A  Proofs

A.1 Proof of Theorem [l

Lemma 1. For any initial state x, a state y that can occur on a trajectory T ~ T (x, ), that is:
P T (z,x) (Xk = y) # 0 for some k an action a for which w(a|x) # 0, we have:

hk(a‘xay) o IP)TNT(r,‘n')(Xk = y|AO = CL)

— 9
m(alz) Proriom Xk = 9) ©

Proof. From Bayes’ rule, we have:

Pt (em (Ao = al Xy = Y)Prr(en) (X = y)
PTNT(m,ﬂ)(AO = a)
Pr 7 (a,m (X = y)he(alz,y)
m(alz)

Pt (em (X = ylAo = a) =

)

O

Proof of Theorem[I] From the definition of the Q-function for a state-action pair (z, a), we have

QW(Z‘7 a) = ’/‘(Jf, a) + Z Z ’YkPTNT(:v,Tr) (Xk = y|A0 = a)rw(y)7 (10)
k>1yex
where 77 (y) = 3, 4 m(aly)r(y, a).
Combining Eq. (9) with Eq. (T0) we deduce
hx(alz,y)
"(z,a) = "By o) (Xk = y) o ™
Q (x,a) T’(LE,CL) + Z 27 T T(J,‘ﬂ')( k y) T r (y)’

s et (alz)

hi(a| Xy, )
=7(z,0) + Bror(a,nr T T
() Z w(alz)

A.2  Proof of Theorem
Proof. For any action a, the value function writes as
V(@) = Errem[Z(7)],
- / Py o (2(7) = 2)dz,

T~T (x 71') (T) = )
- Poorioam (Z(7) = 2)dz,
/Z TN'T (z,a 71') (T) Z) T, )( (T) Z) ‘

T~T (z, Tr)(Z( )
= ]P ~ o Z — d s
/Z]P)TN'T (z,m) (T) = Z|A0 = a) T )( (T) Z) ‘

\_/

0 [ Peeratie=s
- : ]PTN x,a,mT Z’T :Zdz7
PTNT@:W (Ag = alZ(1) = 2) T (w,a,m) (Z(T) )

= /th a|a:‘ Z TNT(QC,GJT)(Z(T) = Z)dZ7

m(alx)

= E 2(T)————————
o |20 il 7 )

where (i) follows from Bayes’ rule.
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A.3  Proof of Theorem

Proof. Using (3), we have:
VoV™ (20) = By (ao.m0) [Z 3 7F Vg (al Xi) A™(Xi, a)}

a k>0
hs(al Xp, X
= Er T (wo,m0) [Zﬂ: kZN)WkVMWXk)(T(Xk, a) =" (X) + t;l“Yt_k(W - 1) Rtﬂ
hs(al Xp, X
= Ererionn | 2032790 (elX0) (r(Xera) + t%vt"“m&ﬂ -

where the third equality is due to ) Vmo(a|Xk)f(Xe) = f(Xk)>., Vme(a|X,) = 0, for
F(Xk) =77(Xk) + D2 ish1 YRR,

Similarly, for the return version and any action a, we have:

VoV™ (0) = Err(woims) | D 97 Vo(al Xx)A™ (X, a)]

a k>0
=Er T (20,m0) ZZV 7(a|Xk)V log mp(a] X ) A (Xk,a)}
a k>0
= Eroraim) | 27V 108 mo(Ar| X A™ (X1, Ay)]
k>0
Ag|X)
=Err(ogn "V log 7o (Ak| X ult Z(Theos)| -
o | 32708 041X (1~ 1,7, iy ) 2 )

A4  Proof of Proposition|[l]

Proof. We have:
Er o (wom) | 907"V 10g 7(A|X,) (Z,(7) = bs) |
=E. T (z0,m) {Z 7V log (A X)Q™ (X, AS)} ~EraTaom {V tog (4. |X5)bs} ’

Tr(AS‘Xs)
h.(Ag| X, Zs(T)) 5(7)},

=YV (0) = Eroriag m |V log 7(4,|X,)

() m(Ag|Xs)
=VV(20) = Ernt(zo,m) {]EASNTr(-\Xs) [V log m(As|Xs) Err(x,,4,,m) {h A |)§ ZS (T))ZS(T)} H7
VT (Xs)
=VV(z0) = Erur(zo,m) { Z Vr(a|Xs }
acA
where (7) follows from Theorem 2] O

B Other variants

Analogously to Theorems [T] and 2} we can obtain the V- and Q-functions for state and return
conditioning, respectively. We have:
Theorem 4. Consider an action a for which ww(a|x) > 0 and P75 ) ( Xy, = y|Ao = a) > 0 for
any state X, sampled on 7 ~ T (z,a,7):
m(a|z)
VT = 7—~ (z,a,m |: k R }
() T( )I;O hka|ka)k
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Proof. 'We can flip the result of Lemmafor actions @ for which 7(alz) > 0 and P o7 (4 ) (Xr =
ylAg =a) > 0.

7T(Cl|l') _ IPTNT(Z,T{') (Xk = y) (11)
hk(a‘xa y) IP)TNT(.’EJT) (Xk = y|A0 = CL) '
Letr7(y) = > ca m(aly)r(y,a). We have
V™ (2) = By (o,m {Zkak}
k>0
=2 > VPt (Xe =) ()
k>0 yeX
Pror (e (X =y) -
=2V Prorem (X = yldo = a)5 ((X) — A =a) W
k>0 yeX T (z,m) (X = Y| Ao =
m(alz) .
- Z Z VP () (X = yl Ao = a)mr (y)
k>0 yeX )
7(alz)
=E ~T(x,a,m T . v\ .
T~ )[27 s ( a|x7Xk)Rk}
k>0
O
Theorem 5. Consider an action a for which w(a|z) > 0. sze |have( )
alx, Z
Q" (z,a) = Ervr(a,m {Z( )W} (12)
Proof. The Q-function writes:
Q" ((E, a) = ETNT(x,a,ﬂ') [Z(T)] )
= /ZIP).,.NT(T a 7r)(Z(T) ) zZ,
T~T(a: a, ‘n')(Z(T) Z)
= z PrT (e, (Z(7) = 2)dz,
/ TNT(r 7r) (T) = Z) (@m)
T~T(I 7r) ( ) = Z|AO = @)
= z Prr(em) (Z(T) = 2)dz,
/ ‘rNT:cﬂ')(ZT):Z) T())( ( ) )
(7) TNT(;E ‘n') AO == a|Z( ) )
= Prr(en) (Z(1) = 2)dz,
[T = Dy e (207 = 2
h.(a|z, z)
7}? ~T(z.m) (L = ,
/Zz R (2(r) = 2z
h:(alz, Z(7))
= Erogien | Z(T)———""4],
e |20 =0
where (7) follows from Bayes’ rule. O

C Time-Independent State-Conditional Case

We begin by introducing a time independent variant of state-conditional distribution. Let 5 € [0, 1)
and p(k) = B*1(1 — ) be the geometric distribution on k& € NT. Then the state-conditional
distribution hg(aly, =) writes as follows for a future state y:

ha(alz,y) E Pror(en (Ao = a| Xy = y, k ~ p). (13)

We draw the attention of readers to the difference between the new definition of hg and the original
one in Eq.[2} in this case the timestep & is a random event drawn from the distribution p, whereas in
Eq.[2the timestep & is a fixed scalar.

We now show that the result of Theorem extends to the case of hg with the choice of 5 = 7.
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Theorem 6. Consider an action a and a state x for which w(a|x)>0. Set the scalar 8 = ~y. Then
Q™ writes as

hg(alz, Xy)
Qﬂ-(xaa’) =7‘(x,a) +]ET~T x, T |: ’Yki
N kZ w(al)
Proof. Let us introduce the coefficient ¢, = ﬁ such that ¢, p(k) = +*. By definition of the

Q-function for a state-action couple (x, a), we have

Qﬂ'(l‘va) = 7“(.’13, a) + Z Z ’YkPTNT(x,w)(Xk = y|A0 = a)r”(y),

k>1yeX
which can be rewritten:
Q" (z,a) = r(x,a) + ¢y D Y p(k)Pr g (am (Xi = ylAo = a)r™ (y). (14)
yeX k>1

From the law of total probability and the independence between the events k ~ p and Ag = a:

Pror(em (Xk = yldo = a,k ~ p) =Y p(k)Pr g (am (Xi = ylAo = a).
k>1
Combining this with Eq. (T4) we deduce
Q™ (x,a) =r(z,a) + ¢y Z Pr o7 (e,m) (X = ylAo = a,k ~ p)r”™(y). (15)
yeX
From applying the Bayes’ rule and independence between the events k ~ p and Ag = a, we have

hﬁ(a|$7y)P‘r~T(I,ﬂ')(Xk = y|k ~ p)
(alz) '

Pror o) (X = 910 = a,k ~ p) =

Combining this with Eq. (T3) we deduce

Q(5,0) = r(,0) + ¢y 3 Broromy (Xi = gl ~ p) L2 )

2 ~(al2)
hg(alz,y) .
l‘ (l + Z Z’Y ]P)TNTQZTF) )B((|m) (y)7
yEX k>1

hg(a| Xy, @) .
=7r(x,a) + Eror(e,m kaﬁﬂwr (X&) |,
k>1

hs(a X ,
:T(x7a’)+ET~T(I,ﬂ') Z b ﬁ | k )Rk
k‘>1

O

We now extend the result of Theorem [6]to the case of T-step bootstrapped return. Let pr be the
distribution on the set {1,2, ..., 7T} defined as

F=l1—-pB) 1<k<T
PR = 16
We also define the T-step state-conditional distribution hg (aly, z) for a future state y:
hﬁ,T(a|xay) défPTNT(er)(AO = a|Xk =Y ko~ PT) (17)
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Theorem 7. Consider an action a and a state x for which ww(a|x)>0. Set the scalar 8 = ~y. Then
Q™ writes as

T—1
Q" (2,0) = (1, 0) + Eyoromy [,; Rt Ce T gy qr Do O ) e )

Proof. By definition of the Q-function for a state-action couple (z, a), we have

T-1

Q (J) a) - 7“ €, a +Z Z Y PT~T($ ‘n')(Xk = y|AO = a) +Z Y IP>T~7’(z Tr)(XT = y|A0 = a)V (y)
k=1 yeX yeX

From the definition of the (normalized) discounted visit distribution d™(z|y) £ (1 —

) 3k VPt () (Xi = 2), we have:

7205” (zy)r™

ZGX
Therefore Q™ (z, a) can be rewritten:
T-1
Q7 (,a) =r(z,a) + > D AP (X = ylAo = a)r™(y)
k=1 yeX
L S P (X = 9l 4o = )" (2])r(2).
v yeX zeX

Now let us define the following distribution p(.|y) for each (k, y):

def [ 1=y 1<k<T
(zly) {d’r(z|y) E=T. (18)
Thus we can rewrite Q™ (z, a) as:

T

Q" (z,0) =r(x,a) + ¢y Y>> pr(k)Pragiom(Xk = ylAo = a)pk(zly)r™ ().

k=1yeX zeX

From the law of total probability, independence between the events k ~ pr and Ay = a and the
Markovian relation between X}, and Zj, (Z}, is a random variable with distribution pi (.| X%)):

]P)TNT(I,T() (Xk =y, 2 = Z|A0 =a,k~ PT ZpT TN'T (z,m) (X]f =Yy, 2 = Z|A0 = CL)

= ZPT Pt (em) (X = ylAo = a)pr(Zr = 2| Xi = y).
k>1

Therefore we have:
Q’T(ar,a) = T(‘Tﬂ a) + ¢y Z Z ]P)TNT(.'L',TF) (Xk =y, 2 = Z|A0 =a,k~ pT)Tﬂ—(Z).
yeX z€X
Then, by applying the Bayes’ rule:
Prt@m Xk =y, Z, = 2|Ao = a,k ~ pr)  Prog(aqn) Xk =y, Zx = 2|k ~ pr)
Pr (@ (Ao = a| Xy =y, Zy = 2,k ~ pr) m(alz) .

In addition, by the Markov property:
PrT(em (Ao = a| Xk =y, Zx = 2,k ~ p1) = Pro7(a,m) (Ao = a| Xx = y, k ~ pr),
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= hgr(alz,y).
Therefore:

hgr(alz, y)Prat(em) Xk =y, Zy = 2|k ~ pT)

]PTNT(JC ) (Xk =Y, Zj, = Z|A0 =a, k ~ pT) (a|x)

Thus, we can rewrite Q7 (z, a) as:

™ hBuT(a|x7y)]IDTNT (Xk: =Y, Zk = Z|]€ ~ pT) o
Q(x,0) =r(@,a) + ey Y Y ) (=),
yeX zeX

=r(z,a)+cy i Z Z hﬁ’T(akC’y>pT(k)PT~T(r7:E)a(|—;()k = Y)pi(Z = 2| Xy = y) 7 (2),

k=1yeX zeX

h Ta’xy T~T (2,7 ch:y -
M+ZVZB )Pt (K =9)

2 2y w(ala)
hg,r(alz, ~ (X = )
T BT y T (2,m) N =Y
)3 oot F )
yEXzGX
hBT a/|3j y) T~T (z,m (Xk: = y) P
:ca—i—ZyZ (‘;) ) " (y)
k=1 yeXx
ho o (al2,y)Bry o (Xi = )
T B,T Y)Cr T (z,7) k Y -
|4
T Z (alz) (y),
yeXx
T—1
hgr(alz, Xi) hg,r(alz, X1)
E k B, X T > ’ V(X
=)+ B | 2 TGy ) T G
which concludes the proof. O
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D Algorithms

Algorithm 1 State-conditional HCA

Given: Initial 7, hg, V, 7; horizon T

1: fork=1,...do
2: Sample 7 = X, Ag, Ry, . .., Ry from 7
3: fori=0,...,7T—1do > Train hindsight distribution
4: forj=1,...,T do
5: Train hg(A;|X;, X;) via cross-entropy
6: end for
7: end for
8: fori=0,...,7T—1do > Train baseline and reward predictor
9: Z=0
10: forj=14,...,T—1do
11 Z < Z +~7"'R,;
12: end for
13: Z <+ Z+~T7W (X7)
14: Update V' (X;) towards Z
15: Update  towards R;
16: end for
17: fori =0,...,T7 —1do v Train policy of all actions with the hindsight-conditioned return
18: for all actions a do
19: Zy, = m(a|X;, a)7(X;, a)
20: forj=:+1,..., 7T —1do
21: Zp < Zn + Wj‘lihﬁfr(glffgf’)l%j
22: end for
23: Zna  Zn+ T 22l S0 v ()
24: end for
25: Follow the gradient > | V7 (a|X;)Zp.q
26: end for
27: end for

Algorithm 2 Return-conditional HCA

Given: Initial 7, h,, V

1: fork=1,...do

2: Sample T = X, Ag, Ry, ... from 7

3: fori=0,1,...do

4: Compose the return Z(7;.o) starting from X;
5: Train h,(A;|X;, Z;) via cross-entropy
¢z (1 pae Ry ) 2

7: Follow the gradient V log w(A4;|X;)Z},

8: end for

9: end for

E Experiment Details

The learning rate « for the baseline was chosen to be the best value from [0.1,0.2, 0.3, 0.4], while
our model hyperparameters (the learning rate oy, for h, and the number of bins n; for the return
version of HCA were selected informally to be oo = 0.3, a, = 0.4, ny, = 3 for the results in Fig. 4,
and n; = 10 elsewhere. Return HCA is sensitive to ny, but all variants are robust to the choice of
learning rate.
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F Bootstrapping with state HCA

Consider the Delayed Effect task from Section[5] in which an action causes an outcome 7" steps in
the future, with everything in between being irrelevant. It is not immediately obvious why state HCA
should be beneficial when one bootstraps with n < 7. Indeed, if h was perfect, the intermediate
coefficient would be uninformative. However, we observe the opposite, precisely because V', 7w and h
are being learned at the same time, but with different learning dynamics. In particular, in this case h
moves faster than 7 (independently of the learning rate) as it is updated towards 1 for any observed
sample, while 7 updates are modulated by the return. Now consider some interim V' (y) < 0. The
negative value implies that the policy at the initial state = prefers the bad action a over the good
action b: 7(a|z) > w(b|z). But this in turn implies that h(a|z, y) has been observed more frequently,
and since h is quicker to update: h(a|z,y) > m(a|z). Now, take the policy gradient theorem
with 7 as a baseline. The HCA return becomes (h(a|z,y) — w(alx))V (y) < 0 and discourages the
bad action. Similarly, (h(b|z,y) — 7(b|z))V (y) > 0 and the good action is encouraged. We tested
different learning rates, and initializations, and the effect persisted.
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