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Abstract

We propose Chirality Nets, a family of deep nets that is equivariant to the “chirality
transform,” i.e., the transformation to create a chiral pair. Through parameter
sharing, odd and even symmetry, we propose and prove variants of standard
building blocks of deep nets that satisfy the equivariance property, including fully
connected layers, convolutional layers, batch-normalization, and LSTM/GRU cells.
The proposed layers lead to a more data efficient representation and a reduction
in computation by exploiting symmetry. We evaluate chirality nets on the task
of human pose regression, which naturally exploits the left/right mirroring of the
human body. We study three pose regression tasks: 3D pose estimation from
video, 2D pose forecasting, and skeleton based activity recognition. Our approach
achieves/matches state-of-the-art results, with more significant gains on small
datasets and limited-data settings.

1 Introduction

Human pose regression tasks such as human pose estimation, human pose forecasting and skeleton
based action recognition, have numerous applications in video understanding, security and human-
computer interaction. For instance, collaborative virtual reality applications rely on accurate pose
estimation for which significant advances have been reported in recent years.

Specifically, recent state-of-the-art approaches use supervised learning to address pose regression and
employ deep nets. Input and output of those nets depend on the task: inputs are typically 2D or 3D
human pose key-points stacked into a vector; the output may represent human pose key-points for
pose estimation or a classification probability for activity recognition. To improve accuracy of those
tasks, a variety of deep net architectures have been proposed [34, 3, 117,29, 142! |48]], generally relying
on common deep net building blocks, such as, fully connected, convolutional or recurrent layers.
Unlike for image datasets, to enlarge the size of human pose datasets, a reflection (left-right flipping)
of the pose coordinates as illustrated in step (1) of Fig.[I]is not sufficient. The chirality of the human
pose requires to additionally switch the labeling of left and right as illustrated in step (2) of Fig.

However, while this two-step data augmentation is conceptually easy to employ during training, we
argue that even better accuracy is possible for human pose regression tasks if this pose symmetry is
directly built into the deep net. In particular, if confronted with either of the poses illustrated on the
left or right hand side of Fig. [I] the output of a deep net should be equivariant to the transformation,
i.e., the output is also transformed in a “predefined way.” For example, if the network’s output is also
a human pose, the output pose should follow the same transformation. On the other hand, for an
activity recognition task, the output probability should remain unchanged. The equivariant map, for
pose estimation, is illustrated in Fig.[2]and we make the equivariance property more precise later.

To encode this form of equivariance for human pose regression tasks, we propose “chirality nets.”
Specifically, the output of a chirality net is guaranteed to be equivariant w.r.t. a transformation
composed of reflections and label switching. To build chirality nets, we develop chirality equivariant
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Figure 1: Illustration of the chirality transformation. The transformation includes two operations, (1) a reflection
of the pose, i.e., a negation of the x-coordinates; and (2) a switch of the left / right joint labeling. The ordering of
the two operations are interchangeable.

versions of commonly used layers. Specifically, we design and prove equivariance for versions of fully
connected, convolutional, batch-normalization, dropout, and LSTM/GRU layers and element-wise
non-linearities such as tanh or soft-sign.The main common design principle for chirality equivariant
layers is odd and even symmetric sharing of model parameters. Hence, in addition to being equivariant,
transforming a typical deep net into its chiral counterpart results in a reduction of the number of
trainable parameters, and lower computation complexity due to the symmetry in the model weights.
We find a smaller number of trainable parameters reduces the sample complexity, i.e., the models
need less training data.

We demonstrate the generalization and effectiveness of our approach on three pose regression tasks
over four datasets: 3D pose estimation on the Human3.6m [22]] and HumanEva dataset [49], 2D pose
estimation on the Penn Action dataset [64] and skeleton-based action recognition on Kinetics-400
dataset [23]. Our approach achieves state-of-the-art results with guarantees on equivariance, lower
number of parameters, and robustness in low-resource settings.

2 Related Work

First we briefly review invariance and equivariance in machine learning and computer vision as well
as human pose regression tasks.

Invariant and equivariant representation. Hand-crafted invariant and equivariant representations
have been utilized widely in computer vision systems for decades, e.g., scale invariance of SIFT [32],
orientation invariance of HOG [9], affine invariance of the Harris detector [36]], shift-invariant systems
in image processing [54], efc.

These properties have also been adapted to learned representations. A widely known property is
the translation equivariance of convolutional neural nets (CNN) [28]]: through spatial or temporal
parameter sharing, a shifted input leads to a shifted output. Group-equivariant CNNs extend the
equivariance to rotation, mirror reflection and translation [[7] by replacing the shift operation with a
more general set of transformations. Other representations for building equivariance into deep nets
have also been proposed, e.g., the Symmetric Network [[12]], the Harmonic Network [57]] and the
Spherical CNN [8]].

The aforementioned works focus on deep nets where the input are images. While related, they are
not directly applicable to human pose. For example, a reflection with respect to the y-axis in the
image domain corresponds to a permutation of the pixel locations, i.e., swapping the pixel intensity
between each pixel’s reflected counterpart. In contrast, for human pose, where the input is a vector
representing the human joints’ spatial coordinates, a reflection corresponds to the negation of the
value for each of the joints reflected dimension.

The input representation of deep nets for human pose is more similar to pointsets. Prior work has
explored building permutation equivariant deep nets, i.e., any permutation of input elements results in
the same permutation of output elements. In [62}!43]. Both works utilize parameter sharing to achieve
permutation equivariance. Following these works, graph nets generalize the family of permutation
equivariant networks and demonstrate success on numerous applications [46} 27, 14,131,126} 161,31].

For human pose, equivariance to all permutations is too strong of a property. Recall, our aim is to
build models equivariant to the chiral symmetry, which only involves a specific permutation, e.g., the
switch between left and right joints, shown in step (2) of Fig.
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Figure 2: Illustration of chirality equivariance for the task of 2D to 3D pose estimation.
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Most relevant to our approach is work by Ravanbakhsh et al. [44]. Ravanbakhsh et al. [44]] explore
which type of equivariance can be achieved through parameter sharing. Their approach captures
one specific permutation in the pose symmetric transform, but does not capture the negation from
the reflection, shown in Fig. [T|step (1). In contrast, our approach considers both operations (1)
and (2) jointly, which leads to a different formulation. Lastly, to the best of our knowledge, [44]
only discusses theoretically the construction of equivariant networks. In this work, we design and
implement a variety of building blocks for deep nets and demonstrate the benefits on a wide range of
practical applications in human pose regression tasks.

Human pose applications. For 3D pose estimation from images, recent approaches utilize a two-
step approach: (1) 2D pose keypoints are predicted given a video; (2) 3D keypoints are estimated
given 2D joint locations. The 2D to 3D estimation is formulated as a regression task via deep
nets [40} 152} 35} 51} 10441} 159L 1330 [17, 29, 142]]. Capturing the temporal information is crucial and
has been explored in 3D pose estimation [17 29] as well as in action recognition [53| 20]], video
segmentation[18} [19] and learning object dynamics [34,|37]]. Most recently, Pavllo et al. [42] propose
to use temporal convolutions to better capture the temporal information for 3D pose estimation over
previous RNN based methods. They also performed train and test time augmentation based on the
chiral-symmetric transformation. For test time augmentation, they compute the output for both the
original input and the transformed input, using the average outputs as the final prediction. In contrast
to our work, we note that Pavllo et al. [42] need to transform the output of the transformed input back
to the original pose. To carefully assess the benefits of chirality nets, in this work, we closely follow
the experiment setup of Pavllo et al. [42].

For 2D keypoint forecasting, we follow the setup of standard temporal modeling: conditioning on
past observations to predict the future. To improve temporal modeling, recent works, have utilized
different sequence to sequence models for this task [34, 13, 5]. In this work, we closely follow the
experiment setup of Chiu et al. [3].

For action recognition, skeleton based methods have been explored extensively recently [58} 63 130,
48| due to robustness to illumination changes and cluttered background. Here we closely follow the
experimental setup of Yan et al. [58]].

3 Chirality Nets

In the following we first provide the problem formulation for human pose regression, before defining
chirality nets, equivariance and the chirality transform. Subsequently we discuss how to develop
typical layers such as the fully connected layer, the convolution, etc., which make up chirality nets.
The Pytorch implementation and unit-tests of the proposed layers are part of the supplementary
material. We have also included a short Jupyter notebook demo to illustrate the key concepts.

3.1 Problem Formulation

Chirality nets can be applied to regression tasks on coordinates of joints for human pose related task,
i.e., the input corresponds to 2D or 3D coordinates of human joints. For readability, we introduce
the input and output representations for a single frame. Note that for our experiments we generalize
chirality nets to multiple frames by introducing a time dimension.



We let x € RIY7I'1P7] denote the chirality net input, where .J*® is the set of all joints and D*® is the
dimension index set for an input coordinate. For example, J** = {‘right wrist’, ‘right shoulder’, ...}
and D = {0, 1}, for 2D input joint coordinates. Similarly, we lety € RV D™ refer to the
chirality net output. Note that the dimension of the spatial coordinates at the input and output may be
different, e.g., prediction from 2D to 3D. Also, the number of joints may differ, e.g., when mapping
between different key-point sets.

For human pose regression, the task is to learn the parameters 6 of a model Fy by minimizing a loss
function, £(0) = 3_, y)ep {(Fo(x),y) over the training dataset D. Hereby, sample loss £(Fp(x),y)

compares prediction Fy to ground-truth y.

3.2 Chirality Nets, Chirality Equivariance, and Chirality Transforms

Chirality nets exhibit chirality equivariance, i.e., their output is transformed in a “predefined manner”
given that the chirality transform is applied at the input. Note that the input and output dimensions
D" and D°"* may differ. To define this chirality equivariance, we hence need to consider a pair of
transformations, one for the input data, 7**, and one for the output data, 7°%*. The corresponding
equivariance map is illustrated in Fig. 2] for the task of 2D to 3D pose estimation. Formally, we say a
function Fj is chirality equivariant w.r.t. (77, 7°%) if

T (Fy(x)) = Fo(T*(x)) Vx € RIV7IP7I,

To define the chirality transform on the input data, i.e., 7*, we split the set of joints .J** into ordered
tuples of Ji*, J3*, and JI®, each denoting left, right and center joints of the input. Importantly, these
tuples are sorted such that the corresponding left/right joints are at corresponding positions in the
tuple. We also split the dimension index set D** into D;* and D}* := D*™\D.*, indicating the
coordinates to, or not to, negate.

For readability and without loss of generality, assume the dimensions of the input x follow the order
of Ji*, JI*, JI*, i.e., x = [X1, Xy, X.]. Within each vector x.), we place the coordinates in the set
DZ* before the remaining ones, i.e., X1 = [X1n, X1p).

Given this construction of the input x, the reflection illustrated in step (1) of Fig. [1] is a matrix
multiplication with a (|J**||D*®|) x (|J**||D*|) diagonal matrix 7.2 , defined as follows:

neg’
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where 1k indicates a vector of ones of length K. The switch operation illustrated in step (2) of
Fig.|1|is a matrix multiplication with a permutation matrix of dimension (|.J**||D*"|) x (|J**|| D*"|),
defined as follows:
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where I denotes an identity matrix of size K x K.

Given those matrices, the chirality transform of the input 7*(x) is obtained via 7**(x) = T:22 i x

neg- swi™*

The chirality transform of the output, 7°"¢, is defined similarly, replacing “in” with “out”.

In the following, we introduce layers that satisfy the (7, 7°*%) chirality equivariance property. This
enables to construct a chirality net Fy, as the composition of equivariant layers remains equivariant.
Note that (72, 7°%) chirality equivariance can be specified separately for every deep net layer
which provides additional flexibility. In the following we discuss how to construct layers which
satisfy chirality equivariance.

3.3 Chirality Layers

Fully connected layer. A fully connected layer performs the mapping y = frc(x; W, b) := Wx +b.
We achieve equivariance through parameter sharing and odd symmetry:
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We color code the shared parameters using identical colors. Each W, () denotes a matrix, where
the first and the second subscript characterize the dimensions of the output and the input. For
example, W1, -, computes the output’s left (1) joint’s negated (n) dimensions, from the input’s right
(r) joint’s non-negated, i.e., positive (p), dimensions. Note that Wi, ;;, is a matrix of dimension
| JP| - [ D] x | JE®| - [ D3*|. We refer to this layer as the chiral fully connected layer.

1D convolution layers [55, 28]. Pose symmetric 1D convolution layers can be based on fully

connected layers. A 1D convolution is a fully connected layer with shared parameters across the time
dimension, i.e., at each time step the computation is the sum of fully connected layers over a window:

Y = Z WTXt—T + b= ZfFC(Xt—T; WT7b)'

Consequently, we enforce equivariance at each time step by employing the symmetry pattern of fully
connected layers at each time slice.

Element-wise nonlinearities. Nonlinearities are applied element-wise and do not contain parameters.
These operations maintain the input dimension, therefore, 7°%¢ and 7" are identical. A nonlinearity
f that is an odd function, i.e., f(—x) = —f(z), such as tanh, hardtanh, or soft-sign satisfies the
equivariance property. See the following proof:

Tout (f(X)) — Tout Tout (f(X)) elemegwise f Tout (Toutx))

neg " swi neg swi
R (T = (T (x)) vx € RITIPYL

LSTM and GRU layers [16,/6]. LSTM and GRU modules which satisfy chirality can be obtained
from fully connected layers. However, naively setting all matrix multiplies within an LSTM to
satisfy the equivariance property will not lead to an equivariant LSTM because gates are elementwise
multiplied with the cell state. If both gate and cell preserve the negation then the product will not.
Therefore, we change the weight sharing scheme for the gates. We set D2"* for the gates to be the
empty set, i.e., the gates will be invariant to negation at the input, Trf;‘g, but still equivariant to the
switch operation, T2% . With this setup, the product of the gates and the cell’s output will preserve the

sign, as the gates are invariant to negation and passed through a Sigmoid to be within the range of
(0,1). GRU modules are modified in the same manner.

Batch-normalization [21]. A batch normalization layer performs an element-wise standardization,
followed by an element-wise affine layer (with learnable parameters v and (3). For -y and 3, we follow
the the principle applied to fully connected layers.

Equivariance for y, and o is obtained by computing the mean and standard deviation on the “aug-
mented batch” and by keeping track of its running average.

Dropout [50]]. At test time, dropout scales the input by p, where p is the dropout probability. The
equivariance property is satisfied because of the associativity property of a scalar multiplication.

3.4 Reduction in model parameters, FLOPS, and training/test details

Model parameters. Our model shares parameters between dimensions representing the left and right
[+ -7 1T D)

) - ) ) ‘Jln"l‘]wtl .
Recall |J**| = [Ji®] + |J2®| + |J2®|. The output dimension size is computed similarly.

joints. For each layer, the number of parameters are reduced by a factor of I

FLOPS. Chirality nets also have lower FLOPS. Due to the symmetry, instead of multiplying and
adding each of the elements independently, we add the symmetric values first before applying a
single multiplication per symmetric pair. Concretely, consider w = [wq, w1], X = [z1, 23], and their
inner product w x. Instead of computing w; - 21 + wy - T2, we exploit symmetry and use instead
wy - (x1 + x2), which removes one multiplication operation. This is a common speed up trick used
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Figure 3: Illustration of pose regression tasks: (a) 2D to 3D pose estimation; (b) 2D pose forecasting; and (c)
skeleton-based action recognition.
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Approach [Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT.[AVg
Pavlakos [41] (CVPR‘18) 485 544 544 520 594 653 499 529 658 71.1 56.6 529 609 447 478 |56.2
Yang [59] (CVPR‘18) 51.5 589 504 57.0 62.1 654 49.8 527 69.2 852 574 584 436 60.1 477 |586

Luvizon [33] (CVPR*18) (¢) [49.2 51.6 47.6 505 518 603 485 517 615 709 537 489 579 444 489 532
Hossain [17] (ECCV*18)(f, 0) |48.4 50.7 572 552 63.1 72.6 530 517 66.1 809 59.0 573 624 466 49.6 |58.3
Lee [29] (ECCV*18)(f,0)  |40.2 492 47.8 526 50.1 750 502 43.0 558 739 541 556 582 433 433 [528
Pavllo [42] (CVPR‘19) 471 50.6 49.0 518 53.6 614 494 474 593 674 524 495 553 395 427 |518
Pavilo [42] (CVPR‘19)(f)  |45.9 475 443 464 500 569 456 44.6 588 668 479 447 497 331 340 (477
Pavllo [42] (CVPR‘19)(1, 1) |45.2 46.7 433 456 481 551 44.6 443 573 658 47.1 440 490 328 339 |4638
Ours, single-frame 474 499 474 511 538 612 483 459 604 671 520 486 546 401 430 [514
Ours (1) 44.8 46.1 433 464 490 552 44.6 44.0 583 627 47.1 439 486 327 333 |46.7

Table 1: Results on the Human3.6M dat;t: reconstruction error using Protocol 1 (MPJPE) in mm. The best
result is boldface and the second best is underlined. { indicates temporal models, ¢ uses ground-truth bounding
box, and { indicates test-time augmentation.

in symmetric FIR filters [38}160]]. The number of multiplications reduces by a factor of %
Additionally, baseline models utilize test-time augmentation, which requires two forward passes

through the network for each input, whereas the proposed nets only use a single forward pass.

Training and test details. During training it is important to apply the chirality transform for data-
augmentation, i.e., with 50% probability we apply 7** and 7°** to input and label. This ensures that
the mini-batch statistics match our assumption on the chirality, i.e., poses that form a chiral pair are
both valid, which is important for the batch-normalization layer. Moreover, during training we use a
standard dropout layer. While we could impose dropped units to be chiral equivariant, we found this
lead to over-fitting in practice. This is expected as imposing chirality on the added noise reduces the
randomness. Importantly, during test no data-augmentation is performed and a single forward pass is
sufficient to obtain an ‘averaged’ result.

4 Experiments

We evaluate our approach on a variety of tasks, including 2D to 3D pose estimation, 2D pose
forecasting, and skeleton based action recognition. For each task, we describe the dataset, metric, and
implementation before discussing the results.

4.1 2D to 3D pose estimation

Task. 3D human pose estimation can be decoupled into the tasks of 2D keypoint detection and 2D to
3D pose estimation. We focus on the latter task, i.e., given a sequence of 2D keypoints, the task is to
estimate the corresponding 3D human pose. See Fig. 3] (a) for an illustration.

Dataset and metric. We evaluate on two standard datasets, the Human3.6M [22] and the HumanEva-
1[49]. Human3.6M is a large scale dataset of human motion with 3.6 million video frames. The dataset
consists of 11 subjects performing 15 different actions. Following prior work [40, 52} [35} |51} 33} 142],
each human pose is represented by a 17-joint skeleton. We use the same train and test subject splits.
HumanEva-I is a smaller dataset consisting of four subjects and six actions. To be consistent with
prior work [41} 29, 142]], we use the same train and test splits evaluated over the actions of (walk, jog,
and box). For both of these datasets, we consider the setting where we train one model for all actions.

We report the two standard metrics used in prior work: Protocol 1 (MPJPE) which is the mean per-
joint position error between the prediction and ground-truth [35} 40, |42]] and Protocol 2 (P-MPJPE)
which is the error, after alignment, between the prediction and ground-truth [35, 151117} 42].



e-Pavlloetal. -@Ours

Walk Jog Box Avg.
App. S1 S2 S3|S1 S2 S3|S1 S2 S3

Paviakos [40] |22.3 19.5 29.7|280 219 238] - - - | -
Pavlakos [41] |18.8 12.7 29.2|235 154 145 - - -
Lee [29] 18.6 19.9 30.5|25.7 16.8 17.7(42.8 48.1 53.4| -
Pavilo [42]  |14.1 104 46.8|21.1 133 14.0|23.8 34.5 32.3|31.1
Pavllo [42] ()| 13.9 10.2 46.6|20.9 13.1 13.8|23.8 33.7 32.030.8
Ours 152 103 470|218 13.1 13.7]22.8 31.8 31.0] 30.6

Table 2: Results on HumanEva-I for multi-action (MA) mod- s~~~ =
els reported in Protocol 2 (P-MPJPE), lower the better. I _ Training Splits ’
indicates test time augmentation. Figure 4:. Cgmparlsons bet_ween our approa}ch
and [42] in limited data settings evaluated using
Protocol 1 on Human3.6M.
Prediction Steps Avg.
Approach 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [

Residual [34] (CVPR*17) | 82.4 68.3 585 509 44.7 40.0 364 334 313 295 283 273 264 257 250 2451395
3D-PFNet [3](CVPR17) | 79.2 60.0 49.0 439 415 403 39.8 39.7 40.1 405 41.1 41.6 423 429 432 433|455
TP-RNN [5] (WACV*19) | 84.5 72.0 64.8 60.3 57.2 55.0 534 52.1 50.9 50.0 49.3 48.7 483 479 47.6 473 55.6

MPIPE (mm)

Baseline w/o aug. 873 757 685 640 61.0 59.1 57.6 563 554 549 545 545 544 545 546 54.7|60.4
Baseline w/ aug. 869 752 679 63.5 604 584 57.0 558 55.1 545 54.1 54.0 53.9 539 54.0 54.0|59.9
Baseline w/ aug.(}) 87.0 755 684 64.1 61.0 59.1 57.5 563 555 55.0 54.7 54.7 54.6 54.7 54.7 54.7 | 60.5
Ours 875 77.0 68.7 642 61.2 59.2 57.6 56.5 557 551 547 54.6 544 545 545 54.5] 60.6

Table 3: Results on Penn action dataset, performance reported in terms of PCK@0.05 (higher the better). (1)
indicates using test time augmentation.

Implementation details. Our model follows the supervised training procedure and network design
of Pavllo et al. [42]. Our network is the identical temporal convolutional network architecture,
where each layer is replaced with its chiral version, i.e., 1D dilated convolution, batch-normalization,
and dropout layers. We also replace ReLU non-linearities with Tanh to achieve equivariance. No
additional architecture changes were made. For Human3.6M, we use 2D keypoints extracted from
CPN [4] with Mask R-CNN [15] bounding boxes released by Pavllo et al. [42]]. For HumanEva-I, we
use the 2D keypoint detections from Mask R-CNN released by Pavllo et al. [42].

Results. In Tab. |1} we report the performance on the Human3.6M data using Protocol 1 (MPJPE).
Our approach outperforms the state-of-the-art [42] which uses test-time augmentation by 0.1 mm
in overall average and achieves the best results in eight out of fifteen sub-categories. For the single-
frame models, we observe a more significant reduction in error of 0.4 mm over [42] with test
time augmentation. Additionally, when comparing without test-time augmentation, our approach
outperforms by 1 mm. We note that, test-time augmentation employed by Pavllo et al. [42] involves
running the network twice for each input. In contrast, our approach only requires a single forward
pass.

Next, on HumanEva-I dataset, we also observed an increase in performance using Protocol 1. On
average, our approach achieves a 32.2mm error. This is a 0.8mm decrease over the current state-of-
the-art of 33.0mm [42] and a 1.1mm decrease over [42]] without test-time augmentation of 33.3mm.

We also performed evaluation using Protocol 2 (P-MPJPE). On Human3.6M we observe that our
approach performs worse than Pavllo et al. [42] by 0.3mm. We note that the loss function is chosen
to optimize Protocol 1, therefore our models are performing better at what they are optimized for. In
Tab.[2] we report the performance on HumanEva-I using Protocol 2 (P-MPJPE). Our model achieves
a 0.2 mm reduction in error over Pavllo et al. [42] on average. Most of the gain is obtained for the
boxing action, possibly due to the symmetric nature of the movement.

Limited data settings. A benefit of fewer model parameters is the potential to obtain better models
with less data. To confirm this, we perform experiments by varying the amount of training data,
starting from 0.1% of subject 1 (S1) to using three subjects S1, S5, S6. The results with comparison
to [42]] are shown in Fig. 4] We observe that our approach consistently out-performs [42] in this low
resource settings, except at S1 0.1%. For the reported numbers, we use a batch-size of 64, and all
other hyper-parameters are identical between the models. If we further decrease the batch-size to 32
for S1 0.1%, our approach improves to 100.4mm where [42]] improves to 102.3mm.

4.2 2D pose forecasting

Task. 2D pose forecasting is the pose regression task of predicting the future human pose, represented
in 2D keypoints, given present and past human pose. See Fig.[3|(b) for an illustration.



Dataset and metric. We evaluate on the Penn Action dataset [64]. The dataset consists of 2236
videos with 15 actions. Each frame is annotated with 2D keypoints of 13 human joints. We use the
same train and test split as in [3, [5]. Following Chiu et al. [5] we consider initial velocity as being
part of the input and a single model is used for all actions. For a fair comparison with prior work,
we report the ‘Percentage of Correct Keypoint” metric with a 0.05 threshold (PCK@0.05), which
assesses the accuracy of the predicted keypoints. A predicted keypoint is considered correct if it is
within a 0.05 radius of the ground-truth when considering normalized distance.

Implementation details. Our non-chiral equivariant baseline model is a sequence-to-sequence
model based on [34]]. We made several modifications to match the hyperparameters in [, i.e., we
used StackedRNN [39] with 2 layers and added dropout layers. Additionally, we utilize teacher
forcing [156]] during training, while prior work did not. We find this to stabilize training and enable
the use of the Adam [25] 45]] optimizer without diverging. We performed data augmentation via the
chirality transform, i.e., with 0.5 probability we apply 7** and 7°"* to the input and the ground-truth
correspondingly. For our pose symmetric model, we replaced all the non-symmetric layers, e.g., fully
connected layers and LSTM cells with their corresponding chiral version.

Results. In Tab. [3| we report the performance of our models and the state-of-the-art. The base-
line model without augmentation outperforms the state-of-the-art [5]. The gain comes from the
use of Stacked-LSTM and teacher forcing during training. With additional train and test time
data-augmentation, our baseline model further improves. In addition our pose symmetric model
outperforms the baseline, in terms of average PCK @0.05. We observe more significant improvements
for the first ten prediction steps.

Approach Top-1 Top-5

. age Feature Encoding [[11] 149%  25.8%

4.3 Skeleton based action recognition Deep LSTM [7] 164%  35.3%
. . . L Temporal-Conv [24] 20.3%  40.0%

Task. Skeleton based action recognition aims at predicting  ST-GCN [58] 307%  52.8%
: : Ours-Conv 30.8%  52.6%

human action based on skeleton sequences. See Fig.[3](c) for o . 09%  33.0%

an illustration.
Table 4: Results of the skeleton based

Dataset and metric. We use the Kinetics-400 dataset [23]] action recognition baselines on the
in our experiments. The dataset contains 400 action classes Kinetics-400 dataset [23] reported in
and 306,245 clips in total. Following the experimental setup Top-1 and Top-5 accuracy.

by [58], we use OpenPose [2] to locate the 18 human body joints. Each joint is represented as
(z,y,c), where x and y are the 2D coordinates of the joint and ¢ is the confidence score of the joint
given by OpenPose. Following [23], we report the classification accuracy at top-1 and top-5.

Implementation details. Our baseline model, ‘Ours-Conv,” follows ‘Temporal-Conv’ [24], modified
to have not only temporal convolution but also spatial convolution. The temporal convolution consid-
ers the intra-frame information while the spatial convolution considers the inter-frame information.
For the recognition task, we need chiral invariance, i.e., a chiral pair should be classified as the same
action class. To this end, we use a chiral invariance layer where we let both J2U%, JPU¢ as well as D"
be empty sets, which means there are no left and right joints but only center joints and there is no
dimension that will be negated in the output of the layer after applying chirality transform. Note that
the chirality transform exchanges the left and right joints and negates the dimensions in the dimension
index set D", Given J2Ut, J?"* and DS"* are all empty, it’s trivial that the output will be chiral
invariant. For the chiral invariance model, ‘Ours-Conv-Chiral,” we replace all the non-symmetric
layers before the chiral invariance layer with their corresponding chiral equivariance version. All the
layers after the chiral invariance layer remain identical to the ‘Ours-Conv’ model. There are in total
10 layers of spatial and temporal convolution and we put the chiral invariance layer at the fourth layer.
We use the SGD optimizer with a momentum of 0.9 as in [58]].

Results. In Tab.[d] we report the action recognition performance of our model and the skeleton-based
approaches. We observe that the baseline model ‘Ours-Conv’ performs on par with ST-GCN [58] and
the chiral invariant model, ‘Ours-Conv-Chiral’ outperforms both ST-GCN and Ours-Conv on Top-1
and Top-5 accuracy, achieving the state-of-the-art performance on the Kinetics-400 dataset among
skeleton based action recognition methods.

5 Conclusion

We introduce chirality equivariance for pose regression tasks and develop deep net layers that satisfy
this property. Through parameter sharing and odd/even symmetry, we design equivariant versions of



commonly used layers in deep nets, including fully connected, 1D convolution, LSTM/GRU cells,
and batch normalization layers. With these equivariant layers at hand, we build Chirality Nets, which
guarantee equivariance from the input to the output. Our models naturally lead to a reduction in
trainable parameters and computation due to symmetry. Our experimental results on three human pose
regression tasks over four datasets demonstrate state-of-the-art performance and the wide practical
impact of the proposed layers.
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