
Appendices
Notation

• Given a matrix A, we will denote its transpose by A†.

• Given a pair of random vectors ~X , ~Y , we will denote their cross covariance matrix by CY X .
• Given a pair of vectors ~u 2 Rm, ~v 2 Rn, we define ~u ⌦ ~v 2 Rm⇥n as the matrix with

entries (~u⌦ ~v)ak := uavk.
• Given a pair ~u, ~v of n-dimensional vectors we denote their Hadamard product by ~u�~v 2 Rn,

i.e. (~u� ~v)k := ukvk.
• O(N) := group of N ⇥N orthogonal matrices.

A Teacher-Student Setup

A.1 Teacher Network

We consider teachers defined by a weight matrix W 2 RNclasses⇥Nf , where Nclasses is the number
of classes and Nf the number of input features. Noisy teachers are defined by a weight matrix
⌃̂ ⌘ W + ⇠, where ⇠ 2 RNclasses⇥Nf has entries drawn independently from a centered Gaussian
distribution with variance �̂

2
/Nf .

During training, the teacher network takes in an input data matrix X 2 RNf⇥Ndata , and produces
noisy vector outputs

ŷ ⌘ argmax
over rows

�
⌃̂X

2 RNdata

thereby furnishing a rule for producing (noisy) labels ŷ from inputs X. At test time, the student is
tested against noise-free labels generated via y ⌘ argmax

over rows

�
WX

2 RNdata .

The columns of X form a collection of Ndata feature vectors { ~Xµ
}, µ = 1, · · · , Ndata, drawn from

a centered Gaussian distribution with covariance CX . We will write ŷ(~Xµ) for the label assigned to
the feature vector ~X

µ. We assume that the matrix X is of full rank so that X†X is invertible.

A.2 Student Network

A student network with L layers is defined via a collection of weight matrices W(l)
2 RNl⇥Nl�1 ,

1 l L, with N0 = Nf and NL = Nclasses. The student’s composite weight matrix is given by
W := W(L)W(L�1)

· · ·W(1)
.

Define

W(l)
> := W(L)

· · ·W(l+1)
,

W(l)
< := W(l�1)

· · ·W(1)

so that, for 2 l < L,
W = W(l)

> W(l)W(l)
< .

In particular, the gradient of any scalar valued function f(W), with respect to W(l) is given by

rW(l)f = W(l)
>

†
(rWf)W(l)

<

†
(6)

Let Pc(W ~X) define the probability of observing class c given W ~X . For a neural classifier, this reads

Pc(W ~X) := Probability
⇣
class c

��W ~X

⌘
:= softmax[W ~X][c].

11

The cross-entropy loss between the teacher’s one-hot-distributed labels {ŷ(~Xµ))} and the student’s
softmax outputs can be written as

Ltrain(W|⌃̂,X) = �
1

Ndata

NdataX

µ=1

lnPŷ(~Xµ)(W
~X
µ)

= �
1

Ndata

NdataX

µ=1

NclassesX

c=1

Pc(�⌃̂ ~X
µ) lnPc(W ~X

µ)

where � � 1 is a parameter chosen such that Pc(�⌃̂ ~X
µ) is arbitrarily close to the noisy teacher’s

outputs ŷ(~Xµ).

A.3 Training Dynamics

The student’s weights are updated layerwise via SGD. Adopting the “continuous time” version of
SGD for ease of exposition, and using the identity (6), the layerwise update equations read

⌧
d

dt
W(l) = �rW(l)Ltrain(W|⌃̂,X)

= �W(l)
>

†
"

1

Ndata

NdataX

µ=1

NclassesX

c=1

Pc(�⌃̂ ~X
µ)
⇣
rW lnPc(W ~X

µ)
⌘#

W(l)
<

†

A straightforward calculation reveals that

1

Ndata

NdataX

µ=1

NclassesX

c=1

Pc(�⌃̂ ~X
µ)
⇣
rW lnPc(W ~X

µ)
⌘

= CY X(W)�CY X(�⌃̂)

where the matrix CY X(W) defined by

CY X(W)c,k =
1

Ndata

NdataX

µ=1

Pc(W ~X
µ)Xµ

k (7)

is the student’s estimate of the empirical cross-covariance between the softmax outputs and the feature
vectors determined using the training dataset. Similarly, CY X(�⌃̂) is the empirical cross-covariance
between the feature vectors and the labels generated by the teacher.

Therefore,

⌧
d

dt
W(l) = W(l)

>

†h
CY X(�⌃̂)�CY X(W)

i
W(l)

<

†
(8)

Equation (8) yields an interesting relationship between the weights in consecutive layers, viz.

d

dt

h
W(l+1)†W(l+1)

i
=

d

dt

h
W(l)W(l)†

i
1 l L� 1 (9)

Using equation (8), a straightforward calculation gives

⌧
d

dt
Ltrain(W|⌃̂,X) = �

LX

l=1

Tr
✓
W(l)

<

†
W(l)

<

h
CY X(�⌃̂)�CY X(W)

i†
W(l)

> W(l)
>

† h
CY X(�⌃̂)�CY X(W)

i◆

(10)

12

Each summand on the RHS of equation (10) is the trace of a product of symmetric positive semi-

definite matrices. Hence
dLtrain

dt
 0 throughout training. Thus, SGD is guaranteed to converge to a

solution which minimizes Ltrain(·|⌃̂,X), although we have not provided any information about the
rate of convergence.

Furthermore,

min
W

Ltrain(W|⌃̂,X) = Ltrain(⌃̂|⌃̂,X).

and

W is a minimum of Ltrain(· |⌃̂,X) , CY X(W) = CY X(�⌃̂).

In other words, the optimal solutions include all cases where the student’s estimate of the empirical
cross-covariance matches that of the noisy teacher. The number of such solutions is highly degenerate
due to the fact that the softmax function is invariant under all transformations W ! W +~1⌦ ~v for
any vector ~v 2 RNf , where ~1 2 RNclasses is the vector of all ones.

A straightforward computation shows that the Hessian of Ltrain(· |⌃̂,X) has only non-negative
eigenvalues, which combined with equation (10) leads to the conclusion that the set of minima of the
loss is given by

(
W = �⌃̂+ �

NdataX

µ=1

~1⌦ (X†X)�1 ~Xµ
8� 2 R

)
. (11)

A.3.1 Training in the limit of infinite data

Finally, we note that as Ndata ! 1, equation (7) reads

lim
Ndata!1

1

Ndata

NdataX

µ=1

Pc(W ~X
µ)Xµ

k ! E
⇣
XkPc(W ~X)

⌘
(12)

where E(·) denotes the expectation over ~X . When ~X is a centered Gaussian random vector with
covariance CX , then Gaussian integration by parts in (12) yields

E
⇣
XkPc(W ~X)

⌘
= [G(W)WCX]ck

where the matrix G(W) is defined as

G(W)c,c0 := E
⇣
Pc(W ~X)

⌘
�c,c0 � E

⇣
Pc(W ~X)Pc0(W ~X)

⌘
. (13)

Thus, from equations (7) and (12), we obtain

lim
Ndata!1

CY X(W) = G(W)WCX . (14)

We note that, from the definition in (13), G(W) is a positive semi-definite matrix with a single zero
eigenvalue. Furthermore, if the diagonal entries of WW† are much larger in magnitude than its
off diagonal entries, then one can combine the HLP theorem [29] with a generalization of Derrida’s
REM techniques [24] to show that:

1.
G(W) '

1

Nclasses � 1
Tr(G(W))

✓
I�

1

Nclasses

~1⌦~1

◆
.

13

2. If the SVD of W is given by W = USV†, then Tr(G(W)) ' g(S) where the explicit
functional form of the real-valued function g can be accurately estimated for large values of
the norm kSk of S. Under the stated conditions, one can show that

the individual components, g(S)S↵↵, decrease monotonically with the norm kSk. (15)

3. Furthermore,

U†G(USV†)U '
1

Nclasses � 1
g(S)I. (16)

Surprisingly, our empirical results obtained over a wide range of experimental conditions suggest
that using the above approximate equalities gives very accurate results even in regimes where we
include the off-diagonal entries of WW†. In other words, the corrections obtained by including the
off-diagonal entries are always marginal in our experiments.

B Training Aligned (TA) Networks

We now specialize the results in the previous section to the so-called TA networks [16]2. TA networks
are a class of analytically tractable models where one can explicitly calculate the quantities appearing
in equations (8, 10, 13, and 16).

The key point is that TA networks are defined only by the choice of initialization of model parameters,
and we are free to choose the initial values of these parameters to make the model solvable. Of
course, in reality, deep learning practitioners do not have access to an oracle as in the student-teacher
setup, so any initialization that assumes knowledge of the teachers’ SVD is not feasible in practice.
Nevertheless, simulations show that the intuition gained from TA models generalizes to networks
initialized randomly.

For our TA model, we assume that we are using an SVD convention where the Û and V̂ are
orthogonal matrices and the singular value matrix is rectangular with zeros off the main diagonal.
Given the teacher’s SVD �⌃̂ = Û ŜV̂

†
, we choose a set of orthogonal matrices {U (l)

}
L
l=0 with

U (l)
2 O(Nl), U (L) := Û , U (0) := V̂ , and set

W(l)
0 = U (l)S(l)

0 U (l�1)†
, W(l)

< 0 = U (l�1)S(l)
< 0V̂

†
, W(l)

> 0 = ÛS(l)
> 0U

(l)†

so that the student’s initial composite weight matrix is

W0 = W(l)
> 0W

(l)
0 W(l)

< 0 = ÛS(l)
> 0S

(l)
0 S(l)

< 0V̂
†

Using the estimate in (16), the SGD update equations for the TA model at t = 0 read

⌧
d

dt
S(l)

����
t=0

= S(l)
>

†
0Û

†h
CY X(�⌃̂)�CY X(W0)

i
V̂ S(l)

<

†
0

' S(l)
>

†
0

h
g(Ŝ)Ŝ � g(S0)S0

i
S(l)

<

†
0 (17)

The RHS of (17) is a diagonal matrix, so that

S(l)(�t) ' S(l)
0 +

�t

⌧
S(l)

>

†
0

h
g(Ŝ)Ŝ � g(S0)S0

i
S(l)

<

†
0 +O

 ✓
�t

⌧

◆2
!

Thus, repeatedly iterating this construction gives, for arbitrary t,
2Our definition of TA networks differs slightly from the TA networks in [16].

14

d

dt
W(l) = U (l) d

dt
S(l)U (l�1)†

with

⌧
d

dt
S(l)

' S(l)
>

†h
g(Ŝ)Ŝ � g(S)S

i
S(l)

<

†
(18)

In other words, under the stated assumptions, SGD only modifies the singular values of the weights
in each layer, leaving the singular vectors fixed at their initial values.

We henceforth drop the “'” and write the equations as equalities. Specializing to the case where
L = 2, equation (18) becomes

⌧
d

dt
S(2) =

h
g(Ŝ)Ŝ � g(S)S

i
S(1)†

, ⌧
d

dt
S(1) = S(2)†

h
g(Ŝ)Ŝ � g(S)S

i

where S = S(2)S(1). If we define s(l) as the vector consisting of the non-zero elements of S(l), the
previous equation reads

⌧
d

dt
s(2) =

h
g(ŝ)ŝ� g(s)s

i
� s(1), ⌧

d

dt
s(1) =

h
g(ŝ)ŝ� g(s)s

i
� s(2)

where, now s = s(2) � s(1). Consequently,

⌧
d

dt
s = ⌧

d

dt

h
s(2) � s(1)

i
=
h
g(ŝ)ŝ� g(s)s

i
�

h
s(1) � s(1) + s(2) � s(2)

i

Taking into account equation (9), we have

s(1) � s(1) = s(2) � s(2) + constant

where the constant term is determined by the choice of initial conditions. For simplicity, we pick the
initial non-zero singular values to all have the same value so that the constant vanishes.

s(1) � s(1) = s(2) � s(2)) s = s(2) � s(1) = s(1) � s(1).

Thus, we finally obtain

⌧
d

dt
s = ⌧

d

dt

h
s(2) � s(1)

i
= 2
h
g(ŝ)ŝ� g(s)s

i
� s

which is equation (3) in our paper.

C Multitask Benefit

We will derive an expression for the multitask benefit MTA B in the most general setting, assuming
Gaussian inputs (not necessarily iid) and linear activations, except for the softmax in the classifier.
No other assumptions are required, and the result holds for models of any depth.

We will use the notation hF (~X)i for the expectation of F over the distribution of ~X , where we
assume that ~X is a centered Gaussian random vector with covariance CX .

15

The generalization error is obtained by computing

L := Lgeneralization = �

*
NclassesX

c=1

�c,y(~X) lnPc(W ~X)

+
(19)

= �

NclassesX

c=1

D
Pc(�W ~X) lnPc(W ~X)

E

= hlnZ(W ~X)i �
NclassesX

c=1

D
Pc(�W ~X)[W ~X]c

E

where Z(~v) :=
NclassesX

c=1

e
vc for any vector ~v 2 RNclasses .

Note that we have replaced the noisy teacher’s weights ⌃̂ with the denoised teacher’s weights W
since we test the model using the ground truth labels generated from the true distribution.

Using the same notation as in the main paper, we write WA and fWA for the parameters of task A in
the multitask setting and the single task baseline respectively. Thus, the generalization loss on the
main task in the multitask setting is given by

LA|B = hlnZ(WA
~X)i � lim

�!1

NclassesX

c=1

D
Pc(�W ~X)[WA

~X]c
E

whereas the generalization loss for the baseline model trained on task A is

LA = hlnZ(fWA
~X)i � lim

�!1

NclassesX

c=1

D
Pc(�W ~X)[fWA

~X]c
E

The multitask benefit is obtained by computing

MTA B := LA�LA|B =

*
ln

Z(fWA
~X)

Z(WA
~X)

+
+ lim

�!1

NclassesX

c=1

D
Pc(�W ~X)

n
[WA

~X]c � [fWA
~X]c
oE

Now, lnZ(~v) is convex in ~v for any vector ~v (since the Hessian of lnZ is a positive definite symmetric
matrix). Hence

ln

"
Z(fWA

~X)

Z(WA
~X)

#
� (fWA �WA) ·rWA lnZ(WA)

=
NclassesX

c=1

Pc(WA
~X)
n
[fWA

~X]c � [WA
~X]c
o

(20)

Interchanging WA $ fWA yields

ln

"
Z(fWA

~X)

Z(WA
~X)

#
 (fWA �WA) ·rfWA

lnZ(fWA)

=
NclassesX

c=1

Pc(fWA
~X)
n
[fWA

~X]c � [WA
~X]c
o

(21)

So, taking expectations in (20), we get

16

MTA B � lim
�!1

NclassesX

c=1

Dh
Pc(WA

~X)� Pc(�WA
~X)
in

[fWA
~X]c � [WA

~X]c
oE

(22)

Similarly, taking expectations in (21) gives

MTA B lim
�!1

NclassesX

c=1

Dh
Pc(fWA

~X)� Pc(�WA
~X)
in

[fWA
~X]c � [WA

~X]c
oE

(23)

Using Gaussian integration by parts in (22, 23), we obtain, after some straightforward algebra that

MTA B � Tr
✓⇥

G(WA)WA �G(WA)WA

⇤
CX

h
WA � fWA

i†◆
(24)

and
MTA B Tr

✓h
G(WA)WA �G(fWA)fWA

i
CX

h
WA � fWA

i†◆
(25)

where G is defined above in (13) via
D
XkPc(W ~X)

E
= [G(W)WCX]ck .

These expressions are completely general and do not assume TA initialization or make any other
approximations other than the assumptions stated above, (viz. centered Gaussian random vectors with
covariance CX , linear activations in the hidden layers and a softmax in the output layer).

It is also worth noting that the results hold for models of any depth since the W’s refer to the
composite weight of the entire network.

Specializing to the TA case, following Appendix B above, and elaborated further in Appendix C.1
gives the result quoted in our paper.

C.1 Multitask Benefit for TA Networks

In order to address the multitask benefit for TA models, we need an extension of the single task
analysis in Appendix B for multitask TA models. For simplicity, we consider the case where the data
is drawn from a Gaussian distribution with CX = I .

Recall that we defined the TA models by insisting that the student’s initial weights have an SVD
with the same singular vectors as in the teacher’s SVD. The same definition applies here, so that if
⌃̂A/B = ÛA/BŜA/BV̂

†
AB denotes the teachers’ SVDs for tasks A and B, then the SVDs for the

students’ initial weights for tasks A and B are respectively set to

WA(0) = ÛASAV̂
†
A and WB(0) = ÛBSBV̂

†
B

Using the definition of task relatedness, rAB = V̂
†
BV̂ A, in the previous expression gives

WA(0) = ÛASAV̂
†
A and WB(0) = ÛBSBrABV̂

†
A.

As in Appendix B, singular vectors corresponding to the composite weight matrices can be written as
the Hadamard product of the singular vectors corresponding to the layerwise weights. For example,
for a model with a single hidden layer, we have diag(SA) := s32A � s21 and diag(SB) := s32B � s21.

With these definitions, we can take the single task results for The TA model from Appendix B and
extend them to two teachers to obtain

17

⌧
d

dt
s32A = s21 �

⇣
ŝAg(⌃̂A|ÛA)� s32A � s21g(WA|ÛA)

⌘

⌧
d

dt
s32B = s21 �

⇣
ŝBg(⌃̂B |ÛB)� s32B � s21g(WB |ÛB)

⌘
rAB

s21 � s21 = s32A � s32A + rABs
32
B � s32B (26)

where g(W|Û) := Û
†
G(W)Û for any pair of matrices Û ,W.

Note that, as expected, if rAB = 0, the dynamics for the second task is trivial and only the first
task evolves non-trivially. Thus, to obtain the single task dynamics, we can simply look at the case
rAB = 0. This motivates the following definition.

1. Define s(rAB) via the relation

s(rAB)� s(rAB) := s32A � s32A �
⇥
s32A � s32A + rABs

32
B � s32B

⇤
(27)

This simply says that {s�(rAB)} are the multitask student’s singular values pertinent to
executing task A.

2. If we set rAB = 0 in (27), we recover the dynamics of the single task case. Therefore, if
{s̃�} denote the student’s singular values when training on task A, we can identify

es = s(rAB = 0)

To understand the difference between the multitask and single task case, we need to consider how
rAB modifies the results in the single task case. The simplest way to do this is to study equation (26)
perturbatively in rAB by plugging in the last line of (26) into the first line of (26). The mechanics of
carrying out the perturbative expansion, while somewhat tedious, are straightforward and are left as
an exercise for the motivated reader. The result of the exercise can be summarized as follows:

1. Let {ŝA� } denote the singular values of the teacher corresponding to task A. By definition,
the initial singular values corresponding to the multitask student’s parameters for task A and
those of the baseline single task student are identical. With these initial conditions, SGD
dynamics yields, at all times,

s�(rAB) � s�(rAB = 0) = s̃� whenever s̃�|t=0 < ŝ
A
�

s�(rAB) s�(rAB = 0) = s̃� whenever s̃�|t=0 � ŝ
A
�

(28)

In other words, the effect of rAB > 0 is to enhance either the growth rate or the decay rate
of the student’s singular values along the “principle components” of the noisy teacher.

2. Let {sA� } denote the singular values of the noise-free teacher.
(a) High SNR Case:

When the SNR for task A is large, the singular vectors of the noise-free teacher are
almost surely parallel to the singular values of the noisy teacher (see [25]). In this case,

Tr
✓⇥

G(WA)WA

⇤ h
WA � fWA

i†◆
=

rankAX

�=1

g(sA)s
A
�

�
s�(rAB)� s̃�

�
� 0 (29)

where rankA := rank(WA) is the rank of the noise-free teacher. Consequently, equation
(24) yields

MTA B �

rankAX

�=1

⇥
g(sA)s

A
� � g(s(rAB))s�(rAB)

⇤ ⇥
s�(rAB)� s̃�

⇤

+
X

�>rankA

g(s(rAB))s�(rAB)
��s�(rAB)� s̃�

��

(30)

18

Thus, from the assertion in (15),

ks(rAB)k > ksAk) MTA B > 0 (31)
(b) Low SNR Case:

When the SNR for task A is small, the singular vectors of the noise-free teacher are
almost surely orthogonal to the singular values of the noisy teacher (see [25]). In this
case,

Tr
✓⇥

G(WA)WA

⇤ h
WA � fWA

i†◆
= 0 (32)

Consequently, equations (24, 25) yield

NclassesX

�=1

g(s(rAB))s�(rAB)
⇥
s̃� � s�(rAB)

⇤
 MTA B

NclassesX

�=1

g(es)s̃�
⇥
s̃� � s�(rAB)

⇤

(33)

On the other hand, in the low SNR case, the singular values of the noisy teacher are
essentially in the bulk of the MP sea (cf. [25]). Therefore, according to equation (28),
the sign of the multitask benefit in the low SNR regime will depend on the size of the
set
�
�
��s̃�|t=0 � ŝ

A
�

where the ŝ

A
� are drawn from the MP distribution. When this

set is small, MTA B will tend to be negative. Conversely MTA B will tend to be
positive if the size of the forementioned set is large.

3. Note that according equation (26), if rAB > 0, then
(a) increasing sB (the SNR of task B) increases ŝB .
(b) According to (15), increasing kŝBk decreases g(ŝB)ŝB , which in turn decreases the

rate of growth of s(rAB) relative to the rate of growth of es (cf. the second line in
equation 26).

Hence, an increase in ŝB results in an overall increase of s̃� � s�(rAB) and consequently
an increase in MTA B in both the low SNR task A case following equation (33) and the
high SNR task A case where the second term in (30) increases with

��s̃� � s�(rAB)
��. In

other words

increasing ŝB
���
rAB>0

) an increase in
⇥
s̃� � s�(rAB)

⇤
) an increase in MTA B

(34)
Note that for small but nonzero values of rAB and very large values of kŝBk, g(ŝB)ŝB ! 0
so that the second line of equation (26) leads to a rapid decay of s32B towards zero, which
in turn implies that s(rAB)� es becomes negative following the third line of equation (26).
Thus,

⇥
s̃� � s�(rAB)

⇤
! c� 0 for kŝBk � 1. Consequently, regardless of the SNR for

task A,

MTA B ! m 0 for very large values of kŝBk and small rAB > 0. (35)

4. We could also increase rAB with sB > 0 fixed.
The third line of equation (26) shows that s(rAB) monotonically increases with rAB > 0.
This in turn directly implies that the differences in the components of [s(rAB) � es] will
all increase as rAB increases. Therefore, in the high SNR regime for task A, equation (30)
immediately gives

an increase rAB) an increase in MTA B (36)

5. Finally, we note that as Ndata ! 1, the empirical cross-covariance between the noisy labels
and the input feature vectors converges to true cross-covariance between the noise-free labels
and the input feature vectors as long as the noise level remains bounded by Nclasses/Nf . In
this case, the generalization loss and the training loss are almost surely equal so that

lim
Ndata!1

LA|B ! LA) lim
Ndata!1

MTA B ! 0. (37)

19

D Task Relatedness and Multitask Results

D.1 Multitask full results

.01 10

Training Pts

100

3200

M
T

A
←

B

Relatedness
-.1

.19

.01 10 .01 10 .01 10 .01 10 .01 10 .01 10

-.1

.19
-.1

.19
-.1

.19
-.1

.19
-.1

.19

200

400

800

1600

SB

SA

VB

VA

Figure A1: Multitask benefit in student networks trained on data that varied along 4 independent
variables: 1) number of main task training points (rows), 2) main task signal-to-noise ratio (SNR)
(columns), 3) auxiliary task SNR (x-axes), and 4) auxiliary task relatedeness (individual lines). Each
line shows the mean benefit over 5 random seeds and the shaded region shows the standard error of
the mean. Multitask benefits > 0 indicate that student network performs better when trained with
additional auxiliary task data. MT benefit is correlated with task relatedness and SNR for related
tasks, yet negatively correlated with SNR for unrelated tasks. This data is summarized in Figure 2.

20

.01 10

Training Pts

100

400

M
T

A
←

B

-.06

.06

.01 10 .01 10 .01 10 .01 10 .01 10 .01 10
-.06

.06

Relatedness
SB

SA

VB

VA

Figure A2: Multitask benefit when trained on rank 3 teachers. The data is arranged as in Figure A1
and shows very similar trends as in the rank 10 case.

-.11

.38

-.11

.38

-.11

.38

.01 10
-.11

.38

.01 10 .01 10 .01 10 .01 10 .01 10

.01 10

Aux Training
Pts

100

200

400

800M
T

A
←

B

SB

SA
Relatedness

VB

VA

Figure A3: Multitask benefit when trained on increasing levels of auxiliary task data. The data is
arranged as in Figure A1 and shows greatly improved performance with larger amounts of auxiliary
data. This data is summarized in Figure 3, left panel.

21

.01 10

Layers

5

M
T

A
←

B

Relatedness
-.24

.18

.01 10 .01 10 .01 10 .01 10 .01 10 .01 10

1

3

-.24

.18
-.24

.18

SB

SA

VB

VA

Figure A4: Multitask benefit when training deeper networks with ReLU nonlinearities. The data
is arranged as in Figure A1 and shows qualitatively similar results to linear networks. This data is
summarized in Figure 3, right panel.

22

