Appendix: MaCow: Masked Convolutional Generative Flow

A Dequantization

As described in §2, generative flows are defined on continuous random variables. Many real-world
datasets, however, are recordings of discrete representations of signals, and fitting a continuous density
model to discrete data produces a degenerate solution that places all probability mass on discrete
datapoints (Uria et al., 2013; Ho et al., 2019). A common solution to this problem is “dequantization”
that converts the discrete data distribution into a continuous one.

Specifically, in the context of natural images, each dimension (pixel) of the discrete data = takes on
values in {0, 1, ...,255}. The dequatization process adds continuous random noise u to x, resulting
a continuous data point of:

Yy =+ u, (1)
where u € [0,1)? is continuous random noise taking values from interval [0, 1). By modeling the
density of Y € ) with py(y), the distribution of X is defined as:

Py(x) = / po(y)dy = / po(z + u) du. (2)
y [0,1)4

By restricting the range of w in [0, 1), the mapping between y and a pair of = and w is bijective. Thus,
we have pg(y) = po(x + u) = po(z, u).

By introducing a dequantization noise distribution q(u|z), the training objective in (1) can be
re-written as:

Epx) —10gPe(X)] =Epx) l— 108;/[0 l)dpe(X, u) dU1
X, u
= Ep(x) [Eq(UIX) { log ZM} - KL(Q(UIX)Ipe(UIX))]

<Epx) lEq(mx) [ — log po (X, U)} + Equx) [log Q(UX)”

=E,v) [ - logpe(Y)} +Epx)Eqaux) [log Q(U|X)] , (3)

where p(y) = P(z)q(u|x) is the distribution of the dequantized variable Y under the dequantization
noise distribution g (u|X).

Uniform Dequantization. The most common dequantization method in prior work is uniform
dequantization where the noise u is sampled from the uniform distribution Unif(0, 1) such that
q(ulx) ~ Unif(0,1),Va € X.

From (3), we have
Ep(x) [—log Pp(X)] < Eyyy [~ logpe(Y)],
as log g(ulz) = 0,Vz € X.
Variational Dequantization. As discussed in Ho et al. (2019), uniform dequantization directs
po(y) to assign uniform density to unit hypercubes [0, 1), which is difficult for smooth distribution

approximators. They proposed a parametric dequantization noise distribution g, (u|x) with a training
objective to optimize the evidence lower bound (ELBO) provided in (3):

Iélid)n Ep¢(y) [— logpg (Y)] + EP(X)Eq¢(u\X) [log ) (U|X)] y (4)

where py(y) = P(x)qe(ulx). In this paper, we implemented both these two dequantization methods
for our MACOW, as is detailed in §4).
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B Experimental Details

B.1 Model details

Table 4: Hyper-parameters for MACOW in our experiments.
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B.2 Optimization

Parameter optimization is performed with the Adam optimizer (Kingma and Ba, 2014) with § =
(0.9,0.999) and € = le — 8. Warmup training is applied to all the experiments: the learning rate
linearly increases to for 500 updates to the initial learning rate 1e — 3. Then we use exponential decay
to decrease the learning rate with decay rate is 0.999997.
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C More samples from our experiments

Figure 4: Samples from 5-bit, 128 x 128 LSUN bedrooms.
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Figure 5: Samples from 5-bit, 128 128 LSUN church.
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Figure 6: Samples from 5-bit, 128 x 128 LSUN towers.
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Figure 7: Synthetic celebrities sampled from 5-bit 256 x256 CelebA-HQ.
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Figure 8: Samples from 8-bit imagenet 64 x 64 with uniform dequantization
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bit imagenet 64 x 64 with variational dequantization

Figure 9: Samples from 8
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