
Appendix303

A The Functional Space of ReLU Networks304

We consider the class of 1D shallow ReLU functions with exactly m neurons:305

Fm = {f✓ : R ! R}, f✓(x) =
mX

i=1

ci[aix+ bi]+. (23)

It is easy to see that Fm is a subset of the set CPLm of continuous piecewise-linear maps with at306

most m knots.307

Proposition 5. The space Fm is a strict subset of CPLm, but it contains CPLm�2.308

Proof. The fact that Fm (CPLm can be argued by observing that Fm has 2m degrees of freedom,309

whereas CPLm has 2m + 2 degrees of freedom. More precisely, we can partition the parameter310

space of f✓ based on the signs �i = sign(ai). Within each region, we may write311

f✓(x)
mX

i=1

ci[ai(x� ei)]+ =
mX

i=1

ui[�i(x� ei)]+, ui = |ai|ci. (24)

We see that interpolatory constraints on f✓(x) correspond to linear conditions on ui. In particular,312

there are a finite number of functions in Fm with fixed assigned (generic) values at the knots313

e1 < . . . < em. This contrasts with CPLm, where the slope in the intervals [�1, e1] and [em,1]314

may be chosen arbitrarily. Finally, by setting e1 = e2 and em�1 = em we can control the two315

remaining slopes, so we recover that CPLm�2 ⇢ Fm.316

B Spline Kernels317

Proposition 6. If either (i) a(s) is identically 1 or (ii) measures of supports a+(s) and a�(s) as318

m ! 1 on any subinterval of [k0, k1] have the same expectation, the kernel K(x, x0) defined as319

K(x, x0) =

Z
a+(s)

2[x� s]+[x
0 � s]+ds+

Z
a�(s)

2[s� x]+[s� x
0]+ds

is a piecewise cubic polynomial in x and x
0. In particular, in the overparameterized setting, a function320

f̂(x) =
Ps

i=1 ↵iKr(x, xi) that interpolates the samples x1, . . . , xs will be cubic spline, with knots321

at these samples.322

Proof. In case (i), assuming that x < x
0, we have that323

K1(x, x
0) =

Z k1

k0

[x� s]+[x
0 � s]+ds =

Z x

k0

(x� s)(x0 � s)ds

=


1

3
s
3 � 1

2
s
2(x+ x

0) + sxx
0
�x

k0

= �1

6
(2 k0 + x� 3x0)(k0 � x)2

(25)

In the second case, each of the finite sums approximating the integrals remains constant, and contains324

half of the indices, which are distributed densely both for a+ and a�. The limit integrals are325

K2(x, x
0) =

1

2

Z k1

k0

[x� s]+[x
0 � s]+ds+

1

2

Z k1

k0

[�x+ s]+[�x
0 + s]+ds

=
1

2

Z x

k0

(x� s)(x0 � s)ds+
1

2

Z k1

x0
(s� x)(s� x

0)ds.

= � 1

12
(2 k0 + x� 3x0)(k0 � x)2 +

1

12
(2 k1 � 3x+ x

0)(k1 � x
0)
2
.

(26)

11

Both K1(x, x0) and K2(x, x0) are piecewise cubic and C
2 in both arguments. This immediately326

implies that the solution to the least squares problem f̂(x) =
Ps

i=1 ↵iKt(x, xi) (t = 1, 2) is a cubic327

spline interpolating the samples x1, . . . , xs.328

Finally the following simple fact shows that the coefficient function c(x) effectively corresponds to329

the second derivative (or linearized curvature) f 00
z (x) of fz(x).330

Lemma 7. Consider a function of the form331

f(x) =

Z k1

k0

c
+(s)[x� s]+ds+

Z k1

k0

c
�(s)[s� x]+ds, k0  x  k1. (27)

Then we have that332

f
0(x) =

Z x

a
c
+(✓)d✓ �

Z b

x
c
�(✓)d✓, f

00(x) = c
+(x) + c

�(x). (28)

Proof. This follows by observing that333

f(x) =

Z x

k0

c
+(s)(x� s)d✓ +

Z k1

x
c
�(s)(s� x)ds, (29)

and applying the Leibniz integral differentiation rule.334

C Mean Field Computations335

Making use of notation introduced in Section 3.1, we have that if w = (r̂, ✓), with ✓ 2 Ak, then336

r✓V (w;µt) = �r✓F (w) +

Z

D
r✓K(w,w0)µt(dw

0)

= �r̂

0

@
X

j2Ck

yjhx̃j , t(✓)i �
Z

D
r
0
X

j2Ck

hx̃j , t(✓)ihx̃j , d(✓
0)i+µt(dr̂

0
, d✓

0)

1

A

= �r̂

X

j2Ck

hx̃j , t(✓)i

yj �

Z

R⇥Bj

r̂
0hx̃j , d(✓

0)iµt(dr̂
0
, d✓

0)

!

= r̂

*
X

j2Ck

⇢j(t)x̃j , t(✓)

+
, (30)

where ⇢j(t) = fµt(xj) � yj =
R
R⇥Bj

chx̃j , ✓iµt(dr̂, d✓) � yj is the residual at point xj at time t.337

Similarly, the field in the direction of the charges is given by338

rr̂V (w;µt) =

*
X

j2Ck

⇢j(t)x̃j , ✓

+
. (31)

We also observe that for each j,339

⇢̇j(t) = @tfµt(xj) = @t

✓Z

D
'(w;xj)µt(dw)

◆

= �
Z

D
hrw'(w;xj),rV (w;µt)iµt(dw)

= �
Z

D
(r✓'(w;xj) ·r✓V (w;µt) +rr'(w;xj) ·rrV (w;µt))µt(dw)

= �
X

k;Ak⇢Bj

Z

R⇥Ak

0

@r
2
x̃
>
j (t(✓)t(✓)

>)(
X

j02Ck

⇢j0(t)x̃j0) + x̃
>
j (✓✓

>)(
X

j02Ck

⇢j0(t)x̃j0)

1

Aµt(dw)

= �x̃
>
j

X

k;Ak⇢Bj

⌃k(t)(
X

j02Ck

⇢j0(t)x̃j0) , (32)

12

where
⌃k(t) =

Z

R⇥Ak

�
r
2
t(✓) t(✓)> + ✓ ✓

>�
µt(dr, d✓)

tracks the covariance of the measure along each cylindrical region. Equation (32) defines a system of340

ODEs for the residuals ⇢(t), but its coefficients are time-varying, and behave roughly as quadratic341

terms in ⇢(t) (since they are second-order moments of the measure whereas the residuals are first-342

order moments). It may be possible to obtain asymptotic control of the oscillations ⇢(t) by applying343

Duhamel’s principle.344

D Changing Metric in the Dynamics345

Lemma 8. If z(t) = (a(t), b(t), c(t)) is a solution of the gradient flow (5), then the quantities346

� = (�i = ci(t)
2 � ai(t)

2 � bi(t)
2)mi=1 (33)

remain constant for all t. In particular, given a reduced neuron (ri, ✓i), we can uniquely recover the347

original neuron (ai, bi, ci), since348

c
2
i =

�i +
p

�2i + 4r2i
2

. (34)

Proof. The gradient equations of the loss L(z) can be written as349

raiL(z) = ci

sX

j=1

1[aixj + bi � 0]xjrj ,

rbiL(z) = ci

sX

j=1

1[aixj + bi � 0]rj ,

rciL(z) =
sX

j=1

1[aixj + bi � 0](aixj + bi)rj .

(35)

From these expressions we see that350

�̇i = 2ciċi � 2aiȧi � 2biḃi
= 2circiL(z)� 2airaiL(z)� 2birbiL(z)

= 0.

Using r
2
i = ci

p
a2i + b2i , we see that c2i �

r2i
c2i

= �i implies c4i � �ic
2
i � r

2 = 0, and thus (34).351

Theorem 9. Let z(t) be a solution gradient flow (5) of L(z), and let � = (�i) 2 Rm be the vector352

of invariants (15), which depend only on the initialization z(0). If w(t) = (r(t),✓(t)) is curve of353

reduced parameters corresponding to z(t), then we have that354

ẇi(t) = Pi ·rwiL̃(w), i = 1, . . . ,m,

where355

P�i(ri) =


a
2
i + b

2
i + c

2
i 0

0 1
a2
i+b2i

�
=

2

4
r2i

c(ri)2
+ c(ri)2 0

0 c(ri)
2

r2i

3

5 ,

and c(ri)2 =
�i+

p
�2i+4r2i
2 .356

Proof. The Jacobian of the mapping ⇡ from parameters to reduced parameters is given by357

Jac(⇡)(ai, bi, ci) =

"
cap
a2
i+b2i

cbp
a2
i+b2i

p
a2i + b2i

� b
a2
i+b2i

a
a2
i+b2i

0

#
, i = 1, . . . ,m.

This implies that the tangent kernel P�i(ri) = Jac(⇡)Jac(⇡)T is as in (17). We emphasize that the358

fact that this kernel can be written only as a function of w (and, in fact, only of r) relies in essential359

manner on Lemma 2.360

13

�
=

�
1

�
=

1

Figure 5: Evolution of 1000 neurons over 10000 epochs for � = ±1 while fitting 10 points sampled
from a square wave. Left: plotted network function after training. Middle: state of the network in uv

space after training. Right: training trajectories of 100 random neurons.

Epoch 0
z = (a, b, c)

Epoch 104

z = (a, b, c)
Epoch 104

z = (103a, 103b, 10�3c)

Figure 6: Left: A network (green) with an initial set of parameters initial parameters (a, b, c) is used
to approximate a given function (blue). Scaling the initial parameters (right) leads to a very different
fit (middle).

E Additional Numerical Experiments361

In Figure 5, we plot the trajectories of neurons for � = ±1 over 10000 epochs. We see that, if362

� = �1, the neurons move radially away from the origin and thus the knot positions do not change363

(top row). In stark contrast, if � = 1, the neurons adapt to the input data, and the knots “stick” to364

input samples (bottom row).365

We remark in Figure 6 that the same initial function can yield extremely different results depending366

on �.367

We now show the effect of varying the number of neurons during training. In this example we368

fit 20 samples from a sine wave using 20, 200, and 2000 neurons respectively. In PyTorch, the369

default initializatioon is such that a, b U(�1, 1) and c U(�1/m, 1/m). Thus, as we scale down370

the numberof neurons, the value of � grows, making the network function adapt more to the data.371

Figure 7 shows the results of this experiment.372

14

Figure 7: The effect of varying the number of neurons m the top image uses 20 neurons, the middle
uses 200 and the bottom uses 2000. Observe that with fewer neurons, the function is adaptive to the
data since � gets larger.

15

E.1 Visualizing Attractor Samples373

We can visualize the vector field (@t(r̂, ✓) by considering the change of metric from w = (r̂, ✓) to
(u, v) with the map

⇡(u,v)(r̂, ✓) = (|r̂| cos ✓, |r̂| sin ✓) = (u, v).

Assuming we know the sign of r̂, the vector field374


@tu

@tv

�
= D⇡(u,v)D⇡

T
(u,v)


@tr

@t✓

�
(36)

Observing that D⇡(u,v)D⇡
T
(u,v) = I , we have simply that


@tu

@tv

�
=


@tr

@t✓

�

Figure 8 shows a plot of this vector felt by a single particle in uv in the case where � = 1. In this375

case, the partial derivative @tr remains unchanged. Furthermore, we remark that at the boundaries376

of samples, the vector field can change directions, causing these samples to become “attractors” or377

“repulsors” (see Lemma 1 in the main document).378

F Implicit Regularization of the Kernel Regime379

We can write the network function (1) in the standard parameterization as a matrix product:380

fz(x) = Mc, M 2 Rs⇥m
, Mij = [ajxi + bj]+ (37)

Now consider the least-squares problem:381

minimize
1

2
||Mc� y||2 (38)

If we are in the kernel regime (see Section 3.3) then we minimizing (38) by only changing the382

parameter c. Following gradient flow, we have that c follows the ODE383

@tc(t) = �r1

2
||Mc(t)� y||2 (39)

= �(MT
Mc�M

Ty). (40)

In the finite width case, the kernel K can be written as

K(xi, xj) = K = (MM
T)ij

And, thus, f(t) = Mc(t) follows the separable ODE:384

@tf(t) = M@tc(t) (41)

= MM
Ty �MM

T
Mc (42)

= Ky �KMc (43)
= Ky �Kf(t) (44)

whose solutions are of the form:385

f(t) / exp(�K) t+ y (45)

We can decompose K into its eigenbasis where ei, an eigenvector of K and �i is the corresponding386

eigenvalue for i = 1, . . . , s.387

We can then write (45) as:388

f(t) = y +
nX

i=1

exp(�t�iei) (46)

16

Figure 8: Top: The gradient field (18) felt by a particle. Note how the vectors change directions
at certain samples. These samples are “attractors” or “repulsors” where particles get stuck or get
pushed away from. Bottom Left: A plot of the network function for the gradient field in the top image.
Observe how there are clusters of neurons (blue circles) aligned with certain samples. Bottom Right:
A plot of the neurons in uv space. Observe how the red neurons cluster at “attractor” points in the top
image

17

which implies the dynamics of the residual, f(t)� y are:389

f(t)� y =
nX

i=1

exp(�t�iei) (47)

Thus, as t ! 1, the terms exp(�t�iei) decay, at a rate exponential in �i and f(t) ! y, which, as390

mentioned in [16], suggests that early stopping acts as a regularizer by decaying the residual primarily391

along the principle components of the kernel. These principle components usually correspond to392

smoother functioons. Furthermore, (47) means that if the kernel is not full rank, then the residual393

cannot go to zero since some �i will be zero.394

18

	Introduction
	Further Related work

	Preliminaries
	Problem setup
	Visualizing the Network State

	Training Dynamics
	Dynamics in the Reduced Parameters
	Dynamics in the Full Parameters
	Kernel Dynamics

	Numerical Experiments
	Concluding Remarks
	The Functional Space of ReLU Networks
	Spline Kernels
	Mean Field Computations
	Changing Metric in the Dynamics
	Additional Numerical Experiments
	Visualizing Attractor Samples

	Implicit Regularization of the Kernel Regime

