
An Adaptive Empirical Bayesian Method for Sparse
Deep Learning

Wei Deng
Department of Mathematics

Purdue University
West Lafayette, IN 47907
deng106@purdue.edu

Xiao Zhang
Department of Computer Science

Purdue University
West Lafayette, IN 47907
zhang923@purdue.edu

Faming Liang
Department of Statistics

Purdue University
West Lafayette, IN 47907
fmliang@purdue.edu

Guang Lin
Departments of Mathematics, Statistics
and School of Mechanical Engineering

Purdue University
West Lafayette, IN 47907
guanglin@purdue.edu

Abstract

We propose a novel adaptive empirical Bayesian (AEB) method for sparse deep
learning, where the sparsity is ensured via a class of self-adaptive spike-and-slab
priors. The proposed method works by alternatively sampling from an adaptive
hierarchical posterior distribution using stochastic gradient Markov Chain Monte
Carlo (MCMC) and smoothly optimizing the hyperparameters using stochastic
approximation (SA). We further prove the convergence of the proposed method to
the asymptotically correct distribution under mild conditions. Empirical applica-
tions of the proposed method lead to the state-of-the-art performance on MNIST
and Fashion MNIST with shallow convolutional neural networks (CNN) and the
state-of-the-art compression performance on CIFAR10 with Residual Networks.
The proposed method also improves resistance to adversarial attacks.

1 Introduction

MCMC, known for its asymptotic properties, has not been fully investigated in deep neural networks
(DNNs) due to its unscalability in dealing with big data. Stochastic gradient Langevin dynamics
(SGLD) [Welling and Teh, 2011], the first stochastic gradient MCMC (SG-MCMC) algorithm, tackled
this issue by adding noise to the stochastic gradient, smoothing the transition between optimization
and sampling and making MCMC scalable. Chen et al. [2014] proposed using stochastic gradient
Hamiltonian Monte Carlo (SGHMC), the second-order SG-MCMC, which was shown to converge
faster. In addition to modeling uncertainty, SG-MCMC also has remarkable non-convex optimization
abilities. Raginsky et al. [2017], Xu et al. [2018] proved that SGLD, the first-order SG-MCMC,
is guaranteed to converge to an approximate global minimum of the empirical risk in finite time.
Zhang et al. [2017] showed that SGLD hits the approximate local minimum of the population risk
in polynomial time. Mangoubi and Vishnoi [2018] further demonstrated SGLD with simulated
annealing has a higher chance to obtain the global minima on a wider class of non-convex functions.
However, all the analyses fail when DNN has too many parameters, and the over-specified model
tends to have a large prediction variance, resulting in poor generalization and causing over-fitting.
Therefore, a proper model selection is on demand at this situation.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A standard method to deal with model selection is variable selection. Notably, the best variable
selection based on the L0 penalty is conceptually ideal for sparsity detection but is computationally
slow. Two alternatives emerged to approximate it. On the one hand, penalized likelihood approaches,
such as Lasso [Tibshirani, 1994], induce sparsity due to the geometry that underlies the L1 penalty. To
better handle highly correlated variables, Elastic Net was proposed [Zou and Hastie, 2005] and makes
a compromise between L1 penalty and L2 penalty. On the other hand, spike-and-slab approaches
to Bayesian variable selection originates from probabilistic considerations. George and McCulloch
[1993] proposed to build a continuous approximation of the spike-and-slab prior to sample from a
hierarchical Bayesian model using Gibbs sampling. This continuous relaxation inspired the efficient
EM variable selection (EMVS) algorithm in linear models [Rořková and George, 2014, 2018].

Despite the advances of model selection in linear systems, model selection in DNNs has received
less attention. Ghosh et al. [2018] proposed to use variational inference (VI) based on regularized
horseshoe priors to obtain a compact model. Liang et al. [2018] presented the theory of posterior
consistency for Bayesian neural networks (BNNs) with Gaussian priors, and Ye and Sun [2018]
applied a greedy elimination algorithm to conduct group model selection with the group Lasso penalty.
Although these works only show the performance of shallow BNNs, the experimental methodologies
imply the potential of model selection in DNNs. Louizos et al. [2017] studied scale mixtures of
Gaussian priors and half-Cauchy scale priors for the hidden units of VGG models [Simonyan and
Zisserman, 2014] and achieved good model compression performance on CIFAR10 [Krizhevsky,
2009] using VI. However, due to the limitation of VI in non-convex optimization, the compression is
still not sparse enough and can be further optimized.

Over-parameterized DNNs often demand for tremendous memory use and heavy computational
resources, which is impractical for smart devices. More critically, over-parametrization frequently
overfits the data and results in worse performance [Lin et al., 2017]. To ensure the efficiency of the
sparse sampling algorithm without over-shrinkage in DNN models, we propose an AEB method to
adaptively sample from a hierarchical Bayesian DNN model with spike-and-slab Gaussian-Laplace
(SSGL) priors and the priors are learned through optimization instead of sampling. The AEB method
differs from the full Bayesian method in that the priors are inferred from the empirical data and the
uncertainty of the priors is no longer considered to speed up the inference. In order to optimize the
latent variables without affecting the convergence to the asymptotically correct distribution, stochastic
approximation (SA) [Benveniste et al., 1990], a standard method for adaptive sampling [Andrieu
et al., 2005, Liang, 2010], naturally fits to train the adaptive hierarchical Bayesian model. As a
result, the asymptotic property allows us to combine simulated annealing and/or parallel tempering to
accelerate the non-convex learning.

In this paper, we propose a sparse Bayesian deep learning algorithm, SG-MCMC-SA, to adaptively
learn the hierarchical Bayes mixture models in DNNs. This algorithm has four main contributions:

• We propose a novel AEB method to efficiently train hierarchical Bayesian mixture DNN
models, where the parameters are learned through sampling while the priors are learned
through optimization.

• We prove the convergence of this approach to the asymptotically correct distribution, and
it can be further generalized to a class of adaptive sampling algorithms for estimating
state-space models in deep learning.

• We apply this adaptive sampling algorithm in the DNN compression problems firstly, with
potential extension to a variety of model compression problems.

• It achieves the state of the art in terms of compression rates, which is 91.68% accuracy on
CIFAR10 using only 27K parameters (90% sparsity) with Resnet20 [He et al., 2016].

2 Stochastic Gradient MCMC

We denote the set of model parameters by β, the learning rate at time k by ε(k), the entire data by
D = {di}Ni=1, where di = (xi, yi), the log of posterior by L(β). The mini-batch of data B is of size
n with indices S = {s1, s2, ..., sn}, where si ∈ {1, 2, ..., N}. Stochastic gradient ∇βL̃(β) from a
mini-batch of data B randomly sampled from D is used to approximate ∇βL(β):

∇βL̃(β) = ∇β log P(β) +
N

n

∑
i∈S
∇β log P(di|β). (1)

2

SGLD (no momentum) is formulated as follows:

β(k+1) = β(k) + ε(k)∇βL̃(β(k)) +N (0, 2ε(k)τ−1), (2)

where τ > 0 denotes the inverse temperature. It has been shown that SGLD asymptotically converges
to a stationary distribution π(β|D) ∝ eτL(β) [Teh et al., 2016, Zhang et al., 2017]. As τ increases
and ε decreases gradually, the solution tends towards the global optima with a higher probability.
Another variant of SG-MCMC, SGHMC [Chen et al., 2014, Ma et al., 2015], proposes to generate
samples as follows: dβ = rdt,

dr = ∇βL̃(β)dt−Crdt+N (0, 2Bτ−1dt) +N (0, 2(C − B̂)τ−1dt),
(3)

where r is the momentum item, B̂ is an estimate of the stochastic gradient variance, C is a user-
specified friction term. Regarding the discretization of (3), we follow the numerical method proposed
by Saatci and Wilson [2017] due to its convenience to import parameter settings from SGD.

3 Empirical Bayesian via Stochastic Approximation

3.1 A hierarchical formulation with deep SSGL priors

Inspired by the hierarchical Bayesian formulation for sparse inference [George and McCulloch, 1993],
we assume the weight βlj in sparse layer l with index j follows the SSGL prior

βlj |σ2, γlj ∼ (1− γlj)L(0, σv0) + γljN (0, σ2v1). (4)

where γlj ∈ {0, 1}, βl ∈ Rpl , σ2 ∈ R, L(0, σv0) denotes a Laplace distribution with mean 0 and
scale σv0, andN (0, σ2v1) denotes a Normal distribution with mean 0 and variance σ2v1. The sparse
layer can be the fully connected layers (FC) in a shallow CNN or Convolutional layers in ResNet. If
we have γlj = 0, the prior behaves like Lasso, which leads to a shrinkage effect; when γlj = 1, the
L2 penalty dominates. The likelihood follows

π(B|β, σ2) =

exp

{
−
∑
i∈S(yi − ψ(xi;β))2

2σ2

}
(2πσ2)n/2

(regression),

∏
i∈S

exp{ψyi(xi;β)}∑K
t=1 exp{ψt(xi;β)}

(classification),

(5)

where ψ(xi;β) is a linear or non-linear mapping, and yi ∈ {1, 2, . . . ,K} is the response value of the
i-th example. In addition, the variance σ2 follows an inverse gamma prior π(σ2) = IG(ν/2, νλ/2).
The i.i.d. Bernoulli prior is used for γ, namely π(γl|δl) = δ

|γl|
l (1− δl)pl−|γl| where δl ∈ R follows

Beta distribution π(δl) ∝ δa−1l (1 − δl)b−1. The use of self-adaptive penalty enables the model to
learn the level of sparsity automatically. Finally, our posterior follows

π(β, σ2, δ,γ|B) ∝ π(B|β, σ2)
N
n π(β|σ2,γ)π(σ2|γ)π(γ|δ)π(δ). (6)

3.2 Empirical Bayesian with approximate priors

To speed up the inference, we propose the AEB method by sampling β and optimizing σ2, δ,γ, where
uncertainty of the hyperparameters are not considered. Because the binary variable γ is harder to
optimize directly, we consider optimizing the adaptive posterior Eγ|·,D

[
π(β, σ2, δ,γ|D)

] ∗ instead.
Due to the limited memory, which restricts us from sampling directly from D, we choose to sample
β from Eγ|·,D

[
EB
[
π(β, σ2, δ,γ|B)

]] †. By Fubini’s theorem and Jensen’s inequality, we have

logEγ|·,D
[
EB
[
π(β, σ2, δ,γ|B)

]]
= logEB

[
Eγ|·,D

[
π(β, σ2, δ,γ|B)

]]
≥EB

[
logEγ|·,D

[
π(β, σ2, δ,γ|B)

]]
≥ EB

[
Eγ|·,D

[
log π(β, σ2, δ,γ|B)

]]
.

(7)

∗Eγ|·,D[·] is short for Eγ|β(k),σ(k),δ(k),D[·].
†EB[π(β, σ2, δ,γ|B)] denotes

∫
D π(β, σ

2, δ,γ|B)dB

3

Instead of tackling π(β, σ2, δ,γ|D) directly, we propose to iteratively update the lower bound Q

Q(β, σ, δ|β(k), σ(k), δ(k)) = EB
[
Eγ|D

[
log π(β, σ2, δ,γ|B)

]]
. (8)

Given (β(k), σ(k), δ(k)) at the k-th iteration, we first sample β(k+1) from Q, then optimize Q with
respect to σ, δ and Eγl|·,D via SA, where Eγl|·,D is used since γ is treated as unobserved variable. To
make the computation easier, we decompose our Q as follows:

Q(β, σ, δ|β(k), σ(k), δ(k)) = Q1(β, σ|β(k), σ(k), δ(k)) +Q2(δ|β(k), σ(k), δ(k)) + C, (9)

Denote X and C as the sets of the indices of sparse and non-sparse layers, respectively. We have:

Q1(β|β(k), σ(k), δ(k)) =
N

n
log π(B|β)︸ ︷︷ ︸

log likelihood

−
∑
l∈C

∑
j∈pl

β2
lj

2σ2
0︸ ︷︷ ︸

non-sparse layers C

−p+ ν + 2

2
log(σ2)

−
∑
l∈X

∑
j∈pl

[

|βlj |

κlj0︷ ︸︸ ︷
Eγl|·,D

[
1

v0(1− γlj)

]
σ

+

β2
lj

κlj1︷ ︸︸ ︷
Eγl|·,D

[
1

v1γlj

]
2σ2

]︸ ︷︷ ︸
deep SSGL priors in sparse layers X

− νλ

2σ2

(10)

Q2(δl|β(k)
l , δ

(k)
l) =

∑
l∈X

∑
j∈pl

log

(
δl

1− δl

) ρlj︷ ︸︸ ︷
Eγl|·,Dγlj +(a− 1) log(δl) + (pl + b− 1) log(1− δl),

(11)

where ρ,κ, σ and δ are to be estimated in the next section.

3.3 Empirical Bayesian via stochastic approximation

To simplify the notation, we denote the vector (ρ,κ, σ, δ) by θ. Our interest is to obtain the optimal
θ∗ based on the asymptotically correct distribution π(β,θ∗). This implies that we need to obtain
an estimate θ∗ that solves a fixed-point formulation

∫
gθ∗(β)π(β,θ∗)dβ = θ∗ [Shimkin, 2011],

where gθ(β) is inspired by EMVS to obtain the optimal θ based on the current β. Define the random
output gθ(β) − θ as H(β,θ) and the mean field function h(θ) := E[H(β,θ)]. The stochastic
approximation algorithm can be used to solve the fixed-point iterations:

(1) Sample β(k+1) from a transition kernel Πθ(k)(β), which yields the distribution π(β,θ(k)),

(2) Update θ(k+1) = θ(k) + ω(k+1)H(θ(k),β(k+1)) = θ(k) + ω(k+1)(h(θ(k)) + Ω(k)).

where ω(k+1) is the step size. The equilibrium point θ∗ is obtained when the distribution of β
converges to the invariant distribution π(β,θ∗). The stochastic approximation [Benveniste et al.,
1990] differs from the Robbins–Monro algorithm in that sampling β from a transition kernel instead
of a distribution introduces a Markov state-dependent noise Ω(k) [Andrieu et al., 2005]. In addition,
since variational technique is only used to approximate the priors, and the exact likelihood doesn’t
change, the algorithm falls into a class of adaptive SG-MCMC instead of variational inference.

Regarding the updates of gθ(β) with respect to ρ, we denote the optimal ρ based on the current β
and δ by ρ̃. We have that ρ̃(k+1)

lj , the probability of βlj being dominated by the L2 penalty is

ρ̃
(k+1)
lj = Eγl|·,Bγlj = P(γlj = 1|β(k)

l , δ
(k)
l) =

alj
alj + blj

, (12)

where alj = π(β
(k)
lj |γlj = 1)P(γlj = 1|δ(k)l) and blj = π(β

(k)
lj |γlj = 0)P(γlj = 0|δ(k)l). The

choice of Bernoulli prior enables us to use P(γlj = 1|δ(k)l) = δ
(k)
l .

Similarly, as to gθ(β) w.r.t. κ, the optimal κ̃lj0 and κ̃lj1 based on the current ρlj are given by:

κ̃lj0 = Eγl|·,B

[
1

v0(1− γlj)

]
=

1− ρlj
v0

; κ̃lj1 = Eγl|·,B

[
1

v1γlj

]
=
ρlj
v1
. (13)

4

To optimize Q1 with respect to σ, by denoting diag{κ0li}pli=1 as V0l, diag{κ1li}pli=1 as V1l we have:

σ̃(k+1) =

Rb +

√
R2
b + 4RaRc

2Ra
(regression),

Cb +
√
C2
b + 4CaCc

2Ca
(classification),

(14)

where Ra = N +
∑
l∈X pl + ν, Ca =

∑
l∈X pl + ν + 2, Rb = Cb =

∑
l∈X ||V0lβ

(k+1)
l ||1,

Rc = I+J+νλ, Cc = J+νλ, I = N
n

∑
i∈S
(
yi − ψ(xi;β

(k+1))
)2

, J =
∑
l∈X ||V

1/2
1l β

(k+1)
l ||2.†

To optimize Q2, a closed-form update can be derived from Eq.(11) and Eq.(12) given batch data B:

δ̃
(k+1)
l = arg max

δl∈R
Q2(δl|β(k)

l , δ
(k)
l) =

∑pl
j=1 ρlj + a− 1

a+ b+ pl − 2
. (15)

3.4 Pruning strategy

There are quite a few methods for pruning neural networks including the oracle pruning and the
easy-to-use magnitude-based pruning [Molchanov et al., 2017]. Although the magnitude-based unit
pruning shows more computational savings [Gomez et al., 2018], it doesn’t demonstrate robustness
under coarser pruning [Han et al., 2016, Gomez et al., 2018]. Pruning based on the probability
ρ is also popular in the Bayesian community, but achieving the target sparsity in sophisticated
networks requires extra fine-tuning. We instead apply the magnitude-based weight-pruning to our
Resnet compression experiments and refer to it as SGLD-SA, which is detailed in Algorithm 1. The
corresponding variant of SGHMC with SA is referred to as SGHMC-SA.

4 Convergence Analysis

The key to guaranteeing the convergence of the adaptive SGLD algorithm is to use Poisson’s equation
to analyze additive functionals. By decomposing the Markov state-dependent noise Ω into martingale
difference sequences and perturbations, where the latter can be controlled by the regularity of the
solution of Poisson’s equation, we can guarantee the consistency of the latent variable estimators.
Theorem 1 (L2 convergence rate). For any α ∈ (0, 1], under assumptions in Appendix B.1, the
algorithm satisfies: there exists a constant λ and an optimum θ∗ such that

E
[
‖θ(k) − θ∗‖2

]
≤ λk−α.

SGLD with adaptive latent variables forms a sequence of inhomogenous Markov chains and the weak
convergence of β to the target posterior is equivalent to proving the weak convergence of SGLD with
biased estimations of gradients. Inspired by Chen et al. [2015], we have:

Corollary 1. Under assumptions in Appendix B.2, the random vector β(k) from the adaptive transi-
tion kernel Πθ(k−1) converges weakly to the invariant distribution eτL(β,θ

∗) as ε→ 0 and k →∞.

The smooth optimization of the priors makes the algorithm robust to bad initialization and avoids
entrapment in poor local optima. In addition, the convergence to the asymptotically correct distribution
allows us to combine simulated annealing to obtain better point estimates in non-convex optimization.

5 Experiments

5.1 Simulation of Large-p-Small-n Regression

We conduct the linear regression experiments with a dataset containing n = 100 observations
and p = 1000 predictors. Np(0,Σ) is chosen to simulate the predictor values X (training set)
where Σ = (Σ)pi,j=1 with Σi,j = 0.6|i−j|. Response values y are generated from Xβ + η, where
β = (β1, β2, β3, 0, 0, ..., 0)′ and η ∼ Nn(0, 3In). We assume β1 ∼ N (3, σ2

c), β2 ∼ N (2, σ2
c),

†The quadratic equation has only one unique positive root. ‖ · ‖ refers to L2 norm, ‖ · ‖1 represents L1 norm.

5

Algorithm 1 SGLD-SA with SSGL priors

Initialize: β(1), ρ(1), κ(1), σ(1) and δ(1) from scratch, set target sparse rates D, f and S
for k ← 1 : kmax do

Sampling
β(k+1) ← β(k) + ε(k)∇βQ(·|B(k)) +N (0, 2ε(k)τ−1)
Stochastic Approximation for Latent Variables
SA: ρ(k+1) ← (1− ω(k+1))ρ(k) + ω(k+1)ρ̃(k+1) following Eq.(12)
SA: κ(k+1) ← (1− ω(k+1))κ(k) + ω(k+1)κ̃(k+1) following Eq.(13)
SA: σ(k+1) ← (1− ω(k+1))σ(k) + ω(k+1)σ̃(k+1) following Eq.(14)
SA: δ(k+1) ← (1− ω(k+1))δ(k) + ω(k+1)δ̃(k+1) following Eq.(15)
if Pruning then

Prune the bottom-s% lowest magnitude weights
Increase the sparse rate s← S(1− Dk/f)

end if
end for

Table 1: Predictive errors in linear regression based on a test set considering different v0 and σ

MAE / MSE v0=0.01, σ=2 v0=0.1, σ=2 v0=0.01, σ=1 v0=0.1, σ=1

SGLD-SA 1.89 / 5.56 1.72 / 5.64 1.48 / 3.51 1.54 / 4.42
SGLD-EM 3.49 / 19.31 2.23 / 8.22 2.23 / 19.28 2.07 / 6.94
SGLD 15.85 / 416.39 15.85 / 416.39 11.86 / 229.38 7.72 / 88.90

β3 ∼ N (1, σ2
c), σc = 0.2. We introduce some hyperparameters, but most of them are uninformative.

We fix τ = 1, λ = 1, ν = 1, v1 = 10, δ = 0.5, b = p and set a = 1. The learning rate follows
ε(k) = 0.001× k− 1

3 , and the step size is given by ω(k) = 10× (k+ 1000)−0.7. We vary v0 and σ to
show the robustness of SGLD-SA to different initializations. In addition, to show the superiority of
the adaptive update, we compare SGLD-SA with the intuitive implementation of the EMVS to SGLD
and refer to this algorithm as SGLD-EM, which is equivalent to setting ω(k) := 1 in SGLD-SA.
To obtain the stochastic gradient, we randomly select 50 observations and calculate the numerical
gradient. SGLD is sampled from the same hierarchical model without updating the latent variables.

We simulate 500, 000 samples from the posterior distribution, and also simulate a test set with 50
observations to evaluate the prediction. As shown in Fig.1 (d), all three algorithms are fitted very
well in the training set, however, SGLD fails completely in the test set (Fig.1 (e)), indicating the
over-fitting problem of SGLD without proper regularization when the latent variables are not updated.
Fig.1 (f) shows that although SGLD-EM successfully identifies the right variables, the estimations are
lower biased. The reason is that SGLD-EM fails to regulate the right variables with L2 penalty, and
L1 leads to a greater amount of shrinkage for β1, β2 and β3 (Fig. 1 (a-c)), implying the importance
of the adaptive update via SA in the stochastic optimization of the latent variables. In addition, from
Fig. 1(a), Fig. 1(b) and Fig.1(c), we see that SGLD-SA is the only algorithm among the three that
quantifies the uncertainties of β1, β2 and β3 and always gives the best prediction as shown in Table.1.
We notice that SGLD-SA is fairly robust to various hyperparameters.

For the simulation of SGLD-SA in logistic regression and the evaluation of SGLD-SA on UCI
datasets, we leave the results in Appendix C and D.

5.2 Classification with Auto-tuning Hyperparameters

The following experiments are based on non-pruning SG-MCMC-SA, the goal is to show that auto-
tuning sparse priors are useful to avoid over-fitting. The posterior average is applied to each Bayesian
model. We implement all the algorithms in Pytorch [Paszke et al., 2017]. The first DNN is a standard
2-Conv-2-FC CNN model of 670K parameters (see details in Appendix D.1).

The first set of experiments is to compare methods on the same model without using data augmentation
(DA) and batch normalization (BN) [Ioffe and Szegedy, 2015]. We refer to the general CNN without
dropout as Vanilla, with 50% dropout rate applied to the hidden units next to FC1 as Dropout.

6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SGLD−SA
SGLD−EM
SGLD
True value

(a) Posterior estimation of β1.
−2 −1 0 1 2 3

SGLD−SA
SGLD−EM
SGLD
True value

(b) Posterior estimation of β2.
−1 0 1 2 3

SGLD−SA
SGLD−EM
SGLD
True value

(c) Posterior estimation of β3.

0 20 40 60 80 100

−
15

−
10

−
5

0
5

10

●
●
●
●

●●
●●

●
●
●●●

●●●●●
●●

●●
●●

●●●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●

●●●●●●
●●●●

●●●●
●●

●●●●●●
●●●●

●●●●●
●●●

●
●●●

●
●

●
●
●●

●●●●

●
●
●

●

●
●●

●●
●
●●

●
●●●●●

●●
●
●●

●
●●

●●●●●●
●●●●●

●●
●●●

●●●
●●●●●

●●
●●●●●●

●●●●
●●●

●●
●●

●●●●●
●●●●

●
●●●●

●●
●

●
●●●

●
●

●

●
●●

●●●●

●

●

●

●

●
●

●
●●

●

●
●●

●●●●●●
●

●●
●●

●●●●●●●●●●●●●●
●●●●

●●●
●●●●●

●●
●●●●●●

●●●●
●●●●

●
●

●●●●●●●●●●
●●●●●

●●●

●
●●●

●
●

●

●

●●

●●●●

●

●

●

●

●
●

●
●

●
●

●
●●

●●●●●
●

●
●

●
●●

●
●

●●●●●●
●●●

●●
●

●●
●

●
●●

●
●●

●
●●

●
●

●
●●●●●

●●●
●

●●●
●

●
●●●●●●●

●●●●
●

●●●
●

●●
●

●

●●●

●

●

●

●

●●

●
●●●

ŷ

●

●

●

SGLD−SA
SGLD−EM
SGLD
True value

(d) Training performance.
0 10 20 30 40 50

−
5

0
5

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

ŷ

●

●

●

SGLD−SA
SGLD−EM
SGLD
True value

(e) Testing performance.

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

●
●

●

●
●

●●

●
●●

●
●
●●

●

●

●

●

●
●

●●●●

●

●

●

●

●
●

●●

●

●

●●
●

●
●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●
●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●●
●●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●●

●
●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●
●

●
●
●

●

●
●
●●

●
●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●●●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●●
●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●
●●

●●

●●
●

●

●

●

●●

●
●

●●

●

●

●

●
●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●
●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

β̂

●●
●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

SGLD−SA
SGLD−EM
SGLD
True value

(f) Posterior mean vs truth.

Figure 1: Linear regression simulation when v0 = 0.1 and σ = 1.

Vanilla and Dropout models are trained with Adam [Kingma and Ba, 2014] and Pytorch default
parameters (with learning rate 0.001). We use SGHMC as a benchmark method as it is also sampling-
based and has a close relationship with the popular momentum based optimization approaches
in DNNs. SGHMC-SA differs from SGHMC in that SGHMC-SA keeps updating SSGL priors
for the first FC layer while they are fixed in SGHMC. We set the training batch size n = 1000,
a, b = p and ν, λ = 1000. The hyperparameters for SGHMC-SA are set to v0 = 1, v1 = 0.1
and σ = 1 to regularize the over-fitted space. The learning rate is set to 5 × 10−7, and the step
size is ω(k) = 1 × (k + 1000)−

3
4 . We use a thinning factor 500 to avoid a cumbersome system.

Fixed temperature can also be powerful in escaping “shallow" local traps [Zhang et al., 2017], our
temperatures are set to τ = 1000 for MNIST and τ = 2500 for FMNIST.

The four CNN models are tested on MNIST and Fashion MNIST (FMNIST) [Xiao et al., 2017]
dataset. Performance of these models is shown in Tab.2. Compared with SGHMC, our SGHMC-SA
outperforms SGHMC on both datasets. We notice the posterior averages from SGHMC-SA and
SGHMC obtain much better performance than Vanilla and Dropout. Without using either DA or
BN, SGHMC-SA achieves 99.59% which outperforms some state-of-the-art models, such as Maxout
Network (99.55%) [Goodfellow et al., 2013] and pSGLD (99.55%) [Li et al., 2016] . In F-MNIST,
SGHMC-SA obtains 93.01% accuracy, outperforming all other competing models.

To further test the performance, we apply DA and BN to the following experiments (see details in
Appendix D.2) and refer to the datasets as DA-MNIST and DA-FMNIST. All the experiments are
conducted using a 2-Conv-BN-3-FC CNN of 490K parameters. Using this model, we obtain the
state-of-the-art 99.75% on DA-MNIST (200 epochs) and 94.38% on DA-FMNIST (1000 epochs) as
shown in Tab. 2. The results are noticeable, because posterior average is only conducted on a single
shallow CNN.

5.3 Defenses against Adversarial Attacks

Continuing with the setup in Sec. 5.2, the third set of experiments focuses on evaluating model
robustness. We apply the Fast Gradient Sign method [Goodfellow et al., 2014] to generate the

7

Table 2: Classification accuracy using shallow networks

DATASET MNIST DA-MNIST FMNIST DA-FMNIST

VANILLA 99.31 99.54 92.73 93.14
DROPOUT 99.38 99.56 92.81 93.35

SGHMC 99.47 99.63 92.88 94.29
SGHMC-SA 99.59 99.75 93.01 94.38

adversarial examples with one single gradient step as in Papernot et al. [2016]’s study:

xadv ← x− ζ · sign{δxmax
y

log P(y |x)},

where ζ ranges from 0.1, 0.2, . . . , 0.5 to control the different levels of adversarial attacks.

Similar to the setup in Li and Gal [2017], we normalize the adversarial images by clipping to the
range [0, 1]. In Fig. 2(b) and Fig.2(d), we see no significant difference among all the four models in
the early phase. As the degree of adversarial attacks arises, the images become vaguer as shown in
Fig.2(a) and Fig.2(c). The performance of Vanilla decreases rapidly, reflecting its poor defense against
adversarial attacks, while Dropout performs better than Vanilla. But Dropout is still significantly
worse than the sampling based methods. The advantage of SGHMC-SA over SGHMC becomes
more significant when ζ > 0.25. In the case of ζ = 0.5 in MNIST where the images are hardly
recognizable, both Vanilla and Dropout models fail to identify the right images and their predictions
are as worse as random guesses. However, SGHMC-SA model achieves roughly 11% higher than
these two models and 1% higher than SGHMC, which demonstrates the robustness of SGHMC-SA.

(a) ζ =

0.0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

SGHMC-SA

SGHMC

Dropout

Vanilla

(b) MNIST (c) ζ =

0.0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

SGHMC-SA

SGHMC

Dropout

Vanilla

(d) FMNIST

Figure 2: Adversarial test accuracies based on adversarial images of different levels

5.4 Residual Network Compression

Our compression experiments are conducted on the CIFAR-10 dataset [Krizhevsky, 2009] with DA.
SGHMC and the non-adaptive SGHMC-EM are chosen as baselines. Simulated annealing is used to
enhance the non-convex optimization and the methods with simulated annealing are referred to as
A-SGHMC, A-SGHMC-EM and A-SGHMC-SA, respectively. We report the best point estimate.

We first use SGHMC to train a Resnet20 model and apply the magnitude-based criterion to prune
weights to all convolutional layers (except the very first one). All the following methods are evaluated
based on the same setup except for different step sizes to learn the latent variables. The sparse training
takes 1000 epochs. The mini-batch size is 1000. The learning rate starts from 2e-9 † and is divided by
10 at the 700th and 900th epoch. We set the inverse temperature τ to 1000 and multiply τ by 1.005
every epoch . We fix ν = 1000 and λ = 1000 for the inverse gamma prior. v0 and v1 are tuned based
on different sparsity to maximize the performance. The smooth increase of the sparse rate follows the
pruning rule in Algorithm 1, and D and f are set to 0.99 and 50, respectively. The increase in the
sparse rate s is faster in the beginning and slower in the later phase to avoid destroying the network
structure. Weight decay in the non-sparse layers C is set as 25.

As shown in Table 3, A-SGHMC-SA doesn’t distinguish itself from A-SGHMC-EM and A-SGHMC
when the sparse rate S is small, but outperforms the baselines given a large sparse rate. The pretrained
model has accuracy 93.90%, however,the prediction performance can be improved to the state-of-the-
art 94.27% with 50% sparsity. Most notably, we obtain 91.68% accuracy based on 27K parameters
†It is equivalent to setting the learning rate to 1e-4 when we don’t multiply the likelihood with N

n
.

8

Table 3: Resnet20 Compression on CIFAR10. When S = 0.9, we fix v0 = 0.005, v1 =1e-5; When
S = 0.7, we fix v0 = 0.1, v1 =5e-5; When S = 0.5, we fix v0 = 0.1, v1 =5e-4; When S = 0.3, we
fix v0 = 0.5, v1 =1e-3.

METHODS \ S 30% 50% 70% 90%

A-SGHMC 94.07 94.16 93.16 90.59
A-SGHMC-EM 94.18 94.19 93.41 91.26

SGHMC-SA 94.13 94.11 93.52 91.45
A-SGHMC-SA 94.23 94.27 93.74 91.68

(90% sparsity) in Resnet20. By contrast, targeted dropout obtained 91.48% accuracy based on 47K
parameters (90% sparsity) of Resnet32 [Gomez et al., 2018], BC-GHS achieves 91.0% accuracy
based on 8M parameters (94.5% sparsity) of VGG models [Louizos et al., 2017]. We also notice
that when simulated annealing is not used as in SGHMC-SA, the performance will decrease by
0.2% to 0.3%. When we use batch size 2000 and inverse temperature schedule τ (k) = 20× 1.01k,
A-SGHMC-SA still achieves roughly the same level, but the prediction of SGHMC-SA can be 1%
lower than A-SGHMC-SA.

6 Conclusion

We propose a novel AEB method to adaptively sample from hierarchical Bayesian DNNs and optimize
the spike-and-slab priors, which yields a class of scalable adaptive sampling algorithms in DNNs.
We prove the convergence of this approach to the asymptotically correct distribution. By adaptively
searching and penalizing the over-fitted parameters, the proposed method achieves higher prediction
accuracy over the traditional SG-MCMC methods in both simulated examples and real applications
and shows more robustness towards adversarial attacks. Together with the magnitude-based weight
pruning strategy and simulated annealing, the AEB-based method, A-SGHMC-SA, obtains the
state-of-the-art performance in model compression.

Acknowledgments

We would like to thank Prof. Vinayak Rao, Dr. Yunfan Li and the reviewers for their insightful
comments. We acknowledge the support from the National Science Foundation (DMS-1555072,
DMS-1736364, DMS-1821233 and DMS-1818674) and the GPU grant program from NVIDIA.

References
Christophe Andrieu, Éric Moulines, and Pierre Priouret. Stability of stochastic approximation under

verifiable conditions. SIAM J. Control Optim., 44(1):283–312, 2005.

Albert Benveniste, Michael Métivier, and Pierre Priouret. Adaptive Algorithms and Stochastic
Approximations. Berlin: Springer, 1990.

Changyou Chen, Nan Ding, and Lawrence Carin. On the Convergence of Stochastic Gradient
MCMC Algorithms with High-order Integrators. In Proc. of the Conference on Advances in Neural
Information Processing Systems (NIPS), pages 2278–2286, 2015.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In
Proc. of the International Conference on Machine Learning (ICML), 2014.

Edward I. George and Robert E. McCulloch. Variable Selection via Gibbs Sampling. Journal of the
American Statistical Association, 88(423):881–889, 1993.

Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Structured Variational Learning of Bayesian
Neural Networks with Horseshoe Priors. In Proc. of the International Conference on Machine
Learning (ICML), 2018.

Aidan N. Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E. Hinton. Targeted Dropout.
In NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications, 2018.

9

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In Proc. of the International Conference on Machine Learning (ICML), pages III–1319–
III–1327, 2013.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. ArXiv e-prints, December 2014.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In Proc. of the International Conference on Machine Learning
(ICML), pages 448–456, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proc. of the
International Conference on Learning Representation (ICLR), 2014.

Alex Krizhevsky. Learning Multiple Layers of Features from tiny images. In Tech Report, 2009.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned Stochastic
Gradient Langevin Dynamics for Deep Neural Networks. In Proc. of the National Conference on
Artificial Intelligence (AAAI), pages 1788–1794, 2016.

Yingzhen Li and Yarin Gal. Dropout inference in Bayesian neural networks with alpha-divergences.
In Proc. of the International Conference on Machine Learning (ICML), 2017.

Faming Liang. Trajectory averaging for stochastic approximation MCMC algorithms. The Annals of
Statistics, 38:2823–2856, 2010.

Faming Liang, Bochao Jia, Jingnan Xue, Qizhai Li, and Ye Luo. Bayesian Neural Networks for
Selection of Drug Sensitive Genes. Journal of the American Statistical Association, 113(5233):
955–972, 2018.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime Neural Pruning. In Proc. of the Conference
on Advances in Neural Information Processing Systems (NIPS), 2017.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian Compression for Deep learning. In
Proc. of the Conference on Advances in Neural Information Processing Systems (NIPS), 2017.

Yi-An Ma, Tianqi Chen, and Emily B. Fox. A complete recipe for stochastic gradient MCMC. In
Proc. of the Conference on Advances in Neural Information Processing Systems (NIPS), 2015.

Oren Mangoubi and Nisheeth K. Vishnoi. Convex Optimization with Unbounded Nonconvex Oracles
using Simulated Annealing. In Proc. of Conference on Learning Theory (COLT), 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference. In Proc. of the International Conference on
Learning Representation (ICLR), 2017.

Nicolas Papernot, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Fartash Faghri, Alexander
Matyasko, Karen Hambardzumyan, Yi-Lin Juang, Alexey Kurakin, Ryan Sheatsley, Abhibhav
Garg, and Yen-Chen Lin. cleverhans v2.0.0: an adversarial machine learning library. ArXiv
e-prints, October 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via Stochastic
Gradient Langevin Dynamics: a nonasymptotic analysis. In Proc. of Conference on Learning
Theory (COLT), June 2017.

10

Veronika Rořková and Edward I. George. EMVS: The EM Approach to Bayesian variable selection.
Journal of the American Statistical Association, 109(506):828–846, 2014.

Veronika Rořková and Edward I. George. The Spike-and-Slab Lasso. Journal of the American
Statistical Association, 113:431–444, 2018.

Yunus Saatci and Andrew G Wilson. Bayesian GAN. In Proc. of the Conference on Advances in
Neural Information Processing Systems (NIPS), pages 3622–3631, 2017.

Nahum Shimkin. Introduction to Stochastic Approximation Algorithms, 2011. URL http://webee.
technion.ac.il/shimkin/LCS11/ch5_SA.pdf.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

Yee Whye Teh, Alexandre Thiéry, and Sebastian Vollmer. Consistency and Fluctuations for Stochastic
Gradient Langevin Dynamics. Journal of Machine Learning Research, 17:1–33, 2016.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society, Series B, 58:267–288, 1994.

Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
Proc. of the International Conference on Machine Learning (ICML), pages 681–688, 2011.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. ArXiv e-prints, August 2017.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global Convergence of Langevin Dynamics
Based Algorithms for Nonconvex Optimization. In Proc. of the Conference on Advances in Neural
Information Processing Systems (NIPS), December 2018.

Mao Ye and Yan Sun. Variable Selection via Penalized Neural Network: a Drop-Out-One Loss
Approach. In Proc. of the International Conference on Machine Learning (ICML), volume 80,
pages 5620–5629, 10–15 Jul 2018.

Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic Gradient
Langevin Dynamics. In Proc. of Conference on Learning Theory (COLT), pages 1980–2022, 2017.

Hui Zou and Trevor Hastie. Regularization and Variable Selection via the Elastic Net. Journal of the
Royal Statistical Society, Series B, 67(2):301–320, 2005.

11

http://webee.technion.ac.il/shimkin/LCS11/ch5_SA.pdf
http://webee.technion.ac.il/shimkin/LCS11/ch5_SA.pdf

