
A Decoupling for Martingales406

The following definitions are from [36, Chapter 6].407

Definition 2 Let {ei} and {di} be two sequences of random variables adapted to the σ-fields {Fi}.408

Then {ei} and {di} are tangent with respect to {Fi} if, for all i,409

p(di|Fi−1) = p(ei|Fi−1) , (29)

where p(di|Fi−1) denotes the conditional probability of di given Fi−1.410

Definition 3 A sequence {ei} of random variables adapted to an increasing sequence of σ-fields411

Fi contained in F is said to satisfy the CI condition (conditional independence) if there exists a412

σ-algebra G, contained in F such that {ei} is conditionally independent given G, and p(ei|Fi−1) =413

p(ei|G).414

Definition 4 A sequence {ei} which satisfies the CI condition and which is also tangent to {di} is415

said to be a decoupled tangent sequence to {di}.416

The following result is from [36, Proposition 6.1.5].417

Proposition 1 For any sequence of random variables {di} adapted to an increasing sequence Fi418

of a σ-algebras, there always exists a decoupled sequence {ei} (on a possibly enlarged probability419

space) which is tangent to the original sequence and in addition conditionally independent given a420

master σ-field G. Frequently G = σ({di}).421

Next we state our main decoupling result:422

Theorem 3 Let Ξ = {ξi} be a martingale difference sequence adapted to an increasing sequence of423

σ-fields {Fi}. Let Ξ′ = {ξ′i} be any decoupled tangent sequence to Ξ = {ξi}. Let B be a collection424

of (n× n) symmetric matrices. Let F be a convex function. Then,425

EΞ

sup
B∈B

F

 n∑
j,k=1
j 6=k

ξjξkBj,k


 ≤ 4EΞ,Ξ′

sup
B∈B

F

 n∑
j,k=1

ξjξ
′
kBj,k

 . (30)

426

Our proof relies on the following results characterizing distributional equivalence of quadratic forms427

of tangent sequences. Note that our main result needs decoupled tangent sequences where the ad-428

ditional decoupling property will be used to handle the diagonal terms. We start with the following429

result:430

Lemma 2 Let Ξ = {ξi} be a martingale difference sequence adapted to an increasing sequence of431

σ-fields {Fi}. Let Ξ′ = {ξ′i} be any tangent sequence to Ξ = {ξi}. Let B be a symmetric (n × n)432

matrix. Consider the random variables433

Xn =

n∑
j,k=1
j<k

ξjξkBj,k , and X ′n =

n∑
j,k=1
j<k

ξjξ
′
kBj,k . (31)

Then Xn and X ′n are identically distributed.434

Proof: We do the proof by induction. When n = 2, we have435

X2 = ξ1ξ2B1,2 and X ′2 = ξ1ξ
′
2B1,2 .

12



So, the distribution of X2 is436

P (X2 ≤ x) = Pξ1,ξ2 (ξ1ξ2B1,2 ≤ x)

= Pξ1,ξ2 (ξ1ξ2B1,2 ≤ x, ξ1 ≥ 0) + Pξ1,ξ2 (ξ1ξ2B1,2 ≤ x, ξ1 ≤ 0)

= Pξ1,ξ2 (ξ2 ≤ x/(ξ1B1,2), ξ1 ≥ 0) + Pξ1,ξ2 (ξ2 ≤ x/(ξ1B1,2), ξ1 ≤ 0)

=

∫ ∞
0

pξ1(z1)

[∫ x/(z1B1,2)

−∞
pξ2|F1

(z2)dz2

]
dz1 +

∫ 0

−∞
pξ1(z1)

[∫ ∞
x/(z1B1,2)

pξ2|F1
(z2)dz2

]
dz1

(a)
=

∫ ∞
0

pξ1(z1)

[∫ x/(z1B1,2)

−∞
pξ′2|F1

(z2)dz2

]
dz1 +

∫ 0

−∞
pξ1(z1)

[∫ ∞
x/(z1B1,2)

pξ′2|F1
(z2)dz2

]
dz1

= Pξ1,ξ′2 (ξ′2 ≤ x/(ξ1B1,2), ξ1 ≥ 0) + Pξ1,ξ′2 (ξ′2 ≤ x/(ξ1B1,2), ξ1 ≤ 0)

= Pξ1,ξ′2 (ξ1ξ
′
2B1,2 ≤ x)

= P (X ′2 ≤ x) ,

where (a) follows since ξ2|ξ1 and ξ′2|ξ1 are identically distributed. Note that for (a), the conditioning437

is on F1(z1), but we do not show this explicitly. Thus, the statement holds for n = 2.438

We continue with the proof by induction. Assume that the statement is true for some m so that439

Xm =

m∑
j,k=1
j<k

ξjξkBj,k , and X ′m =

m∑
j,k=1
j<k

ξjξ
′
kBj,k

are identically distributed so that440

P (Xm ≤ x) = P (X ′m ≤ x) .

Now, by definition441

Xm+1 = Xm + ξm+1

m∑
j=1

ξjBj,m+1 and X ′m+1 = X ′m + ξ′m+1

m∑
j=1

ξjBj,m+1 .

The distribution of Xm+1 is442

P (Xm+1 ≤ x) = P

Xm + ξm+1

m∑
j=1

ξjBj,m+1 ≤ x


=

∫ ∞
−∞

P

Xm + ξm+1

m∑
j=1

ξjBj,m+1 ≤ x
∣∣∣∣Xm = xm

 pXm
(xm)dxm

=

∫ ∞
−∞

P

ξm+1

m∑
j=1

ξjBj,m+1 ≤ x− xm

 pXm
(xm)dxm
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First, note that pXm(xm) = pX′m(xm) since Xm and X ′m are identically distribution. For the first443

term, making the random variables explicit, note that444

Pξ1,...,ξm,ξm+1

ξm+1

m∑
j=1

ξjBj,m+1 ≤ x− xm


= Pξ1,...,ξm,ξm+1

ξm+1

m∑
j=1

ξjBj,m+1 ≤ x− xm,
m∑
j=1

ξjBj,m+1 ≥ 0


+ Pξ1,...,ξm,ξm+1

ξm+1

m∑
j=1

ξjBj,m+1 ≤ x− xm,
m∑
j=1

ξjBj,m+1 ≤ 0


= Pξ1,...,ξm,ξm+1

ξm+1 ≤
x− xm∑m

j=1 ξjBj,m+1
,

m∑
j=1

ξjBj,m+1 ≥ 0


+ Pξ1,...,ξm,ξm+1

ξm+1 ≤
x− xm∑m

j=1 ξjBj,m+1
,

m∑
j=1

ξjBj,m+1 ≤ 0


To simplify notation, let χm =

∑m
j=1 ξjBj,m+1. Note that the distribution of χm depends on Fm,445

and we explicitly show this dependency as needed in the analysis. Then,446

Pξ1,...,ξm,ξm+1

ξm+1

m∑
j=1

ξjBj,m+1 ≤ x− xm


= PFm,ξm+1

(
ξm+1 ≤

x− xm
χm

, χm ≥ 0

)
+ PFm,ξm+1

(
ξm+1 ≤

x− xm
χm

, χm ≤ 0

)
=

∫ ∞
0

pχm
(zm)

[∫ (x−xm)/zm

−∞
pξm+1|Fm

(zm+1)dzm+1

]
dzm

+

∫ 0

−∞
pχm

(zm)

[∫ ∞
(x−xm)/zm

pξm+1|Fm
(zm+1)dzm+1

]
dzm

(a)
=

∫ ∞
0

pχm(zm)

[∫ (x−xm)/zm

−∞
pξ′m+1|Fm

(zm+1)dzm+1

]
dzm

+

∫ 0

−∞
pχm

(zm)

[∫ ∞
(x−xm)/zm

pξ′m+1|Fm
(zm+1)dzm+1

]
dzm

= PFm,ξ′m+1

(
ξ′m+1 ≤

x− xm
χm

, χm ≥ 0

)
+ PFm,ξ′m+1

(
ξ′m+1 ≤

x− xm
χm

, χm ≤ 0

)

= PFm,ξ′m+1

ξ′m+1

m∑
j=1

ξjBj,m+1 ≤ x− xm

 .

That completes the proof.447

Lemma 2 focuses on the lower triangle of the symmetric matrix B. The next result extends the448

distributional equivalence to the full matrix B.449

Lemma 3 Let Ξ = {ξi} be a martingale difference sequence adapted to an increasing sequence of450

σ-fields {Fi}. Let Ξ′ = {ξ′i} be any tangent sequence to Ξ = {ξi}. Let B be a symmetric (n × n)451

matrix. Consider the random variables452

Zn =

n∑
j,k=1
j 6=k

ξjξkBj,k , and Z ′n =

n∑
j,k=1
j 6=k

ξjξ
′
kBj,k . (32)
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Then Zn and Z ′n are identically distributed.453

Proof: Following Lemma 2, with454

X(L)
n =

n∑
j,k=1
j<k

ξjξkBj,k , and X ′n
(L) =

n∑
j,k=1
j<k

ξjξ
′
kBj,k , (33)

we have Xn ∼ X ′n, i.e., identically distributed. Similarly, with455

Y ′′n =

n∑
j,k=1
j>k

ξ′jξ
′
kBj,k , and X ′n

(U) =

n∑
j,k=1
j>k

ξjξ
′
kBj,k , (34)

an application of Lemma 2 by interchanging Ξ = {ξ} and Ξ = {ξ′} implies Y ′′n ∼ X ′n
(U), and456

we now provide more details to justify this. First, we switch the notation j, k in (34) and use457

Bj,k = Bk,j to get458

Y ′′n =

n∑
j,k=1
j<k

ξ′jξ
′
kBj,k , and X ′n

(U) =

n∑
j,k=1
j<k

ξ′jξkBj,k . (35)

Now, interchanging {ξj} and {ξ′j}, we have459

Y ′′n =

n∑
j,k=1
j<k

ξjξkBj,k , and X ′n
(U) =

n∑
j,k=1
j<k

ξjξ
′
kBj,k . (36)

Now Y ′′n ∼ X ′n(U) follows from Lemma 2.460

Continuing with the analysis, since Ξ and Ξ′ are tangent sequences, by interchanging Ξ′ = {ξ′j} and461

Ξ = {ξj} are tangent sequences, with462

Y ′′n =

n∑
j,k=1
j>k

ξ′jξ
′
kBj,k , and X(U)

n =

n∑
j,k=1
j>k

ξjξkBj,k , (37)

we have Y ′′n ∼ X
(U)
n . Then, from (34) and (37), we have X(U)

n ∼ X ′n
(U). Combining this with463

(33), we have464

X(L)
n +X(U)

n ∼ X ′n(L) +X ′n
(U) . (38)

That completes the proof.465

Proof of Theorem 3: Let ∆ = {δ1, . . . , δn} be a set of i.i.d. Bernoulli random variables with P (δi =466

0) = P (δi = 1) = 1/2. Since B ∈ B are symmetric, we have467

n∑
j,k=1
j 6=k

ξjξkBj,k = 4E∆

 n∑
j,k=1
j 6=k

δi(1− δj)ξjξkBj,k

 . (39)
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By Jensen’s inequality468

F

 n∑
j,k=1
j 6=k

ξjξkBj,k

 = F

4E∆

 n∑
j,k=1
j 6=k

δi(1− δj)ξjξkBj,k




≤ 4E∆F

 n∑
j,k=1
j 6=k

δi(1− δj)ξjξkBj,k



⇒ sup
B∈B

F

 n∑
j,k=1
j 6=k

ξjξkBj,k

 ≤ 4 sup
B∈B

E∆F

 n∑
j,k=1
j 6=k

δi(1− δj)ξjξkBj,k



⇒ EΞ

sup
B∈B

F

 n∑
j,k=1
j 6=k

ξjξkBj,k


 ≤ 4EΞ

sup
B∈B

E∆F

 n∑
j,k=1
j 6=k

δi(1− δj)ξjξkBj,k


 .

Consider a fixed realization ∆r = {δ1,r, . . . , δn,r} of ∆, and consider the subset I = {i ∈ [n]|δi,r =469

1}. Lets Ic be the complement set. Then,470

4

 n∑
j,k=1
j 6=k

δi,r(1− δj,r)ξjξkBj,k

 = 4

 ∑
(j,k)∈I×Ic

j 6=k

ξjξkBj,k

 . (40)

Since Ξ′ = {ξ′i} is a tangent sequence to Ξ = {ξi}, by Lemma 3, we have471

EΞ

sup
B∈B

F

 n∑
j,k=1
j 6=k

ξjξkBj,k


 ≤ 4EΞ

sup
B∈B

E∆F

 n∑
j,k=1
j 6=k

δi(1− δj)ξjξkBj,k




= 4EΞ

sup
B∈B

E∆F

 ∑
(j,k)∈I×Ic

j 6=k

ξjξkBj,k


 (41)

(a)
= 4EΞ,Ξ′

sup
B∈B

E∆F

 ∑
(j,k)∈I×Ic

j 6=k

ξjξ
′
kBj,k


 . (42)

where (a) follows from the fact that if two random variables are identically distributed, expectations472

of the same function applied to them will be the same. The matrix B̂ of interest for Lemma 3 here473

is: B̂j,k = Bj,k for (j, k) ∈ I × Ic, j 6= k and 0 otherwise. Let474

Y (∆) , 4

n∑
j,k=1
j 6=k

(j,k)∈I×Ic

ξjξ
′
kBj,k , Z(∆) , 4

n∑
j,k=1
j 6=k

(j,k)6∈I×Ic

ξjξ
′
kBj,k , W , 4

n∑
j=1

ξjξ
′
jBj,j . (43)

By construction, for every realization ∆r, we have475

Y (∆r) + Z(∆r) +W = 4

 n∑
j,k=1

ξjξ
′
kBj,k

 . (44)
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Now, by linearly of expectation, we have476

EΞ,Ξ′ [Z +W ] = 4

n∑
j,k=1
j 6=k

(j,k)6∈I×Ic

Eξj ,ξ′k [ξjξ
′
k]Bj,k + 4

n∑
j=1

Eξj ,ξ′j [ξjξ
′
j ]Bj,j . (45)

We focus on one term Eξj ,ξ′k [ξjξ
′
k]. For j < k, we have477

Eξj ,ξ′k [ξjξ
′
k] = Eξ1:(k−1)

[
Eξj ,ξ′k

[
ξjξ
′
k|ξ1:(k−1)

]]
= Eξ1:(k−1)

[
ξjEξ′k

[
ξ′k|ξ1:(k−1)

]]
= 0 ,

since ξ′k|ξ1:(k−1) is a martingale difference sequence, which has zero mean. The argument for478

j > k is similar by interchanging Ξ and Ξ′. Recall that Ξ,Ξ′ are decoupled tangent sequences,479

and, following Proposition 1, let G = σ({ξj}) be the master σ-field with respect to which {ξ′j} are480

conditionally independent. Then, we have481

Eξj ,ξ′j [ξjξ
′
j ] = EG

[
Eξj ,ξ′j

[
ξjξ
′
j |G
]] (a)

= EG

[
ξjEξ′j

[
ξ′j |G

]] (b)
= EG

[
ξjEξ′j

[
ξ′j |Fj−1

]] (c)
= 0 ,

where (a) follows since ξj if G-measurable, (b) follows since P (ξ′j |G) = p(ξ′j |Fj−1) from Defini-482

tion 3, and (c) follows since ξ′j |Fj−1 is a MDS. As a result, it follows that483

EΞ,Ξ′ [Z +W ] = 0 . (46)

Now, for any convex function H , we have EΞ,Ξ′H(Y ) = EΞ,Ξ′H(Y + EΞ,Ξ′ [Z + W ]) ≤484

EΞ,Ξ′H(Y + Z +W ). Then, from (42), we have485

EΞ

sup
B∈B

F

 n∑
j,k=1
j 6=k

ξjξkBj,k


 ≤ 4EΞ,Ξ′

sup
B∈B

E∆F

 ∑
(j,k)∈I×Ic

j 6=k

ξjξ
′
kBj,k




≤ 4EΞ,Ξ′

sup
B∈B

E∆F

 n∑
(j,k)=1

ξjξ
′
kBj,k


= 4EΞ,Ξ′

sup
B∈B

F

 n∑
(j,k)=1

ξjξ
′
kBj,k

 .

That completes the proof.486

B Bounds for Sub-Gaussian MDS487

B.1 Overall Analysis488

For a MDS ξ = {ξj}, let489

CA(ξ) , sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22∣∣ (47)

BA(ξ) , sup
A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξk〈Aj , Ak〉

∣∣∣∣∣∣∣∣ (48)

DA(ξ) , sup
A∈A

∣∣∣∣∣∣
n∑
j=1

(|ξj |2 − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣ (49)

First, note that the contributions from the off-diagonal terms of E‖Aξ‖22 is 0:490

Proposition 2 For j 6= k, Eξj ,ξk [ξjξk] = 0.491
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Proof: For j < k, we have492

Eξj ,ξk [ξjξk] = EFk−1

[
Eξj ,ξk [ξjξk|Fk−1]

]
= EFk−1

[ξjEξk [ξk|Fk−1]] = 0 ,

since ξk|Fk−1 is a martingale difference sequence, which has zero mean. The proof for j > k is493

similar by switching the roles of j and k.494

As a result, we have495

CA(ξ) = sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22∣∣
= sup

A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξk〈Aj , Ak〉+

n∑
j=1

(|ξj |2 − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣∣∣
≤ sup

A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξk〈Aj , Ak〉

∣∣∣∣∣∣∣∣+ sup
A∈A

∣∣∣∣∣∣
n∑
j=1

(|ξj |2 − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣
= BA(ξ) +DA(ξ)

Hence,496

‖CA(ξ)‖p ≤ ‖BA(ξ)‖p + ‖DA(ξ)‖p . (50)

We bound ‖BA(ξ)‖p in Section B.2 (Theorem 4) and bound ‖DA(ξ)‖p in Section B.4 (Theorem 6)497

to get a bound on ‖CA(ξ)‖p of the form498

‖CA(ξ)‖p ≤ a+
√
p · b+ p · c , ∀p ≥ 1 . (51)

Note that these bounds imply, for all u499

P (|CA(ξ)| ≥ a+ b ·
√
u+ c · u) ≤ e−u , (52)

or, equivalently500

P (|CA(ξ)| ≥ a+ u) ≤ exp

{
−min

(
u2

4b2
,
u

2c

)}
, (53)

which yields the main result. In the sequel, to avoid clutter, we mostly avoid all absolute constants501

and constants which depend on L for L-sub-Gaussian random variables, i.e., we set them to 1, so502

the key dependencies are clear. We are inspired by similar choices in the related literature [42, 19].503

B.2 The Off-diagonal Terms504

The main result for the off-diagonal term is the following:505

Theorem 4 Let ξ be a sub-Gaussian MDS. Then,506

‖BA(ξ)‖p ≤ γ2(A, ‖ · ‖2→2) ·
(
γ2(A, ‖ · ‖2→2) + dF (A)

)
+
√
p · d2→2(A) ·

(
γ2(A, ‖ · ‖2→2) + dF (A)

)
+ p · d2

2→2(A) .

507

Note that from Theorem 3, we have508

‖BA(ξ)‖Lp ≤

∥∥∥∥∥∥∥∥ sup
A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξ
′
k〈Aj , Ak〉

∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥
Lp

=

∥∥∥∥ sup
A∈A
|〈Aξ, Aξ′〉|

∥∥∥∥
Lp

. (54)

Hence our analysis will focus on bounding (54), the Lp-norm of the decoupled quadratic form. We509

start with the following result:510
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Lemma 4 Let ξ be a sub-Gaussian MDS, and ξ′ be a decoupled tangent sequence to ξ. Then, for511

every p ≥ 1,512 ∥∥∥∥ sup
A∈A
〈Aξ, Aξ′〉

∥∥∥∥
Lp

≤ γ2(A, ‖ · ‖2→2) · ‖NA(ξ)‖Lp
+ sup
A∈A
‖〈Aξ, Aξ′〉‖Lp

, (55)

where NA(ξ) = supA∈A ‖Aξ′‖2.513

Proof of Lemma 4: Without loss of generality, assume A is finite. Consider the random variable of514

interest:515

Γ = sup
A∈A
|〈Aξ,Aξ′〉| .

Let {Tr}∞r=0 be an admissible sequence for A for which the minimum in the definition of γ2(A, ‖ ·516

‖2→2) is attained. Let517

πrA = d2→2(A, Tr) = argmin
B∈Tr

‖B −A‖2→2 and ∆rA = πrA− πr−1A .

For any given p ≥ 1, let ` be the largest integer for which 2` ≤ 2p. Then, by a direct computation518

based on a telescoping sum and application of triangle inequality, we have519

|〈Aξ, Aξ′〉 − 〈(π`A)ξ, (π`A)ξ′〉| ≤

∣∣∣∣∣
∞∑
r=`

〈(∆r+1A)ξ, (πr+1A)ξ′〉

∣∣∣∣∣︸ ︷︷ ︸
S1

+

∣∣∣∣∣
∞∑
r=`

〈(πrA)ξ, (∆r+1A)ξ′〉

∣∣∣∣∣︸ ︷︷ ︸
S2

.

(56)
We focus on S1 noting that the analysis for S2 is similar. Let520

Xr(A) = 〈(∆r+1A)ξ, (πr+1A)ξ′〉 .
Conditioning Xr(A) on ξ′, we note521

Xr(A) = 〈(∆r+1A)ξ, (πr+1A)ξ′〉 = 〈ξ, (∆r+1A)T (πr+1A)ξ′〉
a weighted sum of a sub-Gaussian MDS. Then, a direct application of the Azuma-Hoeffding bound522

[] gives523

P

(
|Xr(A)| > u‖(∆r+1A)T (πr+1A)ξ′‖2

∣∣∣∣ ξ′) ≤ 2 exp(−u2/2) .

Using u = t2r/2, we get524

P

(
|Xr(A)| > t2r/2‖(∆r+1A)T (πr+1A)ξ′‖2

∣∣∣∣ ξ′) ≤ 2 exp(−t22r/2) .

Since525 ∣∣(∆r+1A)T (πr+1A)ξ′
∣∣ ≤ ‖∆r+1A‖2→2 sup

A∈A
‖Aξ′‖2 .

we have526

P

(
|Xr(A)| > t2r/2‖∆r+1A‖2→2 sup

A∈A
‖Aξ′‖2

∣∣∣∣ ξ′) ≤ 2 exp(−t22r/2) .

Now, since |{πrA : A ∈ A}| = |Tr| ≤ 22r

, by union bound, we get527

P

(
sup
A∈A

∞∑
r=`

|Xr(A)| > t

(
sup
A∈A

∞∑
r=`

2r/2‖∆r+1A‖2→2

)
· sup
A∈A
‖Aξ′‖2

∣∣∣∣ ξ′)

≤ 2

∞∑
r=`

|Tr| · |Tr+1| · exp(−t22r/2)

≤ 2

∞∑
r=`

22r+2

· exp(−t22r/2)

≤ 2 exp(−2`t2) ,
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for all t ≥ t0, a constant. Noting that528

sup
A∈A

∞∑
r=`

2r/2‖∆r+1A‖2→2 = γ2(A, ‖ · ‖2→2)

sup
A∈A
‖Aξ′‖2 = NA(ξ′) ,

we have529

P

(
sup
A∈A

∞∑
r=`

|Xr(A)| > tγ2(A, ‖ · ‖2→2)NA(ξ′)

∣∣∣∣ ξ′) ≤ 2 exp(−pt2) ,

since p ≤ 2` by construction. In other words, with V (ξ′) = γ2(A, ‖ · ‖2→2)NA(ξ′), for t ≥ t0 we530

have531

P

(
S1 ≥ tV (ξ′)

∣∣∣∣ ξ′) ≤ 2 exp(−pt2) .

Note that532

‖S1‖pLp
= Eξ,ξ′S

p
1 = Eξ′

∫ ∞
0

ptp−1P (S1 > t
∣∣ ξ′)dt

Note that533 ∫ ∞
0

ptp−1P (S1 > t
∣∣ ξ′)dt = cpV (ξ′)p +

∫ ∞
cV (ξ′)

ptp−1P (S1 > t
∣∣ ξ′)dt

≤ cpV (ξ′)p + V (ξ′)p
∫ ∞
c

pτp−1P (S1 > τV (ξ′)|ξ′)dτ

≤ cp1V (ξ′)p ,

where c ≥ t0, c1 are suitable constants with depend onL. As a result, ‖S1‖Lp
≤ c1V (ξ′) = c1V (ξ).534

The bound on ‖S2‖Lp is the same, and can be derived similarly. As a result535

‖S1 + S2‖Lp
≤ c2γ2(A, ‖ · ‖2→2)‖NA(ξ)‖Lp

(57)

Further, since |{π`A : A ∈ A}| ≤ 22` ≤ exp(2p), we have536

E sup
A∈A
|〈(π`A)ξ, (π`A)ξ′〉|p

∑
A∈T`

E|〈Aξ, Aξ′|p ≤ 22p sup
A∈A

E|〈Aξ, Aξ′〉|p ,

so that537 ∥∥∥∥ sup
A∈A
|〈(π`A)ξ, (π`A)ξ′〉

∥∥∥∥
Lp

≤ 4‖ sup
A∈A

E|〈Aξ, Aξ′〉‖Lp
. (58)

Combining (56), (57), and (58) using triangle inequality completes the proof.538

For the first term in Lemma 4, we have the following bound:539

Lemma 5 Let ξ be a MDS. Then540

‖NA(ξ)‖p ≤ γ2(A, ‖ · ‖2→2) + dF (A) +
√
pd2→2(A) . (59)

541

Proof: Consider the set S = {ATx : x ∈ Bn2 , A ∈ A}. Since ξ is a L-sub-Gaussian MDS, we542

have543

‖NA(ξ)‖Lp
= (E sup

A∈A,x∈Bn
2

|〈Aξ, x〉|p)1/p = (E sup
u∈S
|〈ξ,u〉|p)1/p

(a)

≤ E sup
u∈S
|〈u,g〉|+ sup

u∈S
(E|〈ξ, u〉|p)1/p

= E sup
A∈A,x∈Bn

2

|〈Ag, x〉|+√p sup
A∈A,x∈Bn

2

‖ATx‖2

= E sup
A∈A

NA(g) +
√
pd2→2(A)

(b)

≤ γ2(A, ‖ · ‖2→2) + dF (A) +
√
pd2→2(A) ,
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where (a) follows from Lemma 7 and (b) follows from [19, Lemma 3.7].544

For the second term, we have the following bound:545

Lemma 6 Let ξ be a sub-Gaussian MDS, and ξ′ be a decoupled tangent sequence. Then, for every546

p ≥ 1,547

sup
A∈A
‖〈Aξ, Aξ′〉‖Lp

≤ √pdF (A)d2→2(A) + pd2
2→2(A) . (60)

548

Proof of Lemma 6 needs the following result:549

Lemma 7 Let x1, . . . ,xn ∈ Rd and T ⊂ Rd. Let ξ = {ξj} be a L-sub-Gaussian MDS and let550

y =
∑n
j=1 ξjxj . Then, for every p ≥ 1,551 (

E sup
t∈T
|〈t,y〉|p

)1/p

≤ c2
(
E

[
sup
t∈T
|〈t,g〉|

]
+ sup
t∈T

(E|〈t,y〉|p)1/p

)
(61)

where c2 is a constant which depends on L and g =
∑n
j=1 gjxj where gi ∼ N(0, 1) are indepen-552

dent.553

We need the following basic property of sub-Gaussian random variables [45] to prove Lemma 7.554

Proposition 3 If X is a L-sub-Gaussian random variable, then555

P (|X| > tL) ≤ 2 exp(−t2) , ∀t ≥ 0 ⇔ (E|X|p)1/p ≤ c0
√
pL , ∀p . (62)

556

Proof of Lemma 7. We assume T is finite without loss of generality. Let {Tr} be an optimal557

admissible sequence of T . For any t ∈ T , let πr(t) = argmintr∈Tr
‖t − tr‖2. For any given p558

determining the p-norm, choose ` such that 2`−1 ≤ 2p ≤ 2`, so that 2`/p ≤ 4. Then, by triangle559

inequality, we have560

sup
t∈T
|〈t,y〉| ≤ sup

t∈T
|〈π`(t),y〉|+ sup

t∈T

∞∑
r=`

|〈πr+1(t)− πr(t),y〉| . (63)

For the first term, note that561 (
E sup
t∈T
|〈π`(t),y〉|p

)1/p

≤

(
E
∑
t∈T`

|〈t,y〉|p
)1/p

≤ (|T`|)1/p sup
t∈T`

(E|〈t,y〉|p)1/p

≤ (22`

)1/p sup
t∈T

(E|〈t,y〉|p)1/p

≤ 16 sup
t∈T

(E|〈t,y〉|p)1/p .

For the second term, since {ξj} is a L-sub-Gaussuan MDS, we have562

P

(
sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t),y〉| ≥ uL
∞∑
r=`

2r/2‖(〈πr+1(t)− πr(t),xj〉)nj=1‖2

)

≤
∞∑
r=`

∑
t∈Tr+1

∑
t′∈Tr

P

∣∣∣∣∣∣
n∑
j=1

ξj〈t− t′,xj〉

∣∣∣∣∣∣ ≥ uL2r/2‖〈t− t′,xj〉nj=1‖2


(a)

≤
∞∑
r=`

22r+1

· 22r

· exp(−2ru2/2) ≤ 2 exp(−2`u2/4)

≤ 2 exp(−pu2/2) ,
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for u > c, a constant (see Remark on generic chaining union bound in the sequel), where (a) follows563

from Azuma-Hoeffding inequality. Then, from Proposition 3, we have564 (
E sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t),y〉|p
)1/p

≤ L
∞∑
r=`

2r/2‖(〈πr+1(t)− πr(t),xj〉)nj=1‖2

≤ Lγ2(T ′, ‖ · ‖2) ,

where T ′ = {(〈t,xj〉)nj=1|t ∈ T}. Then, by the majorizing measures theorem [42, 41], we have565

γ2(T ′, ‖ · ‖2) ≤ E sup
t′∈T ′

|〈t′,g〉| = E sup
t∈T

∣∣∣∣∣∣
n∑
j=1

〈t,xj〉gj

∣∣∣∣∣∣ = E sup
t∈T
|〈t,g〉| .

That completes the proof.566

Before proceeding further, we show the details of how the union bound works out in generic chain-567

ing [42]. We use variants of such union bound analysis several times in our proofs, and this is the568

only place we show the details. Such analysis is considered standard in the context of generic chain,569

but as a tool generic chaining is not as widely used.570

Remark: Union bound in generic chaining. After applying union bound in a generic chaining571

based analysis, we get a (infinite) sum of the following form:572

∞∑
r=`

22r+1

· 22r

· exp(−2ru2/2) =

∞∑
r=`

23·2r

· exp(−2 · 2ru2/4)

= exp(−2`u2/4)

∞∑
r=`

exp(3 log 2)·2r

· exp(−2 · (2r − 2`)u2/4) .

Focusing on the exponent, note that573

(3 log 2) · 2r − 2 · 2ru2/4 + ·2`u2/4 < −(r − `)
⇒ −(2r+1 − 2`)u2/2 < −(r − `)− (3 log 2) · 2r

⇒ (2r+1 − 2`)u2/2 > (r − `) + (3 log 2) · 2r

⇒ u2/2 >
r − `

(2r+1 − 2`)
+

(3 log 2) · 2r

2r+1 − 2`
.

Note that the last term is a decreasing function of r, and the maximum is achieved at r = ` when we574

have575

u2/2 > (3 log 2) u >
√

6 log 2 .

Thus, the bound holds for u > u0 for a constant u0.576

Proof of Lemma 6: For A ∈ A set S = {ATAx : x ∈ Bp2}. Since ξ is a L sub-Gaussian MDS,577

the random variable 〈ξ, ATAξ〉 is a weighted sum of a sub-Gaussian MDS when conditioned on ξ′.578

Then, we have579

‖〈Aξ, Aξ′〉‖Lp = (Eξ,ξ′ |〈Aξ, Aξ′〉|p)
1/p

=
(
Eξ

{
Eξ′|ξ|〈ξ′, ATAξ〉|p

})1/p
≤
(
Eξ

[
L
√
p
p‖ATAξ′‖p2

])p
≤ L√p

(
Eξ sup

y∈S
|〈y, ξ〉|p

)1/p

.

Now, from Lemma 7, we have580 (
Eξ sup

y∈S
|〈y, ξ〉|p

)1/p

≤ Eg sup
y∈S
|〈g,y〉|+ sup

y∈S
(Eξ|〈ξ,y〉|p)1/p .
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For the first term, we have581

Eg sup
y∈S
|〈g,y〉| = Eg‖ATAg‖2 ≤ (E‖ATAg‖22)1/2 = ‖ATA‖F ≤ ‖A‖F ‖A‖2→2 .

For the second term,582

sup
y∈S

(E|〈y, ξ〉|p)1/p = sup
z∈Bp

2

(E|〈ATAz, ξ〉|p)1/p ≤ L sup
z∈Bp

2

√
p‖ATAz‖2 = L

√
p‖A‖2→2 .

Plugging these bounds on the two terms back and taking supremum over A ∈ A completes the583

proof.584

Proof of Theorem 4: Let ξ′ be a decoupled tanget sequence to the MDS ξ. Then we have585

‖BA‘(ξ)‖Lp
= sup
A∈A

∣∣∣∣∣∣∣∣
n∑

j,k=1
j 6=k

ξjξj〈Aj , Ak〉

∣∣∣∣∣∣∣∣
(a)

≤ sup
A∈A

∣∣∣∣∣∣
n∑

j,k=1

ξjξ
′
j〈Aj , Ak〉

∣∣∣∣∣∣
(b)

≤ γ2(A, ‖ · ‖2→2) · ‖NA(ξ)‖Lp
+ sup
A∈A
‖〈Aξ, Aξ′〉‖Lp

(c)

≤ γ2(A, ‖ · ‖2→2) ·
(
γ2(A, ‖ · ‖2→2) + dF (A)

)
+
√
p · d2→2(A) ·

(
γ2(A, ‖ · ‖2→2) + dF (A)

)
+ p · d2

2→2(A) ,

where (a) follows from Theorem 3, (b) follows from Lemma 4, and (c) follows from Lemma 5 and586

6. That completes the proof.587

B.3 The Diagonal Terms: Bounded Random Variables588

For the diagonal terms coresponding to bounded random variables, we have the following main589

result:590

Theorem 5 Let A ∈ Rm×n be a collection of (m × n) matrices. ξ1, . . . , ξn be a bounded MDS,591

and let ξ ∈ Rn denote a vector of these random variables. Consider the random variable592

DA(ξ) = sup
A∈A

∣∣∣∣∣∣
n∑
j=1

(ξ2
j − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣ , (64)

where Aj denotes the jth column of A. Then, we have593

‖DA(ξ)‖Lp ≤ dF (A) · γ2(A, ‖ · ‖2→2) +
√
p · dF (A) · d2→2(A) . (65)

594

The main observation here is since ξj are bounded, so are ξ2
j , implying η = ξ2

j − E|ξj |2 is also595

sub-Gaussian, and the sequence η1, . . . , ηn is a sub-Gaussian MDS [45]. Based on this observation,596

the proof of Theorem 5 relies on the following result bounding Lp-norms of the supremum of sub-597

Gaussian MDSs:598

Lemma 8 Let ζ = [ζ1, . . . , ζn] be a L-sub-Gaussian MDS and let T ∈ Rn. Then, for every p ≥ 1,599 (
E sup
t∈T
|〈t, ζ〉|p

)1/p

≤ c2
(
E

[
sup
t∈T
|〈t,g〉|

]
+ sup
t∈T

(E|〈t, ζ〉|p)1/p

)
(66)

where c2 is a constant which depends onL, g = [gj ] where gj ∼ N(0, 1) are independent identically600

distributed normal random variables.601
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Proof: We assume T is finite without loss of generality. Let {Tr} be an optimal admissible se-602

quence of T . For any t ∈ T , let πr(t) = argmintr∈Tr
‖t − tr‖2. For any given p determining the603

p-norm, choose ` such that 2`−1 ≤ 2p ≤ 2`, so that 2`/p ≤ 4. Then, by triangle inequality, we have604

sup
t∈T
|〈t, ζ〉| ≤ sup

t∈T
|〈π`(t), ζ〉|+ sup

t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), ζ〉| . (67)

For the first term, note that605 (
E sup
t∈T
|〈π`(t), ζ〉|p

)1/p

≤

(
E
∑
t∈T`

|〈t, ζ〉|p
)1/p

≤ (|T`|)1/p sup
t∈T`

(E|〈t, ζ〉|p)1/p

≤ (22`

)1/p sup
t∈T

(E|〈t, ζ〉|p)1/p

≤ 16 sup
t∈T

(E|〈t, ζ〉|p)1/p .

For the second term, for any u ≥ 0, we have606

P

(
sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), ζ〉| ≥ uL2r/2‖πr+1(t)− πr(t)‖2
)

≤
∞∑
t=`

∑
t∈Tr+1

∑
t′∈Tr

P

(∣∣∣∣〈t− t′, ζ〉∣∣∣∣ ≥ uL2r/2‖t− t′‖2
)

(a)

≤
∞∑
r=`

22r+1

· 22r

· exp(−2ru2) ≤ 2 exp(−2`u2)

≤ 2 exp(−pu2) ,

for u ≥ u0, a constant, and where (a) follows from the Azuma-Hoeffding inequality.607

Then, from Proposition 3, we have608 (
E sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), ζ〉|p
)1/p

≤ L
∞∑
r=`

(
2r/2‖πr+1(t)− πr(t)‖2

)
≤ Lγ2(T, ‖ · ‖2) .

Then, by the majorizing measures theorem [][], we have609

γ2(T, ‖ · ‖2) ≤ E sup
t∈T
|〈t,g〉| ,

where g = [gj ], gj ∼ N(0, 1). That completes the proof.610

Proof of Theorem 5. Consider the random variable ζ(A) =
∑n
j=1(ξ2 − E|ξj |2)‖Aj‖22. Then, for611

any A,B ∈ A, by Azuma-Hoeffding inequality, we have612

P
(
|ζ(A) − ζ(B)| ≥ ε

)
≤ 2 exp

{
− ε2

d2
2(A,B)

}
, (68)

where613

d2(A,B) =

 n∑
j=1

(‖Aj‖22 − ‖Bj‖22)2

1/2

=

 n∑
j=1

(‖Aj‖2 − ‖Bj‖2)2 · (‖Aj‖2 + ‖Bj‖2)2

1/2

(a)

≤

 n∑
j=1

‖Aj −Bj‖22 · (‖Aj‖2 + ‖Bj‖2)2

1/2

≤ 2dF (A)‖A−B‖2→2 ,
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where (a) follows from triangle inequality. From the majorizing measure theorem [42] we have614

E[supt∈T |〈t,g〉|] ≤ γ2(T, d2). Then, from Lemma 8 and Proposition 3, we have615

‖DA(ξ)‖Lp ≤ dF (A) · γ2(A, ‖ · ‖2→2) +
√
p · dF (A) · d2→2(A) .

That completes the proof.616

B.4 The Diagonal Terms: Unbounded sub-Gaussian Random Variables617

For the diagonal terms corresponding to unbounded sub-Gaussian random variables, we have the618

following main result:619

Theorem 6 Let A ∈ Rm×n be a collection of (m × n) matrices. ξ1, . . . , ξn be a sub-Gaussian620

MDS, and let ξ ∈ Rn denote a vector of these random variables. Consider the random variable621

DA(ξ) = sup
A∈A

∣∣∣∣∣∣
n∑
j=1

(ξ2
j − E|ξj |2)‖Aj‖22

∣∣∣∣∣∣ , (69)

where Aj denotes the jth column of A. Then, we have622

‖DA(ξ)‖Lp ≤
√

log n·dF (A)·γ2(A, ‖·‖2→2)+
√
p·dF (A)·d2→2(A)+p·dF (A)·d2,∞(A) . (70)

623

The proof of Theorem 6 relies on the following result bounding Lp-norms of the supremum of624

sub-exponential MDS processes: (a)625

Lemma 9 Let ζ = [ζ1, . . . , ζn] be a L-sub-exponential MDS and let T ∈ Rn, n ≥ 2. Then, for626

every p ≥ 1,627 (
E sup
t∈T
|〈t, ζ〉|p

)1/p

≤ c2
(√

log n · E
[
sup
t∈T
|〈t,g〉|

]
+ sup
t∈T

(E|〈t, ζ〉|p)1/p

)
(71)

where c2 is a constant which depends onL, g = [gj ] where gj are independent identically distributed628

normal random variables, and η = [ηj ] where ηj are independent identically distributed exponential629

random variables.630

We need the following basic property of sub-exponential random variables to prove Lemma 9.631

Proposition 4 If X is a L-sub-exponential random variable, then632

P (|X| > tL) ≤ 2 exp(−t) , ∀t ≥ 0 ⇔ (E|X|p)1/p ≤ c0pL , ∀p . (72)

633

We also need the following result on mixed tails:634

Proposition 5 Consider a random variable X such that635

P (|X| >
√
tL2 + tL1) ≤ 2 exp(−t) , ∀t ≥ 0 . (73)

Then636

(E|X|p)1/p ≤ c0
√
pL2 + pL1 , ∀p ≥ 1 . (74)

637

Proof: Note that for
√
tL1 ≤ tL1, we have638

P (|X| > 2
√
tL2) ≤ P (|X| >

√
tL2 + tL1) ≤ 2 exp(−t)

⇒ P (|X| > t) ≤ 2 exp(−t2/4L2
2) .
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For
√
tL1 ≥ tL1, we have639

P (|X| > 2tL1) ≤ P (|X| >
√
tL2 + tL1) ≤ 2 exp(−t)

⇒ P (|X| > t) ≤ 2 exp(−t/2L1) .

Hence, for all t ≥ 0640

P (|X| > t) ≤ 2 exp(−min(t2/4L2
2, t/2L1)) . (75)

Now, recall that for any non-negative random variable E[Z] =
∫∞

0
P (Z ≥ u)du. Using Z =641

|X|p, u = tp, we have642

E|X|p =

∫ ∞
0

P (|X| > t)ptp−1dt

≤ 2

∫ ∞
0

exp(−t2/4L2
2)ptp−1dt︸ ︷︷ ︸

I1

+ 2

∫ ∞
0

exp(−t/2L1)ptp−1dt︸ ︷︷ ︸
I2

.

For the first term I1, consider change of variables t2 = t/2L2, so dt = 2L2dt2 to give643

I1 = 2 · 2pLp2p
∫ ∞

0

exp(−t22)tp−1
2 dt2 ≤ 2cp2L

p
2p(p)

p/2 ,

for a suitable constant c2, following Proposition 3 [44]. For the second term I2, consider change of644

variables t1 = t/2L1, so dt = 2L1dt1 to give645

I2 = 2 · 2pLp1p
∫ ∞

0

exp(−t1)tp−1
1 dt1 ≤ 2cp1L

p
1p(p)

p ,

for a suitable constant c1, following Proposition 4 [44]. Taking p-th roots and using Jensen’s in-646

qeaulity, we have647

(E|X|p)1/p ≤ (I1)1/p + (I2)1/p ≤ c0(
√
pL2 + pL1) ,

for a suitable constant c0 > 0. That completes the proof.648

We also need the following result from [40]:649

Theorem 7 For any T ⊂ Rn, we have650

E

[
sup
t∈T
|〈t,η〉|

]
≤
√

log n · E
[
sup
t∈T
|〈t,g〉|

]
, (76)

where g = [gj ] where gj are independent identically distributed normal random variables, and651

η = [ηj ] where ηj are independent identically distributed exponential random variables.652

Proof of Lemma 9. We assume T is finite without loss of generality. Let {Tr} be an optimal653

admissible sequence of T . For any t ∈ T , let πr(t) = argmintr∈Tr
‖t − tr‖2. For any given p654

determining the p-norm, choose ` such that 2`−1 ≤ 2p ≤ 2`, so that 2`/p ≤ 4. Then, by triangle655

inequality, we have656

sup
t∈T
|〈t, ζ〉| ≤ sup

t∈T
|〈π`(t), ζ〉|+ sup

t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), ζ〉| . (77)

For the first term, note that657 (
E sup
t∈T
|〈π`(t), ζ〉|p

)1/p

≤

(
E
∑
t∈T`

|〈t, ζ〉|p
)1/p

≤ (|T`|)1/p sup
t∈T`

(E|〈t, ζ〉|p)1/p

≤ (22`

)1/p sup
t∈T

(E|〈t, ζ〉|p)1/p

≤ 16 sup
t∈T

(E|〈t, ζ〉|p)1/p .
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For the second term, for any u ≥ 0, we have658

P

(
sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), ζ〉| ≥
√
uL2r/2‖πr+1(t)− πr(t)‖2

+ uL2r‖πr+1(t)− πr(t)‖∞
)

≤
∞∑
t=`

∑
t∈Tr+1

∑
t′∈Tr

P

(∣∣∣∣〈t− t′, ζ〉∣∣∣∣ ≥ √uL2r/2‖t− t′‖2

+ uL2r‖t− t′‖∞
)

(a)

≤
∞∑
r=`

22r+1

· 22r

· exp(−2ru) ≤ 2 exp(−2`u)

≤ 2 exp(−pu) ,

for u ≥ u0, a constant, and where (a) follows from the Azuma-Bernstein inequality.659

Then, from Proposition 5, we have660 (
E sup
t∈T

∞∑
r=`

|〈πr+1(t)− πr(t), ζ〉|p
)1/p

≤ L
∞∑
r=`

(
2r/2‖πr+1(t)− πr(t)‖2

+ 2r‖πr+1(t)− πr(t)‖∞
)

≤ L(γ2(T, ‖ · ‖2) + γ1(T, ‖ · ‖∞) .

Then, by the majorizing measures theorem [][], we have661

γ2(T, ‖ · ‖2) ≤ E sup
t∈T
|〈t,g〉| , and γ1(T, ‖ · ‖∞) ≤ E sup

t∈T
|〈t,η〉|

(a)

≤
√

log n · E sup
t∈T
|〈t,g〉|

where (a) follows from Theorem 7. Noting that (1 +
√

log n) ≤ 3
√

log n for n ≥ 2 completes the662

proof.663

Proof of Theorem 6. Consider the random variable ζ(A) =
∑n
j=1(ξ2 − E|ξj |2)‖Aj‖22. Then, for664

any A,B ∈ A, by Azuma-Bernstein inequality, we have665

P
(
|ζ(A) − ζ(B)| ≥ ε

)
≤ 2 exp

{
−min

(
ε2

d2
2(A,B)

,
ε

d1(A,B)

)}
, (78)

where666

d2(A,B) =

 n∑
j=1

(‖Aj‖22 − ‖Bj‖22)2

1/2

=

 n∑
j=1

(‖Aj‖2 − ‖Bj‖2)2 · (‖Aj‖2 + ‖Bj‖2)2

1/2

(a)

≤

 n∑
j=1

‖Aj −Bj‖22 · (‖Aj‖2 + ‖Bj‖2)2

1/2

≤ 2dF (A)‖A−B‖2→2 ,

27



where (a) follows from triangle inequality, and667

d1(A,B) =
∥∥‖Aj‖22 − ‖Bj‖22∥∥∞

=
∥∥(‖Aj‖2 − ‖Bj‖2)(‖Aj‖2 + ‖Bj‖2)

∥∥
∞

(a)

≤ 2dF (A)
∥∥‖Aj −Bj‖2∥∥∞

= dF (A)‖A−B‖2,∞ ,

where (a) follows from triangle inequality. Also, recall from the majorizing measure theorem that668

E[supt∈T |〈t,g〉|] ≤ γ2(T, d2). Then, from Lemma 9 and Proposition 5, we have669

‖DA(ξ)‖Lp
≤
√

log n · dF (A) · γ2(A, ‖ · ‖2→2) +
√
p · dF (A) · d2→2 + p · dF (A) · d2,∞(A) .

That completes the proof.670

C Proofs of Theorem 1 and Theorem 2671

With the existing bounds on the Lp norms of the off-diagonal and diagonal terms from Section B.1,672

the proofs of the main results, Theorem 1 and Theorem 2, follow from (51)-(53).673

Proof of Theorem 1: For bounded random variables, the main result follows by combining the off-674

diagonalLp norm bound in Theorem 4 and the diagonalLp norm bound in Theorem 5 and (51)-(53).675

676

Proof of Theorem 2: For unbounded sub-Gaussian random variables, the main result follows by677

combining the off-diagonal Lp norm bound in Theorem 4 and the diagonal Lp norm bound in678

Theorem 6 and (51)-(53).679

D The Azuma-Hoeffding Inequality680

A sequence of random variables Z1, Z2, . . ., is called a martingale difference sequence (MDS)681

with respect to another sequence of random variables X1, X2, . . ., if for any t, E[|Zt|] < ∞682

and E[Zt|X1, . . . , Xt−1] = 0 almost surely. By construction, if Xt is a martingale, then Zt =683

Xt −Xt−1 will be a MDS, which explains the name.684

Let {Xt, t = 0, 1, 2, . . .} be a martingale sequence, and let Zt = Xt − Xt−1 be a MDS. Assume685

that Zt is bounded, i.e.,686

|Zt| = |Xt −Xt−1| < ct , (79)
and let c = [c1 . . . cT ] be the vector of the upper bounds. Then, the Azuma-Hoeffding inequality687

states that: for any τ > 0,688

P

(∣∣∣∣∣
T∑
t=1

Zt

∣∣∣∣∣ ≥ τ
)
≤ 2 exp

{
− τ2

2‖c‖22

}
. (80)

For the special case when ct = c, the bound can be simplified to: for any ε > 0689

P

(
1

T

∣∣∣∣∣
T∑
t=1

Zt

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
−T ε2

2c2

}
. (81)

The result can be extended to the setting of general subGaussian tails for Zt, e.g., see [39], and also690

applies to general MDSs Zt|Ft−1 where {Ft} is the filtration.691

E The Azuma-Bernstein Inequality692

Let {Xt, t = 0, 1, 2, . . .} be a martingale sequence, and let Zt = Xt −Xt−1 be a MDS. However,693

we now assume that Zt|X1, . . . , Xt−1 has a sub-exponential tail, so that694

P (|Zt|X1, . . . , Xt−1| ≥ τ) ≤ 2 exp(−cτ/κ) , (82)

where κ = |||Zt|X1, . . . , Xt−1|||ψ1
is the sub-exponential norm or ψ1 norm [44]. Then, we have the695

following result:696
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Theorem 8 Let {Zt} be a MDS which satisfies (82). Then, for every a = [a1 . . . aT ] ∈ RT , for697

any τ > 0, we have698

P

(∣∣∣∣∣
T∑
t=1

atZt

∣∣∣∣∣ ≥ τ
)
≤ 2 exp

{
−min

(
τ2

4cκ2‖a‖22
,

ητ

2κ‖a‖∞

)}
, (83)

for absolute constants c, η > 0. In particular, for any ε > 0, for a constant γ > 0, we have699

P

(
1

T

∣∣∣∣∣
T∑
t=1

Zt

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
−γT min

(
ε2

κ2
,
ε

κ

)}
. (84)

Proof: Recall that if Y is a sub-exponential random variable, then the moment-generating function700

(MGF) of Y satisfies the following result [44, Lemma 5.15]: For s such that |s| ≤ η/κ1, we have701

E[exp(sY )] ≤ exp(cs2κ2) , (85)

where κ1 = |||Y |||ψ1
and η, c are absolute constants. In particular, since Zt|Ft−1 are subexponential,702

with κ1 = maxt |||Zt|X1, . . . , Xt−1|||ψ1
, for |s| ≤ η/κ1, we have703

EXt|X1,...,Xt−1
[exp(sZt)] ≤ exp(cs2κ2

1) , ∀t . (86)

For any s > 0, note that704

P

(
T∑
t=1

atZt ≥ τ

)
= P

(
exp

(
s

T∑
t=1

atZt

)
≥ exp(sτ)

)
≤ exp(−sτ)E

[
exp

(
s

T∑
t=1

atZt

)]
.

(87)
For |s| ≤ η/(κ1‖a‖∞) so that |ats| ≤ η/κ1 for all t, the expectation can be bounded using (86) as705

follows:706

E

[
exp

(
s

T∑
t=1

atZt

)]
= E(X1,...,XT )

[
T∏
t=1

exp(satZt)

]

= E(X1,...,XT−1)

[
EXT |X1,...,XT−1

[exp(saTZT )]

T−1∏
t=1

exp(satZt)

]

≤ exp(cs2a2
Tκ

2)E(X1,...,XT−1)

[
T−1∏
t=1

exp(satZt)

]

≤ exp(cs2a2
Tκ

2) exp(cs2a2
T−1κ

2)E(X1,...,XT−2)

[
T−2∏
t=1

exp(satZt)

]
· · ·
≤ exp

(
cs2κ2‖a‖22

)
.

Plugging this back to (87), for |s| ≤ η/κ, we have707

P

(
T∑
t=1

atZt ≥ τ

)
≤ exp(−sτ + cs2κ2‖a‖22) . (88)

Choosing s = min
(

τ
2cκ2‖a‖22

, η
κ‖a‖∞

)
, we obtain708

P

(
T∑
t=1

atZt ≥ τ

)
≤ exp

{
−min

(
τ2

4cκ2‖a‖22
,

ητ

2κ‖a‖∞

)}
. (89)

Repeating the same argument with −Zt instead of Xt, we obtain the same bound for709

P (−
∑
t atZt ≥ τ). Combining the two results gives us (83).710

Now, with at = 1, t = 1, . . . , T , and τ = Tε in (83), for a suitable constant γ > 0 we have711

P

(
1

T

∣∣∣∣∣
T∑
t=1

Zt

∣∣∣∣∣ ≥ ε
)
≤ exp

{
−γT min

(
ε2

κ2
,
ε

κ

)}
. (90)
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That completes the proof.712

The result can also be stated in terms of a general sub-exponential MDS Zt|Ft−1, where {Ft} is the713

filtration.714
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