
Copulas as High-Dimensional Generative Models:
Vine Copula Autoencoders

Natasa Tagasovska
Department of Information Systems

HEC Lausanne, Switzerland
natasa.tagasovska@unil.ch

Damien Ackerer
Swissquote Bank

Gland, Switzerland
damien.ackerer@swissquote.ch

Thibault Vatter
Department of Statistics

Columbia University, New York, USA
thibault.vatter@columbia.edu

Abstract

We introduce the vine copula autoencoder (VCAE), a flexible generative model
for high-dimensional distributions built in a straightforward three-step procedure.
First, an autoencoder (AE) compresses the data into a lower dimensional represen-
tation. Second, the multivariate distribution of the encoded data is estimated with
vine copulas. Third, a generative model is obtained by combining the estimated
distribution with the decoder part of the AE. As such, the proposed approach
can transform any already trained AE into a flexible generative model at a low
computational cost. This is an advantage over existing generative models such as
adversarial networks and variational AEs which can be difficult to train and can
impose strong assumptions on the latent space. Experiments on MNIST, Street
View House Numbers and Large-Scale CelebFaces Attributes datasets show that
VCAEs can achieve competitive results to standard baselines.

1 Introduction
Exploiting the statistical structure of high-dimensional distributions behind audio, images, or video
data is at the core of machine learning. Generative models aim not only at creating feature representa-
tions, but also at providing means of sampling new realistic data points. Two classes are typically
distinguished: explicit and implicit generative models. Explicit generative models make distributional
assumptions on the data generative process. For example, variational autoencoders (VAEs) assume
that the latent features are independent and normally distributed [37]. Implicit generative models
make no statistical assumption but leverage another mechanism to transform noise into realistic data.
For example, generative adversarial networks (GANs) use a discriminant model penalizing the loss
function of a generative model producing unrealistic data [22]. Interestingly, adversarial autoen-
coders (AAEs) combined both features as they use a discriminant model penalizing the loss function
of an encoder when the encoded data distribution differs from the prior (Gaussian) distribution [48].
All of these new types of generative models have achieved unprecedent results and also proved to
be computationally more efficient than the first generation of deep generative models which require
Markov chain Monte Carlo methods [32, 30]. However, adversarial approaches require multiple
models to be trained, leading to difficulties and computational burden [62, 26, 24], and variational
approaches make (strong) distributional assumptions, potentially detrimental to the generative model
performance [64].

We present a novel approach to construct a generative model which is simple, makes no prior
distributional assumption (over the input or latent space), and is computationally efficient: the vine
copula autoencoders (VCAEs). Our approach, schematized in Figure 1 combines three tasks. First, an
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

autoencoder (AE) is trained to provide high-quality embeddings of the data. Second, the multivariate
distribution of the encoded train data is estimated with vine copulas, namely, a flexible tool to
construct high-dimensional multivariate distributions [3, 4, 1]. Third, a generative model is obtained
by combining the estimated vine copula distribution with the decoder part of the AE.

(2.a) Extract the latent
features of X

X X’Z

(3.b) Decode the simulated features

1 2

4

3

5
3,

4

1,2

1, 3

3, 4 3, 5

1, 4 | 2

1, 3 |
2

1,4 |
3

2, 4 |
1, 3

4, 5 |
1, 3

2, 5 | 1, 3, 4

1, 3
1, 2

3, 5

1, 5 | 3

2, 3 | 1

1, 5 |
3

2, 4 | 1, 3

4,
 5

 | 1
, 3

(2.b) Train a vine copula on the latent features

(3.a) Simulate random features
from the vine

(1) Train an autoencoder

Vine tree structure

Figure 1: Conceptual illustration of a VCAE.

In other words, new data is produced by decod-
ing random samples generated from the vine
copula. An already trained AE can thus be trans-
formed into a generative model, where the only
additional cost would be the estimation of the
vine copula. We show in multiple experiments
that this approach performs well in building
generative models for the MNIST, Large-Scale
CelebFaces Attributes, and Street View House
Numbers datasets. To the best of our knowledge,
this is the first time that vine copulas are used
to construct generative models for very high di-
mensional data (such as images).

Next, we review the related work most relevant
to our setting. The most widespread genera-
tive models nowadays focus on synthetic im-
age generation, and mainly fall into the GAN
or VAE categories, some interesting recent de-
velopments include [49, 15, 26, 76, 29, 14, 6].
These modern approaches have been largely in-
spired by previous generative models such as
belief networks [32], independent component
analysis [33] or denoising AEs [79]. Part of their success can be attributed to the powerful neural
network architectures which provide high quality feature representations, often using Convolutional
architectures [41]. A completely different framework to model multivariate distributions has been
developed in the statistical literature: the so-called copulas. Thanks to their ability to capture complex
dependence structures, copulas have been applied to a wide range of scientific problems, and their
successes have led to continual advances in both theory and open-source software availability. We
refer to [56, 35] for textbook introductions. More recently, copulas also made their way into machine
learning research [43, 20, 47, 78, 45, 13, 74, 38]. However, copulas have not yet been employed
in constructing high dimensional generative models. While [42, 59] use copulas for synthetic data
generation, they rely on strong parametric assumptions. In this work, we illustrate how nonparametric
vine copulas allow for arbitrary density estimation [50], which in turn can be used to sample realistic
synthetic datasets.

Because their training is relatively straightforward, VCAEs have some advantages over GANs. For
instance, GANs require some complex modifications of the baseline algorithm in order to avoid mode
collapse, whereas vines naturally fit multimodal data. Additionally, while GANs suffer from the
“exploding gradients” phenomenon (e.g., see [24]) and require careful monitoring of the training and
early stopping, this is not an issue with VCAEs as they are built upon standard AEs.

To summarize, the contribution of this work is introducing a novel, competitive generative model
based on copulas and AEs. There are three main advantages of the proposed approach. First, it offers
modeling flexibility by avoiding most distributional assumptions. Second, training and sampling
procedures for high-dimensional data are straightforward. Third, it can be used as a plug-in allowing
to turn any AE into generative model, simultaneously allowing it to serve other purposes (e.g.,
denoising, clustering).

The remainder of the paper is as follows. Section 2 reviews vine copulas as well as their estimation
and simulation algorithms. Section 3 discusses the VCAE approach. Section 4 presents the results of
our experiments. Section 5 concludes and discusses future research. The supplementary material
contains further information on algorithm and experiments, as well as additional experiments.

2

2 Vine copulas
2.1 Preliminaries and motivation
A copula, from the latin word link, flexibly “couples” marginal distributions into a joint distribution.
As such, copulas allow to construct joint distributions with the same margins but different dependence
structures, or conversely by fixing the dependence structure and changing the individual behaviors.
Thanks to this versatility, there has been an exponentially increasing interest in copula-based models
over the last two decades. One important reason lies in the following theorem.

Theorem 1 (Sklar’s theorem [71]). The continuous random vector X = (X1, . . . , Xd) has joint
distribution F and marginal distributions F1, . . . , Fd if and only if there exist a unique copula 1 C,
which is the joint distribution of U = (U1, . . . , Ud) =

(
F1(X1), . . . , Fd(Xd)

)
.

Assuming that all densities exist, we can write f(x1, . . . , xd) = c
{
u1, . . . , ud

}
×

∏d
k=1 fk(xk),

where ui = Fi(xi) and f, c, f1, . . . , fd are the densities corresponding to F,C, F1, . . . , Fd respec-
tively. As such, copulas allow to decompose a joint density into a product between the marginal
densities fi and the dependence structure represented by the copula density c.

This has an important implication for the estimation and sampling of copula-based marginal distri-
butions: algorithms can generally be built into two steps. For instance, estimation is often done by
estimating the marginal distributions first, and then using the estimated distributions to construct
pseudo-observations via the probability integral transform before estimating the copula density.
Similarly, synthetic samples can be obtained by sampling from the copula density first, and then
using the inverse probability integral transform to transform the copula sample back to the natural
scale of the data. We give a detailed visual example of both the estimation and sampling of (bivariate)
copula-based distributions in Figure 2. We also refer to Appendix A.1 or the textbooks [56] and [35]
for more detailed introductions on copulas.

The availability of higher-dimensional models is rather limited, yet there exists numerous parametric
families in the bivariate case. This has inspired the development of hierarchical models, constructed
from cascades of bivariate building blocks: the pair-copula constructions (PCCs), also called vine
copulas. Thanks to its flexibility and computational efficiency, this new class of simple yet versatile
models has quickly become a hot-topic of multivariate analysis [2].

2.2 Vine copulas construction
Popularized in [3, 4, 1], PCCs model the joint distribution of a random vector by decomposing the
problem into modeling pairs of conditional random variables, making the construction of complex
dependencies both flexible and yet tractable. Let us exemplify such constructions using a three
dimensional vector of continuously distributed random variables X = (X1, X2, X3). The joint
density f of X can be decomposed as

f = f1 f2 f3 c1,2 c2,3 c1,3|2, (1)
where we omitted the arguments for the sake of clarity, and f1, f2, f3 are the marginal densities of
X1, X2, X3, c1,2 and c2,3 are the joint densities of (F1(X1), F2(X2)) and (F2(X2), F3(X3)),

c1,3|2 is the joint density of (F1|2(X1|X2), F3|2(X3|X2))|X2.

The above decomposition can be generalized to an arbitrary dimension d and leads to tractable and
flexible probabilistic models [34, 3, 4]. While a decomposition is not unique, it can be organized as a
graphical model, a sequence of d−1 nested trees, called regular vine, R-vine, or simply vine. Denoting
Tm = (Vm, Em) with Vm and Em the set of nodes and edges of tree m for m = 1, . . . , d− 1, the
sequence is a vine if it satisfies a set of conditions guaranteeing that the decomposition leads to a
valid joint density. The corresponding tree sequence is then called the structure of the PCC and has
important implications to design efficient algorithms for the estimation and sampling of such models
(see Section 2.3 and Section 2.4).

Each edge e is associated to a bivariate copula cje,ke|De
(a so-called pair-copula), with the set

De ∈ {1, · · · , d} and the indices je, ke ∈ {1, · · · , d} forming respectively its conditioning set and
the conditioned set. Finally, the joint copula density can be written as the product of all pair-copula
densities c =

∏d−1
m=1

∏
e∈Em

cje,ke|De
. In the following two sections, we discuss two topics that are

1A copula is a distribution function with uniform margins.

3

important for the application of vines as generative models: estimation and simulation. For further
details, we refer to the numerous books and surveys written about them [16, 39, 72, 18, 2], as well as
Appendix A.2.

2.3 Sequential estimation
To estimate vine copulas, it is common to follow a sequential approach [1, 27, 50], which we outline
below. Assuming that the vine structure is known, the pair-copulas of the first tree, T1, can be
directly estimated from the data. But this is not as straightforward for the other trees, since data from
the densities cje,de|De

are not observed. However, it is possible to sequentially construct “pseudo-
observations” using appropriate data transformations, leading to the following estimation procedure,
starting with tree T1: for each edge in the tree, estimate all pairs, construct pseudo-observations for
the next tree, and iterate. The fact that the tree sequence T1, T2, . . . , Td−1 is a regular vine guarantees
that at any step in this procedure, all required pseudo-observations are available. Additionally to
Appendix A.2.1 and Appendix A.2.2, we further refer to [1, 12, 18, 19, 9, 36] for model selection
methods and to [17, 73, 11, 27, 69] for more details on the inference and computational challenges
related to PCCs.

Importantly, vines can be truncated after a given number of trees [12, 8, 10] by setting pair-copulas in
further trees to independence.

Complexity Because there are d pair-copulas in T1, d − 1 pair-copulas in T2, . . . , and a single
pair-copula in Td−1, the complexity of this algorithm is O(f(n) × d × truncation level), where
f(n) is the complexity of estimating a single pair and the truncation level is at most d− 1. In our
implementation, described Section 2.5, f(n) = O(n).

2.4 Simulation
Additionally to their flexibility, vines are easy to sample from using inverse transform sampling.
Let C be a copula and U = (U1, . . . , Ud) is a vector of independent U(0, 1) random variables.
Then, define V = (V1, . . . , Vd) through V1 = C−1(U1), V2 = C−1(U2|U1), and so on until
Vd = C−1(Ud|U1, . . . , Ud−1), with C(vk|v1, . . . , vk−1) is the conditional distribution of Vk given
V1, . . . , Vk−1, k = 2, . . . , d. In other words, V is the inverse Rosenblatt transform [65] of U . It
is then straightforward to notice that V ∼ C, which can be used to simulate from C. As for the
sequential estimation procedure, it turns out that

• the fact that the tree sequence T1, T2, . . . , Td−1 is a vine guarantees that all the required
conditional bivariate copulas are available (see Algorithm 2.2 of [19]),

• the complexity of the algorithm O(n × d × truncation level), since f(n) is trivially the
complexity required for one inversion multiplied by the number of generated samples.

Furthermore, there exist analytical expressions or good numerical approximations of such inverses
for common parametric copula families. We refer to Section 2.5 for a discussion of the inverse
computations for nonparametric estimators.

2.5 Implementation
To avoid specifying the marginal distributions, we estimate them using a Gaussian kernel with a
bandwidth chosen using the direct plug-in methodology of [70]. The observations can then be mapped
to the unit square using the probability integral transform (PIT). See steps 1 and 2 of Figure 2 for an
example.

Regarding the copula families used as building blocks for the vine, one can contrast parametric and
nonparametric approaches. As is common in machine learning and statistics, the default choice is the
Gaussian copula. In Section 2.6, we show empirically why this assumption (allowing for dependence
between the variables but still in the Gaussian setting) can be too simplistic, resulting in failure to
deliver even for three dimensional datasets.

Alternatively, using a nonparametric bivariate copula estimator provides the required flexibility.
However, the bivariate Gaussian kernel estimator, targeted at densities of unbounded support, cannot
be directly applied to pair-copulas, which are supported in the unit square. To get around this issue,
the trick is to transform the data to standard normal margins before using a bivariate Gaussian

4

kernel. Bivariate copulas are thus estimated nonparametrically using the transformation estimator
[67, 47, 50, 21] defined as

ĉ(u, v) =
1

n

n∑
j=1

N (Φ−1(u),Φ−1(v)|Φ−1(uj),Φ
−1(vj),Σ)

φ (Φ−1(u))φ (Φ−1(v))
, (2)

where N (·, ·|υ1, υ2,Σ) is a two-dimensional Gaussian density with mean υ1, υ2, and covariance
matrix Σ = n−1/3 Cor(Φ−1(U),Φ−1(V)). For the notation we let φ,Φ and Φ−1 to be the standard
Gaussian density, distribution and quantile function respectively. See step 3 of Figure 2 for an
example.

Figure 2: Estimation and sampling algorithm for a pair copula.

Along with vines-related functions (i.e., for sequential estimation and simulation), the Gaussian
copula and (2) are implemented in C++ as part of vinecopulib [51], a header-only C++ library for
copula models based on Eigen [25] and Boost [68]. In the following experiments, we use the R
interface [61] interface to vinecopulib called rvinecopulib [53], which also include kde1d [52]
for univariate density estimation.

Note that inverses of partial derivatives of the copula distribution corresponding to (2) are required
to sample from a vine, as described in Section 2.4. Internally, vinecopulib constructs and stores
a grid over [0, 1]2 along with the evaluated density at the grid points. Then, bilinear interpolation
is used to efficiently compute the copula distribution Ĉ(u, v) and its partial derivatives. Finally,
vinecopulib computes the inverses by numerically inverting the bilinearly interpolated quantities
using a vectorized version of the bisection method, and we show a copula sample example as step 4
of Figure 2. The consistency and asymptotic normality of this estimator are derived in [21] under
assumptions described in Appendix A.3.

To recover samples on the original scale, the simulated copulas samples, often called pseudo-samples,
are then transformed using the inverse PIT, see step 5 of Figure 2. In Appendix C.1, we show that
this estimator performs well on two toy bivariate datasets that are typically challenging for GANs: a
grid of isotropic Gaussians and the swiss roll.

2.6 Vines as generative models
To exemplify the use of vines as generative models, let us consider as a running example a three
dimensional dataset X1, X2, X3 with X1, X2 ∼ U [−5, 5] and X3 =

√
X2

1 +X2
2 + U [−0.1, 0.1].

The joint density can be decomposed as in the right-hand side of (1), and estimated following the
procedures described in Section 2.5 and Section 2.3. With the structure and the estimated pair copulas,
we can then use vines as generative models.

In Figure 3, we showcase three models. C1 is a nonparametric vine truncated after the first tree.
In other words, it sets c2,3|1 to independence. C2 is a nonparametric vine with two trees. C3 is a
Gaussian vine with two trees. On the left panel, we show their vine structure, namely the trees and
the pair copulas. On the right panel, we present synthetic samples from each of the models in blue,
with the green data points corresponding to

√
X2

1 +X2
2 .

5

1

3

2

Tree 1 Tree 2
1,2

1,3

Vine copula C2

1

3

2

Tree 1

Vine copula C1

2,3|1

1,2

1,3

1,2

1,3

1

3

2

Tree 1 Tree 2
1,2

1,3

Vine copula C3

2,3|1

1,2

1,3

1,3
z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

1,2

z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

1,2

z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

1,2

1,3 z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

1,3
z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

z1

z 2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Figure 3: Simulation with different truncation levels, top to
bottom - 1 level truncated vine, 2 levels non-parametric vine,
2 levels Gaussian vine.

Comparing C1 to C2 allows to under-
stand the truncation effect: C2, be-
ing more flexible (fitting richer/deeper
model), captures better the features
of the joint distribution. It can be
deduced from the fact that data gen-
erated by C2 looks like uniformly
spread around the

√
X2

1 +X2
2 sur-

face, while data generated by C1 is
spread all around. It should be noted
that, in both cases, the nonparametric
estimator captures the fact that X1 and
X2 are independent, as can be seen
from the contour densities on the left
panel. Regarding C3, it seems clear
that Gaussian copulas are not suited
to handle this kind of dependencies:
for such nonlinearities, the estimated
correlations are (close to) zero, as can
be seen from the contour densities on
the left panel.

With this motivation, the next section is dedicated to extending the vine generative approach to high
dimensional data. While vines are theoretically suitable for fitting and sampling in high dimensions,
they have been only applied to model a few thousands of variables. The reason is mainly that state-
of-the-art implementations were geared towards applications such as climate science and financial
risk computations. While software such a vinecopulib satisfies the requirements of such problems,
even low-resolution images (e.g., 64× 64× 3) are beyond its current capabilities. To address this
challenge, we can rely on the embedded representations provided by neural networks.

3 Vine copula autoencoders
The other building block of the VCAE is an autoencoder (AE) [7, 31]. These neural network models
typically consist of two parts: an encoder f mapping a datum X from the original space X to the
latent space Y , and a decoder g mapping a latent code Y from the latent space Y to the original
space X . The AE is trained to reconstruct the original input with minimal reconstruction loss, that is
X ′ ≈ g(f(X)).

However, AEs simply learn the most informative features to minimize the reconstruction loss,
and therefore cannot be considered as generative models. In other words, since they do not learn
the distributional properties of the latent features [5], they cannot be used to sample new data
points. Because of the latent manifold’s complex geometry, attempts using simple distributions (e.g.,
Gaussian) for the latent space may not provide satisfactory results.

Nonparametric vines naturally fill this gap. After training an AE, we use its encoder component to
extract lower dimensional feature representations of the data. Then, we fit a vine without additional
restrictions on the latent distribution. With this simple step, we transform AEs into generators, by
systematically sampling data from the vine copula, following the procedure from Section 2.4. Finally,
we use the decoder to transform the samples from vine in latent space into simulated images in pixel
space. A schematic representation of this idea is given in Figure 1 and pseudo-code for the VCAE
algorithm can be found in Appendix B.

The vine copula is fitted post-hoc for two reasons. First, since the nonparametric estimator is
consistent for (almost) any distribution, the only purpose of the AE is to minimize the reconstruction
error. The AE’s latent space is unconstrained and the same AE can be used for both conditional and
unconditional sampling. Second, it is unclear how to train a model that includes a nonparametric
estimator since it has no parameters, there is no loss function to minimize or gradients to propagate.
One possibility would be using spline estimators, which would allow to train the model end-to-end
by fitting the basis expansion’s coefficients. However, spline estimators of copula densities have been
empirically shown to have inferior performance than the transformation kernel estimator [55].

6

There is some leeway in modeling choices related to the vine. For instance, the number of trees as
well as the choice of copula family (i.e., Gaussian or nonparametric) have an impact of the synthetic
samples, as sharper details are expected from more flexible models. Note that one can adjust the
characteristics of the vine until an acceptable fit of the latent features even after the AE is trained.

4 Experiments
To evaluate VCAEs as generative models, we follow an experimental setup similar as related works
on GANs and VAEs. We compare vanilla VAEs to VCAEs using the same architectures, but replacing
the variational part of the VAEs by vines to obtain the VCAEs. From the generative adversarial
framework, we compare to DCGAN [62]. The architectures for all networks are described in
Appendix D.

Additionally, we explore two modifications of VCAE, (i) Conditional VCAE, that is sampling from a
mixture obtained by fitting one vine per class label, and (ii) DEC-VCAE, namely adding a clustering-
related penalty as in [81]. The rationale behind the clustering penalty was to better disentangle the
features in the latent space. In other words, we obtain latent representations where the different
clusters (i.e., classes) are better separated, thereby facilitating their modeling.

4.1 Experimental setup
Datasets and metrics

We explore three real-world datasets: two small scale - MNIST [40] and Street View House Numbers
(SVNH) [57], and one large scale - CelebA [44]. While it is generally common to evaluate models by
comparing their log-likelihood on a test dataset, this criterion is known to be unsuitable to evaluate
the quality of sampled images [75]. As a result, we use an evaluation framework recently developed
for GANs [82]. According to [82], the most robust metrics for two sample testing are the classifier
two sample test (C2ST, [46]) and mean maximum discrepancy score (MMD, [23]). Furthermore, [82]
proposes to use these metrics not only in the pixel space, but over feature mappings in convolution
space. Hence, we also compare generative models in terms of Wasserstein distance, MMD score
and C2ST accuracy over ResNet-34 features. Additionally, we also use the common inception score
[66] and Fréchet inception distance (FID, [28]). For all metrics, lower values are better, except for
inception. We refer the reader to [82] for further details on the metrics and the implementation.

Architectures, hyperparameters, and hardware

For all models, we fix the AE’s architecture as described in Appendix D. Parameters of the optimizers
and other hyperparameters are fixed as follows. Unless stated otherwise, all experiments were run
with nonparametric vines and truncated after 5 trees. We use deep CNN models for the AEs in all
baselines and follow closely DCGAN [62] with batch normalization layers for natural image datasets.
For all AE-based methods, we use the Adam optimizer with learning rate 0.005 and weight decay
0.001 for all the natural image experiments, and 0.001 for both parameters on MNIST. For DCGAN,
we use the recommended learning rate 0.0002 and β1 = 0.5 for Adam. The size of the latent spaces
z was selected depending on the dataset’s size and complexity. For MNIST, we present results with
z = 10, SVHN z = 20 and for CelebA z = 100. We chose to present the values that gave reasonable
results for all baselines. For MNIST, we used batch size of 128, for SVHN 32, and for CelebA
batches of 100 samples for training. All models were trained on a separate train set, and evaluated on
hold out test sets of 2000 samples, which is the evaluation size used in [82]. We used Pythorch 4.1
[58], and we provide our code in Appendix E. All experiments were executed on an AWS instance
p2.xlarge with an NVIDIA K80 GPU, 4 CPUs and 61 GB of RAM.

4.2 Results
MNIST

In Figure 4, we present results from VCAE to understand how different copula families impact the
quality of the samples. The independence copula corresponds to assuming independence between the
latent features as in VAEs. And the images generated using nonparametric vines seem to improve
over the other two. Within our framework, the training of the AE and the vine fit are independent.
And we can leverage this to perform conditional sampling by fitting a different vine for each class of
digit. We show results of vine samples per digit class in Figure 4.

7

8

7

6

3

2

1

9

4

0

5

Class
label

0

1

2

3

4

5

6

7

8

9

Class
label

Nonparametric

Independent

Gaussian

Figure 4: Left - impact of copula family selection on MNIST. Middle and Right - random samples
of Conditional VCAE on MNIST and SVHN.

VAE VCAE DCGANDEC-VCAE

Figure 5: Left to right, random samples of VAE, VCAE, DEC-VCAE, and DCGAN for SVHN.

SVHN

The results in Figure 5 show that the variants of vine generative models visually provide sharper
images than vanilla VAEs when architectures and training hyper-parameters are the same for all
models. All AE-based methods were trained on latent space z = 20 for 200 epochs, while for
DCGAN we use z = 100 and evaluate it at its best performance (50 epochs). In Figure 6, we can see
that VCAE and DEC-VCAE have very similar and competitive results to DCGAN (at its best) across
all metrics, and both clearly outperform vanila VAE. Finally, the FID score calculated with regards to
104 real test samples are has 0.205 for VAE, 0.194 for DCGAN and 0.167 for VCAE which shows
that VCAE also has slight advantage using this metric. In Appendix C.2, Figure 12 and Figure 13
show similar results respectively for the MNIST and CelebA datasets.

Figure 6: Various evaluation scores for all baselines on the SVHN dataset.
CelebA

In the large scale setting, we present results for VCAE, VAE, and DCGAN only, because our GPU
ran out of memory on DEC-VCAE. From the random samples in Figure 7, we see that, for the same
amount of training (in terms of epochs), VCAE results is not only sharper but also produce more
diverse samples. VAEs improve using additional training, but vine-based solutions achieve better
results with less resources and without constraints on the latent space. Note that, in Appendix C.3,
we also study the quality of the latent representation.

To see the effect of the number of trees in the vine structure, we include Figure 8, where we can
see that from the random sample the vine with five trees provides images with sharper details.

8

VAE VCAE DCGAN

Figure 7: Random samples for models trained on the CelebA dataset, for VAE and VCAE at 200
epochs, and for DCGAN best results at 30 epochs.

5 trees

1 tree

5 trees

1 tree

Figure 8: Higher truncation - sharper images.

Since, as stated in Section 2.3 and Section 2.4, the
algorithms complexity increases linearly with the
number of trees, we explore the trade-off between
computation time and quality of the samples in Ap-
pendix C.4. Results show that, as expected, deeper
vines, and hence longer computation times, improve
the quality of the generated images. Finally, as for
SVHN, the FID score shows an advantage of the vine-
base method over VAEs as we find 0.247 for VAE
and 0.233 for VCAE. For DCGAN the FID score is
0.169 which is better than VCAE, however, looking at the random batch samples in Figure 7 although
GANs outputs sharper images, it is clear that VCAE produces more realistic faces.

Execution times

Table 1: Execution times.

MNIST
(200 epochs)

SVHN
(200 epochs)

CelebA
(100 epochs)

VAE 50 min 4h 7 min 7h
VCAE 55 min 1h 32 min 6.5h
DEC VCAE 101 min 2h 35 min /
DCGAN 120 min (40 epochs) 3h 20 min (50 epochs) 5h (30 epochs)

We conclude the experimental section with Ta-
ble 1 comparing execution times. We note that
VCAE compares favorably to VAE, which is a
“fair” observation given that the architectures are
alike. Comparison to DCGAN is more difficult,
due to the different nature of the two frameworks
(i.e., based respectively on AEs or adversarial).

It should also be noted that the implementation of VCAE is far from optimal for two reasons. First,
we use the R interface to vinecopulib in Python through rpy2. As such, there is a communication
overhead resulting from switching between R and Python. Second, while vinecopulib uses native
C++11 multithreading, it does not run on GPU cores. From our results, this is not problematic, since
the execution times are satisfactory. But VCAE could be much faster if nonparametric vines were
implemented in a tensor-based framework.

5 Conclusion
In this paper, we present vine copula autoencoders (VCAEs), a first attempt at using copulas as
high-dimensional generative models. VCAE leverage the capacities of AEs at providing compressed
representations of the data, along with the flexibility of nonparametric vines to model arbitrary
probability distributions. We highlight the versatility and power of vines as generative models in
high-dimensional settings with experiments on various real datasets. VCAEs results show that they
are comparable to existing solutions in terms of sample quality, while at the same time providing
straightforward training along more control over flexibility at modeling and exploration (tuning
truncation level, selection of copula families/parameter values). Several directions for future work
and extensions are being considered. First, we started to experiments with VAEs having flexible
distributional assumptions (i.e., by using a vine on the variational distribution). Second, we plan
on studying hybrid models using adversarial mechanisms. In related work [38] (see Appendix F),
we have also investigated the method’s potential for sampling sequential data (artificial mobility
trajectories). There can also be extensions to text data, or investigating which types of vines synthesize
best samples for different data types.

9

References
[1] K. Aas, C. Czado, A. Frigessi, and H. Bakken. Pair-Copula Constructions of Multiple Depen-

dence. Insurance: Mathematics and Economics, 44(2):182–198, 2009.

[2] Kjersti Aas. Pair-copula constructions for financial applications: A review. Econometrics, 4(4):
43, October 2016.

[3] Tim Bedford and Roger M. Cooke. Probability Density Decomposition for Conditionally Depen-
dent Random Variables Modeled by Vines. Annals of Mathematics and Artificial Intelligence,
32(1-4):245–268, 2001.

[4] Tim Bedford and Roger M. Cooke. Vines – A New Graphical Model for Dependent Random
Variables. The Annals of Statistics, 30(4):1031–1068, 2002.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

[6] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoen-
coder: Learning disentangled representations from grouped observations. In AAAI, 2018.

[7] Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and singular value
decomposition. Biological cybernetics, 59(4-5):291–294, 1988.

[8] Eike C. Brechmann and Harry Joe. Parsimonious parameterization of correlation matrices using
truncated vines and factor analysis. Computational Statistics and Data Analysis, 77:233–251,
2014.

[9] Eike Christian Brechmann and Claudia Czado. COPAR—multivariate time series modeling
using the copula autoregressive model. Applied Stochastic Models in Business and Industry, 31
(4):495–514, 2015.

[10] Eike Christian Brechmann and Harry Joe. Truncation of vine copulas using fit indices. Journal
of Multivariate Analysis, 138:19–33, 2015.

[11] Eike Christian Brechmann and Ulf Schepsmeier. Modeling dependence with C-and D-vine
copulas: The R-package CDVine. Journal of Statistical Software, 52(3):1–27, 2013.

[12] Eike Christian Brechmann, Claudia Czado, and Kjersti Aas. Truncated regular vines in high
dimensions with application to financial data. Canadian Journal of Statistics, 40(1):68–85,
March 2012.

[13] Yale Chang, Yi Li, Adam Ding, and Jennifer Dy. A robust-equitable copula dependence measure
for feature selection. AISTATS, 2016.

[14] Tatjana Chavdarova and François Fleuret. Sgan: An alternative training of generative adversarial
networks. In CVPR, 2018.

[15] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pages 2172–2180, 2016.

[16] Claudia Czado. Pair-Copula Constructions of Multivariate Copulas. In Piotr Jaworski, Fab-
rizio Durante, Wolfgang Karl Härdle, and Tomasz Rychlik, editors, Copula Theory and Its
Applications, Lecture Notes in Statistics, pages 93–109. Springer Berlin Heidelberg, 2010.

[17] Claudia Czado, Ulf Schepsmeier, and Aleksey Min. Maximum likelihood estimation of mixed
C-vines with application to exchange rates. Statistical Modelling, 12(3):229–255, 2012.

[18] Claudia Czado, Eike Christian Brechmann, and Lutz Gruber. Selection of Vine Copulas. In
Piotr Jaworski, Fabrizio Durante, and Wolfgang Karl Härdle, editors, Copulae in Mathematical
and Quantitative Finance: Proceedings of the Workshop Held in Cracow, 10-11 July 2012,
volume 36. Springer New-York, 2013.

10

[19] J. Dissmann, Eike Christian Brechmann, Claudia Czado, Dorota Kurowicka, J Dißmann,
Eike Christian Brechmann, Claudia Czado, and Dorota Kurowicka. Selecting and estimating
regular vine copulae and application to financial returns. Computational Statistics & Data
Analysis, 59:52–69, March 2013.

[20] Gal Elidan. Copulas in machine learning. In Copulae in mathematical and quantitative finance,
pages 39–60. Springer, 2013.

[21] Gery Geenens, Arthur Charpentier, and Davy Paindaveine. Probit transformation for nonpara-
metric kernel estimation of the copula density. Bernoulli, 23(3):1848–1873, 2017.

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, pages
2672–2680, 2014.

[23] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J Smola. A
kernel method for the two-sample-problem. In NeurIPS, 2007.

[24] Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Nathanael Perraudin, Thomas Hofmann, and
Andreas Krause. Evaluating gans via duality. arXiv preprint arXiv:1811.05512, 2018.

[25] Gaël Guennebaud, Benoît Jacob, and Others. Eigen v3, 2010.

[26] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In NeurIPS, 2017.

[27] Ingrid Hobæk Haff. Parameter estimation for pair-copula constructions. Bernoulli, 19(2):
462–491, 2013.

[28] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
2017.

[29] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR, 2017.

[30] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[31] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description length and
helmholtz free energy. In NeurIPS, pages 3–10, 1994.

[32] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[33] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411–430, 2000.

[34] Harry Joe. Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, 1997.

[35] Harry Joe. Dependence modeling with copulas. Chapman and Hall/CRC, 2014.

[36] Matthias Killiches, Daniel Kraus, and Claudia Czado. Model distances for vine copulas in high
dimensions. Statistics and Computing, pages 1–19, 2017.

[37] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.

[38] Vaibhav Kulkarni, Natasa Tagasovska, Thibault Vatter, and Benoit Garbinato. Generative
models for simulating mobility trajectories. 2018.

[39] Dorota Kurowicka and Harry Joe. Dependence Modeling. World Scientific Publishing Company,
Incorporated, 2010. ISBN 978-981-4299-87-9.

[40] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

11

[41] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[42] Haoran Li, Li Xiong, and Xiaoqian Jiang. Differentially Private Synthesization of Multi-
Dimensional Data using Copula Functions. In Proc. of the 17th International Conference on
Extending Database Technology, number c, pages 475–486, 2014.

[43] Han Liu, John Lafferty, and Larry Wasserman. The Nonparanormal: semiparametric estimation
of high dimensional undirected graphs. JMLR, 10:2295–2328, 2009.

[44] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In ICCV, 2015.

[45] David Lopez-Paz. From Dependence to Causation. PhD thesis, University of Cambridge, 2016.

[46] David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. ICLR, 2016.

[47] David Lopez-Paz, J M Hernandez-Lobato, and Bernhard Schölkopf. Semi-supervised domain
adaptation with copulas. NeurIPS, 2013.

[48] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoen-
coders. In ICLR, 2016.

[49] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. ICLR, 2016.

[50] Thomas Nagler and Claudia Czado. Evading the curse of dimensionality in nonparametric
density estimation with simplified vine copulas. Journal of Multivariate Analysis, 151:69–89,
2016.

[51] Thomas Nagler and Thibault Vatter. vinecopulib: High Performance Algorithms for Vine
Copula Modeling in C++, 2017.

[52] Thomas Nagler and Thibault Vatter. kde1d: Univariate Kernel Density Estimation, 2018. R
package version 0.2.1.

[53] Thomas Nagler and Thibault Vatter. rvinecopulib: high performance algorithms for vine copula
modeling, 2018.

[54] Thomas Nagler, Christian Schellhase, and Claudia Czado. Nonparametric estimation of sim-
plified vine copula models: comparison of methods. Dependence Modeling, 5(1):99–120,
2017.

[55] Thomas Nagler, Christian Schellhase, and Claudia Czado. Nonparametric estimation of sim-
plified vine copula models: comparison of methods. Dependence Modeling, 5(1):99–120,
2017.

[56] Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

[57] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 5, 2011.

[58] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[59] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. Proceedings -
3rd IEEE International Conference on Data Science and Advanced Analytics, pages 399–410,
2016.

[60] Robert Clay Prim. Shortest connection networks and some generalizations. The Bell System
Technical Journal, 36(6):1389–1401, 1957.

[61] R Core Team. R: A language and environment for statistical computing, 2017.

12

[62] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. ICLR, 2015.

[63] Alfréd Rényi. On measures of dependence. Acta mathematica hungarica, 10(3-4):441–451,
1959.

[64] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML,
2015.

[65] Murray Rosenblatt. Remarks on a multivariate transformation. The annals of mathematical
statistics, 23(3):470–472, 1952.

[66] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NeurIPS, 2016.

[67] Olivier Scaillet, Arthur Charpentier, and Jean-David Fermanian. The estimation of copulas:
Theory and practice. Technical report, Ensae-Crest and Katholieke Universiteit Leuven, NP-
Paribas and Crest; HEC Geneve and Swiss Finance Institute, 2007.

[68] Boris Schäling. The Boost C++ Libraries. 2011.

[69] Ulf Schepsmeier and Jakob Stöber. Derivatives and Fisher information of bivariate copulas.
Statistical Papers, 55(2):525–542, May 2014.

[70] Simon J Sheather and Michael C Jones. A reliable data-based bandwidth selection method for
kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological),
pages 683–690, 1991.

[71] A. Sklar. Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de L’Institut
de Statistique de L’Université de Paris, 8:229–231, 1959.

[72] Jakob Stöber and Claudia Czado. Sampling Pair Copula Constructions with Applications to
Mathematical Finance. In Jan-Frederik Mai and Matthias Scherer, editors, Simulating Copulas:
Stochastic Models, Sampling Algorithms and Applications, Series in quantitative finance. World
Scientific Publishing Company, Incorporated, 2012.

[73] Jakob Stöber and Ulf Schepsmeier. Estimating standard errors in regular vine copula models.
Computational Statistics, 28(6):2679–2707, 2013.

[74] Natasa Tagasovska, Thibault Vatter, and Valérie Chavez-Demoulin. Nonparametric quantile-
based causal discovery. arXiv:1801.10579, 2018.

[75] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. In ICLR, 2015.

[76] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-
encoders. ICLR, 2018.

[77] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. Adagan: Boosting generative models. In NeurIPS, pages 5424–5433, 2017.

[78] Dustin Tran, David M Blei, and Edoardo M Airoldi. Copula variational inference. In NeurIPS,
2015.

[79] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In ICML, pages 1096–1103, 2008.

[80] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. 2017.

[81] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering
analysis. In ICML, 2016.

[82] Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and Kilian Weinberger.
An empirical study on evaluation metrics of generative adversarial networks. arXiv preprint
arXiv:1806.07755, 2018.

13

Appendix
A Introduction to (vine) copulas
A.1 Copulas
Recall that the components of the random vector (X1, . . . , Xd) are said to be independent if and only
if its joint distribution F is given by the product of the d marginals Fi for i ∈ {1, . . . , d}, that is

F (x1, . . . , xd) =

d∏
i=1

Fi(xi), (3)

for any (x1, . . . , xd) ∈ Rd. If the random variables are absolutely continuous, then differentiating
(3) with respect to (x1, . . . , xd) implies that a similar statement hold for the densities, that is

f(x1, . . . , xd) =

d∏
i=1

fi(xi), (4)

where f is the joint density, and fi for i ∈ {1, . . . , d} are the marginal densities.

However, when the variables are dependent, this statement is no longer true. In this case, the
celebrated Sklar’s theorem (see Theorem 1 for the precise statement) says that the joint distribution
can be written as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (5)
where C is a copula that acts as a coupling mechanism between the d marginals.

Definition 1. A d-dimensional copula copula is a multivariate cumulative distribution function
C : [0, 1]d → [0, 1] for which all the marginal distributions are uniform.

In other words, for d = 2, C is a distribution such that C(1, u) = C(u, 1) = u for any
u ∈ [0, 1]. Note that the simplest copulas is arguably the independence copula, namely plugging
C(u1, . . . , ud) =

∏d
i=1 ui into (5) leads to (3).

An intuitive way to understand the copula corresponding to a given joint distribution F and marginal
distributions Fi for i ∈ {1, . . . , d} is as the distribution of the so-called probability integral transform
(PIT) of the marginals.

Definition 2. The probability integral transform (PIT) of a random variable X with distribution
FX is the random variable U = FX(X).

Because the PIT of any random variable is uniformly distributed2, the joint distribution of the vector
of PITs (U1, . . . , Ud) with Ui = Fi(Xi) for i ∈ {1, . . . , d} is a copula, namely C. A similar idea has
an important consequence when one aims at sampling from the joint distribution F . Because it is well
known that, if U ∼ U [0, 1] and F−1

X is the inverse cumulative distribution of X , then F−1
X (U) ∼ X ,

transforming samples from C into samples from F is straightforward: if (U1, · · · , Ud) ∼ C, then
Xi = F−1

i (Ui) for i ∈ {1, . . . , d} implies that (X1, . . . , Xd) ∼ F . While it looks like simply
transforming a d-dimensional sampling problem into another d-dimensional sampling problem, vine
copulas represent a model class for C that is flexible and yet easy to sample from.

Viewing any joint distribution through this copula lens further yields a useful factorization: differenti-
ating (5) with respect to (x1, . . . , xd) leads to

f(x1, . . . , xd) =
∂dF (x1, . . . , x2)

∂x1 · · · ∂xd
=

∂dC(u1, . . . , ud)

∂u1 · · · ∂ud

d∏
i=1

∂Fi(xi)

∂xi
= c(u1, . . . , ud)

d∏
i=1

fi(xi),

(6)
where c is the so-called copula density, and ui = Fi(xi) for i ∈ {1, . . . , d}. Hence, we can see that
the joint density factorize into a product between the marginal densities, similarly as in (4), with the
copula density, which encodes the dependence. Taking the logarithm on both sides of (6), one obtains

log f(x1, . . . , xd) = log c(u1, . . . , ud) +

d∑
i=1

log fi(xi).

2P[U ≤ u] = P[FX(X) ≤ u] = P[X ≤ F−1
X (u)] = FX(F−1

X (u)) = u

14

−6

−3

0

3

6

−2 0 2
X_1

X_
2

type true

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
U_1

U
_2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
U_1

U
_2

z1

z 2

 0.01

 0.025
 0.05

 0.1

 0.15

 0.2

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

z1

z 2

 0.01

 0.025

 0.05

 0.1

 0.15

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

−25

0

25

−2 0 2
X_1

X_
2

type true

Figure 9: Copula estimation. By row - (top) independent, (bottom) dependent variables. By column -
(left) original data, (middle) pseudo-data after PIT, (right) estimated copula density.
In other words, the factorization implies that the joint log-likelihood is the sum of the marginal
log-likelihoods and the copula log-likelihood. This observation can be conveniently leveraged for
estimation via a two-step procedure where fi is first estimated by f̂i for i ∈ {1, . . . , d}. Then,
pseudo-observations of the copula are recovered using the estimated PITs, that is ui ≈ F̂i(xi) for
i ∈ {1, . . . , d}, and c is then estimated by ĉ using the pseudo-sample. This procedure is exemplified
in Figure 9.

To summarize, copulas are a tool allowing to represent any multivariate distribution through the
individual variables’ marginal behaviors as well as their inter-dependencies. While lesser known in the
machine learning community, copulas have been widely exploited by in other fields, from economics
to quantitative finance, insurance and environmental sciences; in particular when capturing the joint
tail behavior is of high importance. In financial risk management for instance, so-called tail events
can trigger large and simultaneous losses (or gains) on portfolios. Consequently, multiple parametric
copula families have been studied to capture lower/upper tail dependence, or no tail dependence at all.
Similarly, other families have been developed to handle asymmetries or other dependence patterns.
But such parametric families, which usually imply that the dependence between all pairs of variables
is of the same kind, are seldom flexible enough in higher dimensions. Such limitations have led to
the development of pair-copulas constructions (PCCs) or vines - hierarchical structures which allow
to flexibly model high dimensional distributions by decomposing the dependence structure into pairs
of (bivariate) copulas.

A.2 Vines

According to [34, 4, 16], any copula density can be decomposed into a product of d(d−1)
2 bivariate

(conditional) copula densities. While a decomposition is not unique, it can be organized as a graphical
model, a sequence of d − 1 nested trees, called regular vine, R-vine, or simply vine. Denoting
Tm = (Vm, Em) with Vm and Em the set of nodes and edges of tree m for m = 1, . . . , d− 1, the
sequence is a vine if it satisfies the following set of conditions guaranteeing that the decomposition
leads to a valid joint density:

• T1 is a tree with nodes V1 = {1, . . . , d} and edges E1.
• For m ≥ 2, Tm is a tree with nodes Vm = Em−1 and edges Em.
• (Proximity condition) Whenever two nodes in Tm +1 are joined by an edge, the correspond-

ing edges in Tm must share a common node.

15

The corresponding tree sequence is then called the structure of the PCC and has important implications
to design efficient algorithms for the estimation and sampling of such models.

Each edge e is associated to a bivariate copula cje,ke|De
(a so-called pair-copula), with the set

De ∈ {1, · · · , d} and the indices je, ke ∈ {1, · · · , d} forming respectively its conditioning set and
the conditioned set. Finally, the joint copula density can be written as the product of all pair-copula
densities

c(u1, · · · , ud) =
d−1∏
m=1

∏
e∈Em

cje,ke|De
(uje|De

, uke|De
), (7)

where
uje|De

= P [Uje ≤ uje | UDe = uDe] ,

and similarly for uje|De
, with UDe

= uDe
understood as component-wise equality for all components

of (U1, . . . , Ud) and (u1, . . . , ud) included in the conditioning set De. In Example Example 1 we
present a full example of an R vine for a 5 dimensional density.

Example 1. The density of a PCC corresponding to the tree sequence in Figure 10 is
c = c1,2 c1,3 c3,4 c3,5 c2,3|1 c1,4|3 c1,5|3c2,4|1,3 c4,5|1,3 c2,5|1,3,4, (8)

where the colors correspond to the edges E1, E2, E3, E4.

1

3

1, 3

2
1, 2

4

3,
4

5

3, 5

(a) Tree T1

1, 2

1, 3

2, 3|1

3, 4

1,
4|3

3, 5

1, 5|3

(b) Tree T2

2, 3|1

1, 4|3

2, 4|1, 3

1, 5|3

4,
5|1

, 3

(c) Tree T3

2, 4|1, 3

4, 5|1, 3

2
,5|1

,3
,4

(d) Tree T4

Figure 10: A vine tree sequence: the numbers represent the variables, x, y the bivariate distribution
of x and y, and x, y|z the bivariate distribution of x and y conditional on z. Each edge corresponds
to a bivariate pair-copula in the PCC.

To summarize this section, in order to construct a vine, one has to choose two components:

• The structure, namely the set of trees Tm = (Vm, Em) for m = 1, . . . , d− 1.
• The pair-copulas, namely the models for cje,ke|De

for e ∈ Em and m = 1, . . . , d− 1.

To fix ideas, it is easier to start by assuming the structure to be known.

A.2.1 Estimating the pair-copulas
To answer how one could estimate the pair-copulas is closely related whether one can evaluate the
density in (7): if one can evaluate the density, then taking it’s logarithm and finding the MLE would
be straightforward. While it would be impractical for high-dimensional data, the factorization as a
product of pair-copulas paves the way for a sequential procedure. Indeed, taking the logarithm of
both sides of (7), we have

log c(u1, · · · , ud) =

d−1∑
m=1

∑
e∈Em

log cje,ke|De
(uje|De

, uke|De
). (9)

One can thus use (9) to proceed in a tree-wise fashion, starting with m = 1, with all pairs in a given
tree, that is e ∈ Em, being estimated in parallel.

Assuming the marginal distributions to be known, one can simply proceed with pseudo-observations
(U1, · · · , Ud) with Ui = Fi(Xi) to estimate the pairs in the first tree (i.e., when m = 1). It works
because, for those pairs, the conditioning set is empty, that is De = ∅. When the marginal distributions
are unknown, one can proceed similarly using F̂i(Xi). But for the higher trees (i.e., when m > 1),
the decomposition involves conditional distributions like Uje |UDe

with a non-empty conditioning
set, that is De 6= ∅.

16

It turns out that the arguments for pair-copulas in any tree m > 1 can be expressed recursively
using conditional distributions corresponding to bivariate copulas in the previous tree (i.e., m− 1) as
follows. Let e ∈ Em be an edge of tree m and le ∈ De be another index such that cje,le|De\le is a
pair-copula in tree m− 1, and define D′

e = De \ le. Then we have that
uje|De

= hje,le|D′
e
(uje|D′

e
, ule|D′

e
)

where the so-called h-function is defined as

hje,le|D′
e
(u1, u2) :=

∫ u1

0

cje,le|D′
e
(v, u2)dv =

∂Cje,le|D′
e
(u1, u2)

∂u2
.

In each step of this recursion the conditioning set De is reduced by one element, until we eventually
reach the first tree with De = ∅. Note that, in a vine, for any edge e, the existence of an index
le such that cje,le|De\le is a pair-copula in tree m − 1 is guaranteed. This allows us to write any
of the required conditional distributions as a recursion over h-functions that directly linked to the
pair-copula densities in previous trees. As such, assuming the structure to be known, a sequential
algorithm to estimate the pair-copulas can be described as follow:

1. Set m = 1 and estimate all pair-copulas for the first tree using (U1, · · · , Ud).
2. Set m = m+ 1 and compute the conditional distributions uje|De

and uke|De
for e ∈ Em.

3. Estimate all pair-copulas in tree m using uje|De
and uke|De

for e ∈ Em.
4. If m = d− 1, all pairs have been estimated. Otherwise, go to step 2.

The procedure is generic in the sense that it can be used with any bivariate copula estimator, and we
refer to Algorithm 1 in [54] for its pseudocode. Note that the decomposition can also be truncated by
replacing the termination condition at step 4 using any truncation level smaller than d− 1. Finally, for
each pair-copula, one could also estimate different models at step 3 and select the best one according
to some suitable criterion (e.g., AIC or BIC). One important question that we brushed aside is: given
that the structure is generally unknown, how can we also select it?

A.2.2 Selecting the structure
To learn the structure for a dataset where it is unknown, multiple solutions have been proposed. In
this paper, as it is most common in the vine literature, we use the so-called Dissmann algorithm,
first proposed in [19]: This algorithm represents a greedy heuristic aiming at capturing higher
dependencies in the lower trees. The intuition is that higher-tree represent higher-order interactions,
which are harder to estimate. As such, one should prioritize modeling the most important patterns
in lower trees. This is achieved by finding the maximum spanning tree (MST) using a dependence
measure as edge weights. For instance, the absolute value of the empirical Kendall’s τ for monotone
dependencies or the maximal correlation [63] for more general patterns are popular choices. To
compute the MST, most implementations use Prim’s algorithm [60]. Letting τ denote a generic
bivariate dependence measure, the sequential algorithm mentioned above can thus be modified in a
straightforward manner:

1. Set m = 1 and compute the dependence τ(Ui, Uj) for all pairs 1 ≤ i < j ≤ d. While this
defines a complete graph, only keep the edges corresponding to the MST in Em. Finally,
estimate all pair-copulas for the first tree as before.

2. Set m = m + 1 and compute the conditional distributions uje|De
and uke|De

, as well as
the dependence τ(uje|De

, uke|De
) for all pairs where e is an edge allowed by the proximity

condition. Only keep the edges corresponding to the MST in Em.
3. Estimate all pair-copulas in tree m using uje|De

and uke|De
for e ∈ Em.

4. If m = d− 1, all pairs have been estimated. Otherwise, go to step 2.

Note that step 2 can be implemented efficiently by observing that, while conditional distributions
might appear in multiple candidate edges, they can be computed only once and stored for further use.
The resulting estimation and structure selection procedure is summarized in Algorithm 2 of [54].

A.3 Assumptions for the consistency and asymptotic normality of the kernel bivariate
copula estimator

(B1) ∂uC(u, v) and ∂uuC(u, v) exist and are continuous on (u, v) ∈ (0, 1) × [0, 1], and there
exists a constant Q1 such that |∂uuC(u, v)| ≤ Q1/u(1− u) for (u, v) ∈ (0, 1)× [0, 1].

17

(B2) ∂vC(u, v) and ∂vvC(u, v) exist and are continuous on (u, v) ∈ [0, 1] × (0, 1), and there
exists a constant Q2 such that |∂vvC(u, v)| ≤ Q2/v(1− v) for (u, v) ∈ [0, 1]× (0, 1).

(B3) The density c(u, v) = ∂uvC(u, v) admits continuous second-order partial deriva-
tives in (0, 1)2 and there exists a constant Q0 such that, for (u, v) ∈ (0, 1)2,
c(u, v) ≤ Q0 min

(
1

u(1−u) ,
1

v(1−v)

)
.

B The VCAE algorithm
The algorithm for vine copula autoencoders is given in Algorithm 1.

Algorithm 1 Vine Copula Autoencoder

Input: train set X of {x1, x2, ...xn} images.
1. Train AE component with X:
f ← encoder
g ← decoder

2. Encode train set with f :
φ(X)← f(X)

3. Fit a vine copula c using encoded features:
c← {φ1, φ2, ...φn} (as described in Section 2.2 and Section 2.3).

4. Sample random observations form c:
φ′ ← c(φ) (as in Section 2.4)

5. Decode the random features:
X ′ ← g(φ′)

Output: generated images X ′.

B.1 Variations of VCAE
Conditional VCAE Since the vine estimation and the AE training are independent in our approach,
we can do steps 3–5 in Algorithm 1 per class label (fit a vine per class feature) which makes the
implementation of Conditional VCAE straightforward.

DEC-VCAE For the implementation of the DEC-VCAE we followed the instructions from the
authors in [81]. A difficulty with AEs is that the encoded features are typically entangled, even when
the AE reconstruction is accurate. Therefore we enforce some clustering. We start with an pre-trained
AE and then optimize a two-term loss function: the clustering and the reconstruction loss.

C Additional experiments
C.1 Toy datasets
Similarly to related generative model literature [26, 77], we test our method on two-dimensional toy
datasets. Since this is a 2D case, we use bivariate copulas with nonparametric marginal densities
for the estimation and sampling. The three datasets are ring of isotropic Gaussians with 8 modes,
5 × 5 grid of isotropic Gaussians and the swiss roll dataset. These datasets have proven to be
challenging for GANs due to the mode collapse issues [26, 77]. They motivate how the flexibility of
nonparametric copulas can be leveraged, and we additionally compare to a baseline Gaussian copula.
From Figure 11, we observe the benefits of using nonparametrics; while fitting such datasets is easy,
it is clear that the Gaussian assumption is not suitable in such cases (except for the grid of Gaussians).

We further confirm this quantitatively in Table 2, where we repeat the experiment on 100 random
datasets of each type, and present the average and standard deviations for both copula families. To
evaluate the sampled images, additionally to the MMD, we use the negative log-likelihood (NLL)

18

Table 2: Evaluation on toy datasets for nonpara-
metric and Gaussian copula. Average and stan-
dard deviations from 100 repetitions.

Ring Grid Swiss roll

nonparametric

NLL ↑ -2.47(0.15) -3.77(0.2) -5.23(0.05)
Coverage ↑ 0.93(0.02) 0.94(0.02) 0.99(0.01)
MMD ↓ 0.18(0.02) 0.15(0.16) 0.32(0.03)

Gaussian

NLL ↑ -2.98(0.05) -3.34(0.07) -6.21(0.05)
Coverage ↑ 0.95(0.02) 0.96(0.014) 0.93(0.03)
MMD ↓ 0.33(0.02) 0.14(0.02) 0.38(0.02)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−10

−5

0

5

10

15

−10 −5 0 5 10

type ● ●observed simulated

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3

−2

−1

0

1

2

−2 −1 0 1 2

type ● ●observed simulated

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

type ● ●observed simulated

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−2 −1 0 1 2

type ● ●observed simulated

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

type ● ●observed simulated

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−10

−5

0

5

10

15

−10 −5 0 5 10

type ● ●observed simulated

Figure 11: Copula generated data - top row
nonparametric, bottom row Gaussian copula.

and coverage3, a closely related metric [77]. As expected, nonparametrics provide better samples
according to the three two-sample metrics.

C.2 Various evaluation metrics for the MNIST and CelebA dataset
In Figure 12 and Figure 13, we present the evaluation scores for all baselines on the MNIST and
CelebA datasets. Note that, in the evaluation framework that we use [82], the Inception Score and
FID are based on ImageNet features. Therefore those scores are not suitable for binary images and
excluded from Figure 12.

The results in Figure 13 show that DCGAN has a slight advantage over VAE and VCAE when
methods are evaluated in feature space, while VCAE outperforms VAE on all metrics. In this
experiment we used adaptive learning rate for DCGAN 4 to evaluate the scores on more than 30
epochs.

Figure 12: Various evaluation scores for all baselines on the MNIST dataset.

Figure 13: Various evaluation scores for all baselines on the CelebA dataset.

3Coverage measures the probability mass of the true data covered by the approximate density of the learned
model as C := Pdata[dPmodel > t] where t is selected such that Pmodel[dPmodel > t] = α and where dPmodel

denotes the model density function. We set α = 0.95 as in the original paper.
4reducing the learning rate by 10 after 30th epoch

19

C.3 Interpolation in latent space
Figure 14 shows that the transitions for VCAE are smooth and without any sharp changes or
unexpected samples in-between when walking the latent space by linear interpolation between two
test samples as in [62]. This is not explicitly related to VCAE generative models since we do not train
an end-to-end model, however it is important to show that the AE network we use did not simply
memorize images.

Figure 14: Interpolation in latent space between two real samples (shown in the first two columns)
with a VCAE trained on CelebA

C.4 The trade-off between time complexity and sample quality
To explore the effect of the choice for truncation level, i.e. the depth of the vine (number of trees)
over the quality of the produced VCAE samples, we include an ablation study on the FashionMNIST
dataset [80]. The quantitative and qualitative evaluation in Figure 15 and Figure 16 suggest that
higher level of truncation provide better samples, at the expected cost of longer computation times.

Figure 15: Quantitative evaluation of various truncation levels for the VCAE on FashionMNIST.

Truncation level 15Truncation level 5

Figure 16: Qualitative evaluation of various truncation levels (left panel) and computation time with
respect to the vine depth (right panel) for the VCAE on FashionMNIST.

20

D Additional details on the experiments
We use the same AE architecture for VCAE, DEC-VCAE and VAE as described below. All the AEs
were trained by minimizing the Binary Cross Entropy Loss.

D.1 MNIST
The only transformation performed on this dataset is a padding of 2. By doing so we are able to use
the same architecture for multiple datasets. We use CNNs for the encoder and the decoder whose
architectures are as follows:

• Encoder:

x ∈ R32×32 → Conv32 → BN → ReLU

→ Conv64 → BN → ReLU

→ Conv128 → BN → ReLU

→ FC10

• Decoder:

z ∈ R10 → FC100 → ConvT128 → BN → ReLU

→ ConvT64 → BN → ReLU

→ ConvT128 → BN → ReLU

→ FC1

• DCGAN Generator:
z ∈ R100 →→ ConvT1 → BN → ReLU

→ ConvT128 → BN → ReLU

→ ConvT64 → BN → ReLU

→ ConvT32 → BN → ReLU

→ ConvT16 → BN → ReLU

→ Tanh1

• DCGAN Discriminator:
Conv1 → BN → LeakyReLU

→ Conv16 → BN → LeakyReLU

→ Conv32 → BN → LeakyReLU

→ Conv64 → BN → LeakyReLU

→ Conv128 → BN → LeakyReLU

→ Sigmoid1

with all (de)convolutional layers have 4 × 4 filters, a stride of 2, and a padding of 1. We use BN to
denote batch normalization and ReLU for rectified linear units and FC for fully connected layers.
We denote Convk the convolution with k filters. Leaky ReLU was used with negative slope = 0.2
everywhere.

D.2 SVHN
For SVHN we use the data as is without any preprocessing. The architectures are:

• Encoder:
x ∈ R3×32×32 → Conv64 → BN → LeakyReLU

→ Conv128 → BN → LeakyReLU

→ Conv256 → BN → LeakyReLU

→ FC100 → FC20

21

• Decoder:
z ∈ R20 → FC100 → ConvT256 → BN → ReLU

→ ConvT128 → BN → ReLU

→ ConvT64 → BN → ReLU

→ ConvT32 → BN → ReLU

→ FC1

• DCGAN Generator:
z ∈ R100 → ConvT256 → BN → ReLU

→ ConvT128 → BN → ReLU

→ ConvT64 → BN → ReLU

→ ConvT32 → BN → ReLU

→ ConvT3 → BN → ReLU

→ Tanh1

• DCGAN Discriminator:
Conv3 → BN → LeakyReLU

→ Conv32 → BN → LeakyReLU

→ Conv64 → BN → LeakyReLU

→ Conv128 → BN → LeakyReLU

→ Conv256 → BN → LeakyReLU

→ Sigmoid1

where all (de)convolutional the layers have 4 × 4 filters, a stride of 2, and a padding of 1. The rest of
the notations are the same as before.

D.3 CelebA
For CelebA we first took central crops of 140 × 140 and then resized to resolution 64 × 64. Note that
only Fig. 9 in the main text is not a result of this preprocessing. The architectures used are as follows:

• Encoder:
x ∈ R3×64×64 → Conv64 → BN → LeakyReLU

→ Conv128 → BN → LeakyReLU

→ Conv256 → BN → LeakyReLU

→ Conv512 → BN → LeakyReLU

→ FC100 → FC100

• Decoder:
z ∈ R100 → FC100 → ConvT512 → BN → ReLU

→ ConvT256 → BN → ReLU

→ ConvT128 → BN → ReLU

→ ConvT64 → BN → ReLU

→ ConvT32 → BN → ReLU

→ FC1

• DCGAN Generator:
z ∈ R100 → ConvT512 → BN → ReLU

→ ConvT256 → BN → ReLU

→ ConvT128 → BN → ReLU

→ ConvT64 → BN → ReLU

→ ConvT3 → BN → ReLU

→ Tanh1

22

• DCGAN Discriminator:
Conv3 → BN → LeakyReLU

→ Conv64 → BN → LeakyReLU

→ Conv128 → BN → LeakyReLU

→ Conv256 → BN → LeakyReLU

→ Conv512 → BN → LeakyReLU

→ Sigmoid1

where all the (de)convolutional layers have 4 × 4 filters, a stride of 2, and a padding of 1. Padding
was set to 0 only for the last convoluitional layer of the encoder and the first layer of the decoder. The
rest of the notations are the same as before.

E Code
Our code is available at the following link: https://github.com/tagas/vcae.

F Simulating Mobility Trajectories with copulas
In related work [38], we have also compared to adversarial and recurrent based methods for sampling
sequential data (artificial mobility trajectories). We evaluate the generated trajectories with respect to
their geographic and semantic similarity, circadian rhythms, long-range dependencies, training and
generation time. We also include two sample tests to assess statistical similarity between the observed
and simulated distributions, and we analyze the privacy trade-offs with respect to membership
inference and location-sequence attacks. The results show that copulas surpass all baselines in terms
of MMD score and training + simulation time. For more details please see [38].

23

https://github.com/tagas/vcae

	Introduction
	Vine copulas
	Preliminaries and motivation
	Vine copulas construction
	Sequential estimation
	Simulation
	Implementation
	Vines as generative models

	Vine copula autoencoders
	Experiments
	Experimental setup
	Results

	Conclusion
	Introduction to (vine) copulas
	Copulas
	Vines
	Estimating the pair-copulas
	Selecting the structure

	Assumptions for the consistency and asymptotic normality of the kernel bivariate copula estimator

	The VCAE algorithm
	Variations of VCAE

	Additional experiments
	Toy datasets
	Various evaluation metrics for the MNIST and CelebA dataset
	Interpolation in latent space
	The trade-off between time complexity and sample quality

	Additional details on the experiments
	MNIST
	SVHN
	CelebA

	Code
	Simulating Mobility Trajectories with copulas

