ReLU, Global sum pooling
9 SN Linear 1 output

(b) Generator

Configuration per Layer
SN Linear 4× 4× 512 output
ResBlock, up, ch = 512
ResBlock, up, ch = 256
ResBlock, up, ch = 256
Non-local Block (32× 32)
ResBlock, up, ch = 128
ResBlock, up, ch = 64
BN, RELU
3× 3 stride 1 SN Conv. ch = 3, Tanh

report the result of input space augmentation, whereas the feature space augmentation at the first
residual block delivers a similar performance. Augmenting the input of the last residual block benefits
from the first warm-up mechanism presented in Sec. S3.3, otherwise the discriminator can fail after
augmentation progression.

For T-ImageNet, we have experimented with the augmentation space at both the input and feat16 (at
the input of the 3rd residual block) and reported their performance in Table 1 of the main paper. It is
beneficial to use the second warm-up mechanism introduced in Sec. S3.3. Comparing with the other
datasets, the synthesis quality on T-ImageNet is still poor. Single GPU simulation with 64 samples
per batch is not enough in this case. Large-scale simulation as in [3], though demanding a large
amount of resources, would be of interest.

S8.2 Network Training Details

The training details across the datasets (i.e., F-MNIST, CIFAR10, CELEBA-HQ and T-ImageNet) and
architectures (i.e., SN DCGAN, and SA GAN) are summarized in Table S12. For both architectures,
the decay rate of the (s)BNs at the generator is set to 0.9. During the evaluation phase, the generator
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Table S11: SA GAN for Tiny-IMAGENET.

(a) Discriminator

# Configuration per Layer
1 ResBlock, down, ch = 64
2 Non-Local Block (32× 32)
3 ResBlock, down, ch = 128
4 ResBlock, down, ch = 256
5 ResBlock, down, ch = 512
6 ResBlock, ch = 512
8 ReLU, Global sum pooling
9 SN Linear 1 output

(b) Generator

Configuration per Layer
SN Linear 4× 4× 512 output
ResBlock, up, ch = 512
ResBlock, up, ch = 256
ResBlock, up, ch = 128
Non-local Block (32× 32)
ResBlock, up, ch = 64
BN, RELU
3× 3 stride 1 SN Conv. ch = 3, Tanh

uses the moving averaged mean and variance to produce synthetic samples, thereby being independent
of batch size.

S8.3 Other Hyperparameter Settings

Comparison with SotA on Human Face Synthesis. For CELEBA (64× 64), we used the same
network architecture as T-ImageNet. This network is not as tailored as PG-GAN [11] and COCO-
GAN [14] for human face synthesis. Unlike the other experiments, we followed the FID evaluation
of COCO-GAN [14] for the sake of fair comparison. The augmentation space is at feat8 (the input
of the 4th residual block). The hyperparameter setting for the D and G optimizers is: lrd = 0.0004,
lrg = 0.0001, β1 = 0, β2 = 0.999, iterd/iterg = 1 and 1m training iterations.

Regularization Techniques in Table 3 In Sec. 4 of the main paper, we have experimented with
a diverse set of regularization techniques and reported the FIDs in Table 3. Their settings are as
follows:

For Label smooth., we followed the one-side label smoothing presented in [18] smoothing the
positive labels from 1 to 0.9 and leaving the negative ones to 0 in the binary classification task of the
discriminator.

The GP from [9] and the zero-centered alternative GPzero-cent from [17] are implemented by ex-
ploiting the publicly available code in https://github.com/igul222/improved_wgan_
training and https://github.com/rothk/Stabilizing_GANs. The weighting pa-
rameter for GP and GPzero-cent is respectively set to 1 and 0.1 as suggested by [13, 17].

When combining GP with PA, we adjust its weighting factor whenever kicking off a new augmentation
level, namely, gradually increasing the weighting factor from zero to its original value within 5k
iterations. This is mainly because the new bit can flip the reference label. Such relaxation on the
1-Lipschitz constraint allows the discriminator to timely cope with the new augmentation bit. Using
β2 = 0.99 instead of β2 = 0.9 stabilizes the training on SA GAN.

For Dropout, we experimented with different keep rates and applied layers. From Table S2, we
selected the best performing setting of the Dropout with the keep rate 0.7 applied on the feature
space with the spatial dimension N/4.

For SS, we used the same mini-batch construction as in [5] for computing the auxiliary rotation loss.
The rotation loss is respectively added to the D and G loss with the weighting factors equal to 1.0 and
0.2 as suggested by [5]. The augmentation bits does not affect the reference label when constructing
the rotation loss.

WGAN-GP In Sec. S3.4, we additionally trained CIFAR10 on SN DCGAN with WGAN-GP.
The learning rates lrd and lrg remain the same as that of NS loss, i.e., 2 × 10−4, but with two
discriminator steps per generator step. The two momentum parameters for the Adam optimizer
change to β1 = 0 and β2 = 0.9. The GP is weighted by one.
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Table S12: Training details for the experiments in this work.

SN DCGAN NS Loss SA GAN (sBN) Hinge Loss
Hyper-parameters

F-MNIST CIFAR10 CELEBA-HQ CIFAR10 CELEBA-HQ T-IMAGENET
β1 0.5 0.5 0.5 0.0 0.0 0.0
β2 0.999 0.999 0.999 0.9 0.9 0.9
lrd 10−4 2× 10−4 2× 10−4 3× 10−4 3× 10−4 3× 10−4

lrg 4× 10−4 2× 10−4 2× 10−4 10−4 10−4 10−4

iterd/iterg 1 1 1 1 1 1
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