
Appendix

A Detailed Proofs of Theorem and Lemmas

A.1 Proof of Theorem 1

Theorem 1 If nodes of a Bayesian network BpG,Pq have rank 2 with respect to their parents πGp.q
and P , then the Fourier coefficient f̂tpBq for function ft defined by equation (3) for any terminal
node t and a set B P 2t is given by:

f̂tpBq “

$

’

&

’

%

QtpXt “ 1q ` 1
2

ř

jPπGptq

`

QtjpXt “ 1, Xj “ 0q `QtjpXt “ 1, Xj “ 1q
˘

, B “ φ
1
2

`

QtjpXt “ 1, Xj “ 0q ´QtjpXt “ 1, Xj “ 1q
˘

, B “ tju,@j P πGptq

0, Otherwise
(15)

Proof. The Fourier transformation coefficients f̂t can be calculated using the following formula:

f̂tpBq “ 2´n`1
ÿ

AP2t

ftpAqp´1q|AXB| (16)

We prove our claim by computing f̂tpBq explicitly for various setting of B P 2t.

Case 1. B “ φ.

f̂tpBq “ 2´n`1
ÿ

AP2t

ftpAqp´1q|AXB|

“ 2´n`1
ÿ

AP2t

ftpAq, |AXB| “ 0

“ 2´n`1
ÿ

AP2t

rQtpXt “ 1q `
ÿ

jPπGptq

QtjpXt “ 1, Xj “ xAj s

“ 2´n`12n´1QtpXt “ 1q ` 2´n`1
ÿ

AP2t

ÿ

jPπGptq

QtjpXt “ 1, Xj “ xAj q

“ QtpXt “ 1q `
1

2

ÿ

jPπGptq

rQtjpXt “ 1, Xj “ 0q `QtjpXt “ 1, Xj “ 1qs

Case 2. B “ tlu, l P πGptq.

f̂tpBq “ 2´n`1
ÿ

AP2t

ftpAqp´1q|AXB|

“ 2´n`1r´
ÿ

AP2t,lPA

ftpAq `
ÿ

AP2t,lRA

ftpAqs

“ 2´n`1r´
ÿ

AP2t,lPA

rQtpXt “ 1q `QtlpXt “ 1, Xl “ 1q `
ÿ

jPπGptq´l

QtjpXt “ 1, Xj “ xAj qs

`
ÿ

AP2t,lRA

rQtpXt “ 1q `QtlpXt “ 1, Xl “ 0q `
ÿ

jPπGptq´l

QtjpXt “ 1, Xj “ xAj qss

“
1

2
rQtlpXt “ 1, Xl “ 0q ´QtlpXt “ 1, Xl “ 1qs
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Case 3. B Ď πGptq, |B| ą 1.

f̂tpBq “ 2´n`1
ÿ

AP2t

ftpAqp´1q|AXB|

“ 2´n`1
ÿ

AP2t

rrQtpXt “ 1q `
ÿ

jPπGptq

QtjpXt “ 1, Xj “ xAj qsp´1q|AXB|s

Take an l P B ùñ l P πGptq

“ 2´n`1r
ÿ

AP2t,lRA

rQtpXt “ 1q `QtlpXt “ 1, Xl “ 0q

`
ÿ

jPπGptq´l

QtjpXt “ 1, Xj “ xAj qsp´1q|AXB´l| `
ÿ

AP2t,lPA

rQtpXt “ 1q `QtlpXt “ 1, Xl “ 1q

`
ÿ

jPπGptq´l

QtjpXt “ 1, Xj “ xAj qsp´1q1`|AXB´l|s

“ 2´n`1r
ÿ

AP2tztlu

rQtlpXt “ 1, Xl “ 0q ´QtlpXt “ 1, Xl “ 1qsp´1q|AXB|s

Take k P B

“ 2´n`1r
ÿ

AP2tztlu,kPA

rQtlpXt “ 1, Xl “ 0q ´QtlpXt “ 1, Xl “ 1qsp´1q1`|AXB´k|s

` 2´n`1r
ÿ

AP2tztlu,kRA

rQtlpXt “ 1, Xl “ 0q ´QtlpXt “ 1, Xl “ 1qsp´1q|AXB´k|s

“ 0

Case 4. |B X t´ πGptq| ě 1

f̂tpBq “ 2´n`1
ÿ

AP2t

ftpAqp´1q|AXB|

“ 2´n`1
ÿ

AP2t

ftpAX πGptqqp´1q|AXB|

Take l P B and l R πGptq

“ 2´n`1r
ÿ

AP2t,lRA

ftpAX πGptqqp´1q|AXB´l| `
ÿ

AP2t,lPA

ftpAX πGptqqp´1q1`|AXB´l|s

“ 0

This proves our claim.

A.2 Proof of Theorem 2

Theorem 2 If nodes of a Bayesian network BpG,Pq have rank 2 with respect to their parents πGp.q
and P , then the Fourier coefficient f̂ipBq for function fi defined by equation (6) for any non-terminal
node i and a set B P 2i is given by:

f̂ipBq “

#

0, |BzMBGpiq| ě 1
1

2n´1

ř

AP2V´i
gipAq

ś

kPchildGpiq
gkpAq

gipAq
ś

kPchildGpiq
gkpAq`gipAYtiuq

ś

kPchildGpiq
gkpAYtiuq

ψBpAq, otherwise

(17)

Proof. Note that for the case |B ´ MBGpiq| “ 0, we simply replace terms in Equation (6) with
appropriate set functions. It can be simplified for various cases but we chose not to do it for clarity of
representation. For the second case when |B ´MBGpiq| ě 1, Ds such that s P B and s R MBGpiq.
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Note that fipAq “ fipAXMBGpiqq. Take A “ A1 Y tsu and s R A1.

f̂ipBq “ 2´n`1
ÿ

AP2V´i

fipAqp´1q|AXB|

“ 2´n`1p
ÿ

A1P2V´ti,su

fipA
1qp´1q|A

1
XB|`1 `

ÿ

A1P2V´ti,su

fipA
1qp´1q|A

1
XB|q “ 0

A.3 Proof of Theorem 3

Theorem 3 Suppose ĝi is constructed by computing ĝipBkq using Bk from a fixed collection ρi as
defined in Equation (11). Furthermore, suppose gi is computed by selecting mi sets Aj uniformly at
random from 2i. We define the matrix Mi as in equation (12). Then there exist universal constants
C1, C2 ą 0 such that if, mi ě maxpC1|supportpĝiq| log4

pn `
`

n´1
2

˘

q, C2|supportpĝiq| log 1
δ q and

βi is solved using equation (13). Then with probability at least 1 ´ δ, we have }βi ´ ĝi}2 ď
C3

ε?
mi

for some universal constant C3 ą 0. If the minimum non-zero element of |ĝi| is greater
than 2C3

ε?
mi

then βi recovers ĝi up to the signs. Furthermore, if Assumption 4 is satisfied then
|βipBq| ď C3

ε?
mi
,@B P ρi, |B| “ 2 if and only if i is a terminal node and π̂piq “ tB | |B| “

1, |βipBq| ą C3
ε?
mi
u correctly recovers the parents of the terminal node i, i.e., π̂piq “ πGpiq.

Applying this recursively shows the correctness of Algorithm 1.

Proof. First note that the rows of Mi are sampled uniformly at random from an orthonormal matrix
with bounded entries. Rauhut (2010) have proved that Restricted Isometry Property (RIP) holds
for such matrices with high probability. Thus, we can invoke Theorem 1 from Stobbe and Krause
(2012) which in turn follows the proof of Theorem 4.4 from Rauhut (2010) to get the result that
}βi ´ ĝi}2 ď C3

ε?
mi

.

Furthermore, }βi ´ ĝi}8 ď }βi ´ ĝi}2 ď C3
ε?
mi

. Thus if the minimum non-zero element of |ĝi| is
greater than 2C3

ε?
mi

then βi recovers ĝi up to the signs.

Adding to the above, the results from Theorem 1 and Assumption 4 ensure that |βipBq| ď
C3

ε?
mi
,@B P ρi, |B| “ 2 if and only if i is a terminal node and π̂piq “ πGpiq.

A.4 Proof of Theorem 4

Theorem 4 If there exists a probability distribution P̂ P P such that each node i is rank 2 with
respect to MBGpiq and P̂ , then the Markov blanket of a node i can be recovered by solving the
following system of equations:

PpXi “ 0, Xl “ 0q “ Q̃ipXi “ 0qPpXl “ 0q `
ÿ

jP´i
j‰l

Q̃ijpXi “ 0, Xj “ 0qPpXj “ 0, Xl “ 0q

` Q̃ilpXi “ 0, Xl “ 0qPpXl “ 0q, @ l “ t1, . . . , nu, l ‰ i

PpXi “ 0q “ Q̃ipXi “ 0q `
ÿ

jP´i
j‰l

Q̃ijpXi “ 0, Xj “ 0qPpXj “ 0q

(18)

which can be written in a more compact form:

y “ Aq (19)

where y P Rn and A P Rnˆn and q P Rn. The entries of y are indexed by l “ t1 . . . nu such that
yl “ PpXi “ 0, Xl “ 0q when l ‰ i and yl “ PpXi “ 0q when l “ i. The entries of A are indexed
by l, j P t1, . . . , nu, where Alj “ PpXl “ 0, Xj “ 0q for l ‰ i, j ‰ i, j ‰ l and , Alj “ PpXl “ 0q
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when l “ j, l ‰ i, Alj “ PpXl “ 0q for l ‰ i, j “ i, Alj “ PpXj “ 0q for l “ i, j ‰ i and Alj “ 1

for l “ i, j “ i. The entries of q are indexed by j P t1, . . . , nu such that qj “ Q̃ijpXi “ 0, Xj “ 0q

for j ‰ i and qj “ Q̃ipXi “ 0q for j “ i.

Proof. If there exists a probability distribution P̂ P P such that each node i is rank 2 with respect to
MBGpiq and P̂ , then

P̂ pXi “ xi|X´iq “ QipXi “ xiq `
ÿ

jP´i

QijpXi “ xi, Xjq (20)

where QijpXi “ xi, Xjq “ 0 if j R MBGpiq.

For nodes i, l P t1, . . . , nu and l ‰ i, consider the following:

P̂ pXi “ xi|Xl “ xlq “
ÿ

X´i´tlu

P̂ pXi “ xi, X´i´tlu|Xl “ xlq

“
ÿ

X´i´tlu

P̂ pXi “ xi|X´i´tlu, Xl “ xlqP̂ pX´i´tlu|Xl “ xlq

“
ÿ

X´i´tlu

P̂ pXi “ xi|X´iqP̂ pX´i´tlu|Xl “ xlq

Node i is rank 2 with respect to P̂ and MBGpiq

“
ÿ

X´i´tlu

pQipXi “ xiq `
ÿ

jP´i

QijpXi “ xi, XjqqP̂ pX´i´tlu|Xl “ xlq

“QipXi “ xiq `
ÿ

jP´i
j‰l

ÿ

Xj

QijpXi “ xi, XjqP̂ pXj |Xl “ xlq

`QilpXi “ xi, Xl “ xlq

Now P̂ P P

PpXi “ xi|Xl “ xlq “QipXi “ xiq `
ÿ

jP´i
j‰l

ÿ

Xj

QijpXi “ xi, XjqPpXj |Xl “ xlq

`QilpXi “ xi, Xl “ xlq

PpXi “ xi, Xl “ xlq “QipXi “ xiqPpXl “ xlq `
ÿ

jP´i
j‰l

ÿ

Xj

QijpXi “ xi, XjqPpXj , Xl “ xlq

`QilpXi “ xi, Xl “ xlqPpXl “ xlq
(21)

We only focus on the case when xi “ 0 because that would be sufficient to determine the Markov
Blanket for node i. Equation (21) may not have a unique solution because for any pair of nodes i, j if
QipXi “ 0q, QijpXi “ 0, Xj “ 0q and QijpXi “ 0, Xj “ 1q are part of a solution then there exists
a solution with QipXi “ 0q ` ε, QijpXi “ 0, Xj “ 0q ´ ε and QijpXi “ 0, Xj “ 1q ´ ε. We focus
on a particular solution where Q̃ipXi “ 0q “ QipXi “ 0q `

ř

jPMBGpiq
QijpXi “ 0, Xj “ 1q,

Q̃ijpXi “ 0, Xj “ 0q “ QijpXi “ 0, Xj “ 0q ´ QijpXi “ 0, Xj “ 1q and thus equation (21)
becomes:

PpXi “ 0, Xl “ xlq “Q̃ipXi “ 0qPpXl “ xlq `
ÿ

jP´i
j‰l

Q̃ijpXi “ 0, Xj “ 0qPpXj “ 0, Xl “ xlq

` Q̃ilpXi “ 0, Xl “ xlqPpXl “ xlq, @ l “ t1, . . . , nu, l ‰ i, xl P t0, 1u
(22)

Equation (22) can be written as a system of linear equations:

y “ Aq (23)
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where y P R2n´2,A P R2n´2ˆn and q P Rn. We define q as follows:

qj “

$

&

%

Q̃ijpXi “ 0, Xj “ 0q, if j ă i

Q̃ij`1pXi “ 0, Xj`1 “ 0q, if i ď j ď n´ 1

Q̃ipXi “ 0q, if j “ n

@j P t1, . . . , nu (24)

The rows of y and A are indexed by l and Xl, i.e.,

ypl,Xl “ xlq “ PpXi “ 0, Xl “ xlq

Apl,Xl “ xlq “

$

&

%

PpXj “ 0, Xl “ xlq, if j ă i

PpXj`1 “ 0, Xl “ xlq, if i ď j ď n´ 1

PpXl “ xlq, if j “ n

(25)

We take PpXl “ 0, Xl “ 0q “ PpXl “ 0q and PpXl “ 0, Xl “ 1q “ 0. We can remove the
linearly dependent rows from the above system of equations. For simplicity, let us assume that
i “ n. Then for l “ t2, . . . , n ´ 1u, yp1, X1 “ 0q ` yp1, X1 “ 1q ´ ypl,Xl “ 0q “ rAp1, X1 “

0q ` Ap1, X1 “ 1q ´ Apl,Xl “ 0qsq is equivalent to ypl,Xl “ 1q “ Apl,Xl “ 1qq. Thus we can
remove all the rows of y and A indexed by l,Xl “ 1,@l “ t2, . . . , n´ 1u and replace the last row of
y and A by yp1, X1 “ 0q ` yp1, X1 “ 1q and Ap1, X1 “ 0q `Ap1, X1 “ 1q respectively. A similar
argument can be presented for the case when i ‰ n.

A.5 Proof of Lemma 1

Lemma 1 The population matrix A as defined in equation (14) is a positive semidefinite matrix.

Proof. Here we carry out the proof for i “ n. The same argument can be applied when i ‰ n.
Consider a random vector z P Rn such that zj “ 1rXj “ 0s,@j “ t1, . . . , n ´ 1u and zn “ 1.
Note that PpXi “ 0q “ Er1rXi “ 0ss “ Er1rXi “ 0s2s and PpXi “ 0, Xj “ 0q “ Er1pXi “

0q1pXj “ 0qs,@i, j P t1, . . . , nu. Thus A “ Erzzᵀs which is a positive semidefinite matrix.

A.6 Proof of Lemma 2

Lemma 2 If Q̃ijp¨, ¨q,@j P t1, . . . , nu, j ‰ i is computed by solving system of linear equations
(14) and P̂ P P is faithful to G then Q̃ijp¨, ¨q ‰ 0,@j P t1, . . . , nu, j ‰ i if and only if j P MBGpiq.

Proof. For the first part, suppose Dj R MBGpiq for which Q̃ijp¨, ¨q ‰ 0, then expanding
P̂ pXi|X´iq “ Q̃ip¨q `

řn
j“1,j‰i Q̃ijp¨, ¨q, we see that P̂ pXi|X´iq ‰ P̂ pXi|XMBGpiqq which vio-

lates the faithfulness assumption. For the reverse, suppose Dj P MBGpiq for which Q̃ijp¨, ¨q “ 0.
This implies that Xi and Xj are independent given all the other nodes which again violates faithful-
ness.

A.7 Proof of Lemma 3

Lemma 3 N “ Op lognε2 q i.i.d observations are sufficient to measure elements of A and y, ε close
to their true value. That is |A ´ Â| ď ε and |y ´ ŷ| ď ε, for some ε ą 0 with probability at least
1´ 2 expplogp

`

n
2

˘

` 3nq ´ Nε2

2 q for some ε ą 0 where Â and ŷ are the empirical measurements of
A and y respectively and | ¨ ´ ¨ | denotes componentwise comparison for matrices.

Proof. For the observational data, we need to infer
`

n
2

˘

probabilities of the form P pXi “ 0, Xj “

0q,@i, j P t1, . . . , nu, n probabilities of the form P pXi “ 0q,@i “ t1, . . . , nu, n probabilities each
of the form P pXi “ 0, X1 “ 1q and P pXi “ 0, X2 “ 1q,@i “ t1, . . . , nu. Considering some
ordering for pXi “ xi, Xj “ xjq “ xij . We consider xij ď x1ij if xij comes before x1ij in the

15



ordering. Correspondingly, we can define the CDF Fijpxijq fi PppXi, Xjq ď xijq. Now, we can
apply Dvoretzky-Kiefer-Wolfowitz inequality(Dvoretzky et al., 1956),

Ppsup
xij

|F̂ijpxijq ´ Fijpxijq| ě
ε

2
q ď 2 expp´

Nε2

2
q,@ε ą 0 (26)

A similar equation can be written for the CDF of P pXiq:

Ppsup
xi

|F̂ipxiq ´ Fipxiq| ě
ε

2
q ď 2 expp´

Nε2

2
q,@ε ą 0 (27)

where N is number of i.i.d. samples. We compute actual probabilities by using the CDFs. For
example:

sup
xi

|P̂pXi “ xiq ´ PpXi “ xiq| “ sup
xi

|F̂ipxiq ´ F̂ipxi ´ 1q ´ Fipxiq ` Fipxi ´ 1q|

ď sup
xi

|F̂ipxiq ´ Fipxiq| ` sup
xi

|F̂ipxi ´ 1q ´ Fipxi ´ 1q|

ď ε

We need to ensure that this happens across all possible computations of probabilities. Thus taking a
union bound,

PppDXiq sup
x
|F̂ipxiq ´ Fipxiq| ě

ε

2
_ pDXi, Xjq sup

xij

|F̂ijpxijq ´ Fijpxijq| ě
ε

2
q (28)

ď 4 expplogp

ˆ

n

2

˙

` 3nq ´
Nε2

2
q,@ε ą 0 (29)

A.8 Proof of Lemma 4

Lemma 4 Let Â and ŷ be the empirical measurements of A and y as defined in equation (14)
respectively such that |Â ´ A| ď ε and |ŷ ´ y| ď ε for some ε ą 0, where | ¨ ´ ¨ | denotes
componentwise comparison for matrices. Let q̂ be the solution to the system of linear equations given
by ŷ “ Âq̂ and ηκ8pAq ď 1, then q̂ recovers q up to signs as long as N “ Opnq i.i.d. measurements
are used to measure Â and maxi |qi|

mini |qi|
ď

1´ηκ8pAq
4ηκ8pAq

, where κ8pAq fi }A}8}A
´1
}8 is the condition

number of A and η “ maxp nε
řn´1
j“1 PpXj“0q`1

, ε
PpXn“0q q.

Proof. Note that Â ą 0 as long as N “ Opnq Anderson (1962). Here we carry out the proof for
node n but similar arguments hold for other nodes as well. First note that We denote ∆A fi Â´ A
and ∆y fi ŷ ´ y. First note that, }A}8 “

řn´1
j“1 PpXj “ 0q ` 1 and }y}8 “ PpXn “ 0q. Thus,

}∆A}8 ď nε ď η}A}8 “ ηp
řn´1
j“1 PpXj “ 0q ` 1q and }∆y}8 ď ε ď η}y}8 “ ηPpXn “ 0q for

η “ maxp nε
řn´1
j“1 PpXj“0q`1

, ε
PpXn“0q q. Thus, we can invoke Theorem 2.2 from Higham (1994) and

write,

}q̂´ q}8
}q}8

ď
2ηκ8pAq

1´ ηκ8pAq

}q̂´ q}8 ď
2ηκ8pAq

1´ ηκ8pAq
}q}8

(30)

It follows that if maxi |qi|
mini |qi|

ď
1´ηκ8pAq
4ηκ8pAq

then we recover q up to correct signs.
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B Sample and Time Complexity without access to any observational data

Sample Complexity. Using the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality(Dvoretzky et al.,
1956) for each query independently and then taking the union bound across mi such queries, we get
that each query is at max ε away from its true conditional probability with a probability of at least
1´

řmi
i“1 4 expp´Niε

2

2 q. Let Nmin fi mini“t1,¨¨¨miuNi be the minimum number of sample we need
across all query. Then we need Nmin “ Op logmiε2 q samples for each query to estimate probabilities of
the form PpXi|Xi “ xiq, ε close to the true value with probability at least 1´4 expplogmi´

Nminε
2

2 q.
The black-box outputs observational data for each of our queries independently and thus it needs to
output a total of Opmaxpnk

3 log4 n
ε2 plog k ` log log nq, nk

3

ε2 log 1
δ plog k ` log log nqq samples.

Time Complexity. Each optimization problem is solved using the logarithmic barrier method which
takes Opn3

?
n log nq time. This needs to be repeated Opnkq times. Thus, total time complexity is

Opn4k
?
n log nq.

C Sample and Time Complexity with access to some observational data

Regarding the black-box queries, we provide the same argument as Appendix B but for computing
PpXi|XMBGpiq “ xMBGpiqq, ε close to the true value with probability at least 1´ 4 expplogmi ´

Nminε
2

2 q. We need to generate samples for each of our queries independently and thus need a total of

Opmaxpnk
3 log5 k
ε2 , nk

3

ε2 log 1
δ log kqq samples.

Time Complexity. For the observational data, we are solving an optimization problem by comput-
ing inverse of a Rnˆn matrix and then multiplying it by a Rn vector. This can be done in Opn3q time.
We repeat this process for each node, and thus it takes Opn4q time. All the inference can be done by
only one traversal of the samples. Thus the total time complexity remains Opn4q.
Regarding the black-box queries, each optimization problem is solved using the logarithmic barrier
method which takes Opk3

?
k log kq time. This needs to be repeated Opnkq times. Thus, the total

time complexity is Opnk4
?
k log kq.

D Synthetic Experiments

We conducted computational experiments on synthetic data to validate our results. In this section, we
report the average performance across 5 independently generated Bayesian networks.

Generating Bayesian Networks. We generated 5 synthetic Bayesian networks on 20 nodes. We
first chose a causal order for the nodes. We then generated CPTs for the nodes by making sure
that each node’s CPT is rank 2 with respect to its parents. The parameters Qijp¨, ¨q as described in
Equation (1) were chosen uniformly at random from r0, 1s while making sure that the resulting DAG
is faithful. An example of a Bayesian network is shown in Figure 1.

Black-box. We defined a black-box which can answer conditional probabilities queries
BBpi, A, xA, Nq to compute PpXi|XA “ xAq,@A Ď t1, . . . , nu. The black-box outputs N i.i.d.
samples for Xi given XA “ xA.

D.1 Recovering DAG without Access to any Observational Data.

For the first set of experiments, we did not have access to any observational data. Algorithm 2
takes a Bayesian network on S Ď t1, . . . , nu nodes and outputs terminal nodes T Ď S. The
iterative use of Algorithm 2 in Algorithm 1, subsequently provides the exact DAG. We assume
that the second node in the causal order does not have any parents. Following Theorem 3, we
submit mi “ 10C maxpk2 log4 n1, k2 log 1{δq queries for each node i at each iteration where k is
the maximum number of nodes in Markov blanket, n1 is number of nodes in the Bayesian network at
a specific iteration, i.e., n1 “ |S| and C is the control parameter. We fixed k “ 4 and δ “ 0.01. The
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Figure 1: An example of synthetic Bayesian network generated on n “ 20 nodes

number of queries was capped at 300 to ensure that we do not end up making too many queries. For
each query, we only had access to N “ Op logmiε2 q samples from the black-box.

Results. We measured the performance of our method by measuring the Hamming distance between
the true DAG and the recovered DAG. We also measured recall and precision for our method and then
computed the F1 score to see their joint effect. The performance measures are defined formally as:

Hamming Distance “
n
ÿ

i“1

p|π̂piqzπGpiq| ` |πGpiqzπ̂piq|q

Precision “
řn
i“1 |π̂piq X πGpiq|
řn
i“1 |π̂piq|

Recall “
řn
i“1 |π̂piq X πGpiq|
řn
i“1 |πGpiq|

F1 Score “
2ˆ Precisionˆ Recall

Precision` Recall
where πGpiq is the set of true parents of node i in true DAG G and π̂piq is the recovered set of parents
of node i. Note that the recovery of a reversed edge is treated as a mistake. We show the average
performance of our method across 5 independently generated Bayesian networks.

Observe that in Figure 2a the Hamming distance goes towards zero as we increase the number of
samples, or equivalently, as we increase the control parameter C. Similarly, in Figure 2c, 2d both
precision and recall (and F1 score as a result in Figure 2b) go towards 1 as we increase the control
parameter C in our experiments with a sharp transition around C “ ´1. This is consistent with our
expected results from Theorem 3 and validates our theory.

D.2 Recovering Markov Blanket with Access to Some Observational Data.

For the second set of experiments, we had access to some observational data. Our method can be
made more efficient by first computing the Markov blanket for a node and then applying Algorithm
2 with queries of the form fipAjq “ PpXi | XAXMBGpiq “ xAXMBGpiqq. Since, usually |A| "
|A XMBGpiq|, this saves a lot of computational efforts and Black-box queries for our algorithm.
Note that n observations are necessary for Lemma 4 to work. Beyond this, from Lemma 3, we only
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(a) Hamming distance with control parameter C (b) F1 score with control parameter C

(c) Precision with control parameter C (d) Recall with control parameter C

Figure 2: Regime without observational data. Plots of Hamming distance, F1 score, precision
and recall versus the control parameter C for Bayesian networks on n “ 20 nodes with mi “

10C maxpk2 log4 n1, k2 log 1{δq queries for each node i.

require Op lognε2 q observational samples for recovering the Markov blankets of all the nodes. Thus,
we conducted the experiments by generating N “ maxp10C logn

ε2 , nq observational samples. The
results of the experiments are provided below.

Results. As before, we measured performance of our method by measuring the Hamming distance
between the true Markov blankets and the recovered ones. We also measured recall and precision for
our method and then computed the F1 score to see their joint effect. The performance measures are
defined slightly differently as the recovery is with respect to the Markov blankets.

Hamming Distance “
n
ÿ

i“1

p|M̂BpiqzMBGpiq| ` |MBGpiqzM̂Bpiq|q

Precision “
řn
i“1 |M̂Bpiq XMBGpiq|

řn
i“1 |M̂Bpiq|

Recall “
řn
i“1 |M̂Bpiq XMBGpiq|
řn
i“1 |MBGpiq|

F1 Score “
2ˆ Precisionˆ Recall

Precision` Recall

where MBGpiq is the set of nodes in the Markov blanket of node i in true DAG G and M̂Bpiq is the
recovered set of nodes in the Markov blanket of node i. Below we provide average performance of
our method across 5 independently generated Bayesian networks.

We see in Figure 3a that the Hamming distance of Markov blanket recovery goes to zero as we
increase number of observational samples, or equivalently, as we increase the control parameter C.
Similarly, precision and recall of Markov blanket recovery in Figure 3c, 3d approach 1 as number
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(a) Hamming distance of Markov blanket recovery
with control parameter C

(b) F1 score of Markov blanket recovery with con-
trol parameter C

(c) Precision of Markov blanket recovery with con-
trol parameter C

(d) Recall of Markov blanket recovery with control
parameter C

Figure 3: Regime with observational data. Plots of Hamming distance, F1 score, precision and recall
for Markov blanket recovery versus the control parameter C for Bayesian networks on n “ 20 nodes
with N “ maxp10C logn

ε2 , nqq observational samples

of observational samples increase. This validates our theory. Another interesting observation is
that recall is very close to 1 even for a small number of observational samples. This is good for
our method as it would still work when recovering any set S such that MBGpiq Ď S. The sample
and time complexities are improved depending on the size of S (the best result is achieved when
S “ MBGpiq).

After we recovered the Markov blanket, we executed our Algorithm 2 with fipAjq “ PpXi |

XAXMBGpiq “ xAXMBGpiqq. We then obtained similar results as in the no-observational-data regime,
but with smaller number of samples and less computation.
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