390

391

393
394

395

396

397
398
399
400
401
402

404
405
406

407

409
410

411

412
413
414
415
416
417

418
419
420
421

422

423

A Model Details

We use a convolutional encoder for part capsules and a set transformer encoder (Lee et al.,[2019) for
object capsules. Decoding from object capsule to part capsules is done with[MLPs| while the input
image is reconstructed with affine-transformed learned templates. Details of the architectures we
used are available in[Table 3

Table 3: Architecture details. S in the last column means that the entry is the same as for SVHN.

Dataset MNIST SVHN CIFAR10
num templates 24 24 32
template size 11 x 11 14 x 14 S

num capsules 24 32 64

part CNN 2x(128:2)-2x(128:1)  2x(128:1)-2x(128:2) s

set transformer ~ 3x(1-16)-256 3x(2-64)-128 S

We use ReLu nonlinearities except for presence probabilities, for which we use sigmoids. (128:2) for
a[CNN|means 128 channels with a stride of two. All kernels are 3 x 3. For set transformer (1-16)-256
means one attention head, 16 hidden units and 256 output units; it uses layer normalization (Ba et al.,
2016) as in the original paper (Lee et al.,2019) but no dropout. We use a 4 layer[CNN]as the primary
encoder with ReL.U nonlinearities. All layers have a kernel size of 3 x 3 and the last two of them
have a stride of 2. Templates are 11 x 11 for MNIST and 14 x 14 for SVHN and CIFAR10.

For SVHN and CIFAR10, we use normalized sobel filtered images as the target of the reconstruction
to emphasize the shape importance. [Fig. 6] shows examples of svhn reconstruction and templates.
The filtering procedure is as follows: 1) apply sobel filtering, 2) subtract the median color, 3) take the
absolute value from the image, 4) normalize for image values to be € [0, 1]

All models are trained with the RMSProp optimizer (Tieleman and G. Hinton, [2012). We run
hyper-parameter search on learning rates in the range of .00005 to .0005 and exponential learning
rate decay of 0.96 every 10000 or 30000 weight updates. The linear transformation accuracy on a
validation set is used as a proxy to select the best hyperparameters.

B Attention-based Pooling Encoder

The part object encoder described in [Section 2.2 consists of a followed by attention-based
pooling. The intuition that has lead to this design is that it should be possible to instantiate a given part
capsule in any place in the image. Therefore, we have a[CNN| which predicts feature maps of capsule
parameters as well as single-channel attention masks for every part capsule. The attention mask is
multiplied with the parameter feature map of the corresponding part capsule, which effectively allows
to choose parameters from a specific location in the image.

Table 4] contains results of an ablation study, where we use a[CNN] which is followed by a different
kind of a predictor: either a fully-connected layer or 1 x 1 convolutions with global average pooling.
Changing the type of the part encoder does not affect performance on the original task much but it
has significant impact on generalization to novel viewpoints.

Table 4: Ablation of the part capsule encoder. Study conditions are the same as in

Method MNIST 40 x 40 MNIST  AFFNIST
full model 97.0 (.87) 98.5(.1) 92.2 (.59)
linear partenc  94.8 (3.0)  98.1 (.26) 76.3 (2.22)
conv part enc 96.3 (.85) 97.8(.95) 80.1 (2.58)
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Figure 7: Constellation Autoencoder. The set
transformer encoder h°*P® predicts parame-
ters of two object capsules, which predict
affine transformations, precisions and pres-
ences of object and part capsules. Finally,
input points are explained by a mixture of
predictions, where the size of the circle cor-
responds to its precision.

Figure 6: Caption
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