
Appendix A Derivations of the Gradient Computation

A.1 Proof of Equation 2

We now show that @L
@M̂

= �daz>. For convenience of expression, we split the matrix M̂ into
elements {M̂i,j}. Setting irrelevant variables to zero, we obtain from Equation 1 that:
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Hence, we have:
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Similar to Equation 4, we arrive at:
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Combining all elements in M̂ together we have:
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> (27)

A.2 Proof of Equation 13-16

Let ẑ = [z �]
>. Using Equation 12 we have:
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Then, the chain rule can yield the results as:
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@h

(33)

=
⇥
d>
z d>

�

⇤  W G>

D(�⇤)G D(Gz⇤ + h)

�
·


W G>

D(�⇤)G D(Gz⇤ + h)

�† 
0

�D(�⇤)

�
(34)

= �d>
�D(�⇤) (35)

Similarly as Appendix A.1, we split the matrix G into elements {Gi,j}. From Equation 12 we have:
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which indicates that:
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So the chain rule gives:
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Combining all elements in G together, we have:
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Appendix B Cloth Simulation Basics

Generally, cloth simulation includes three steps: force computation, dynamic solve, and collision
handling. Extra steps, such as plasticity handling and strain limiting, are omitted since they are not
essential components of a basic cloth simulation.

B.1 Force Computation

For external forces, the most common ones are gravity and wind forces, which are both straightforward.
We focus on internal, constraint and frictional forces here.

Clothes are usually modeled as a 2D manifold mesh in 3D space. We apply Finite Element Method
(FEM) to compute internal forces. For each triangle face in the mesh, we compute the deformation
gradient as a variable of the strain:

F =
@x

@X
(42)

Here, x is the current 3D position of the triangle, and X is their coordinate in the 2D material space.
Then, the stress (or internal forces) is computed using the deformation gradient F. Usually a strain
energy E is defined and we use its negative gradient as the force. In our base simulator, the stress
is defined as a piece-wise linear function regarding the Green-Lagrange Strain, defined by Wang et

al. [30]:

E =
1

2
(F>F� I) (43)

Note that due to the geometric modeling of the cloth, there is no force caused by the thickness of
the cloth. Most simulators use an extra ‘bending force’ as a compensation, following Grinspun et

al. [10]. The bending force is defined between two adjacent faces when their dihedral angle is not a
resting one.

The other two categories are relatively simpler. Constraint forces are defined as the negative gradient
of the constraint energy, while frictional forces are created when two objects are in close proximity
and have relative motions.

B.2 Dynamic Solve

In the simplest case, we solve Ma = f for the acceleration and update the position and velocity
accordingly, as shown in Algorithm 1. This Forward Euler method suffers from the well-known
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stability issue and often limits the time step size for the simulation. In order to take larger step for
faster simulation, Backward Euler is often used. More specifically, we want our acceleration to match
the force computed in the next time step:

M
�v

�t
= f(x+�x) = f(x+�t(v +�v)) (44)

By using Taylor Expansion, we have:

(M��t
2 @f

@x
)�v = �tf(x+�tv) (45)

So the matrix used in the linear solve (Sec. 3.2) is defined as:

M̂ = M��t
2 @f

@x
(46)

As long as we have the Jacobian of the forces @f
@x , we can compute a more stable result of �v and

can apply larger �t, as discussed by Baraff and Witkin [2].

B.3 Collision Handling

As introduced in Sec. 3.3, we used continuous collision detection between two simulation steps to
detect all possible collisions. When two faces collide with each other, there are two different collision
types: vertex-face collision and edge-edge collision. The common trait is that at time of collision,
the four involved vertices are in the same plane. Based on this, we can develop and solve a cubic
equation regarding the time of collision, t (Sec. 3.3).

When the collision is detected, we need to form the corresponding constraint at time t: 
4X

k=1

wkxk(t)

!
· n � d (47)

Here, wk is the weight parameter, xk(t) is the vertex position at time t, n is the normal of the plane,
and d is the cloth thickness. The weight parameters are determined using barycentric coordinates of
the intersection point in the face (in the vertex-face collision case) or on the edges (in the edge-edge
collision case).

Figure 5: A motion control scene with
more obstacles. The cloth needs to drop
down and slide through the slopes to get
to the target position.

We consider w and n as constants during the optimization,
and xk(t) is linearly interpolated between two time steps.
So it is a linear constraint regarding x. Combining all
constraints together, we have:

Gx+ h  0 (48)
as shown in Equation 9.

In the collision response phase, we want to introduce mini-
mum energy to move the vertex away so that all constraints
can be satisfied. Therefore, we form this optimization as a
QP problem, as shown in the main text (Sec. 3.4). This is
also why the objective function is weighted by the mass.

Appendix C Characterization of Control
Task

The initial control force is set to zero. The control network consists of two FC layers, where the
input (size 81⇥2⇥3) is the position and velocity of each vertex, the hidden layer is of size 200, and
the output is the control force (size 4⇥3). The learning rate is 10�4 and the momentum is 0.5. The
reported result is the best among 10 trials.

Appendix D Collision-rich Motion Control

We here demonstrate an example of motion control application with richer collisions. As shown in
Figure 5, there is a series of obstacles above the basket that preclude the cloth from falling directly
into it. The variable settings are the same as described in Sec. 4.3. Our differentiable simulation
provides the task with correct gradients so that the cloth is deposited into the basket.
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