
A Omitted Proofs

Proof of Lemma 1. For ease of notation in this proof we will use k·k as shorthand for k·k✓̃. First note
that since kvk2 = vTC�1

✓̃
v, the associated dual norm is kvk2⇤ = vTC✓̃v. Next, define as shorthand

 as shorthand for ( n(f1; ✓), . . . , n(fm; ✓)). It follows from the definition of the dual norm that
k k = supkvk⇤1 v

T . Therefore we have:

k k2 = sup
kvk⇤k k

vT 

= sup
vTC✓̃vk k2

vT 

The Lagrangian of this optimization problem is given by:
L(v,�) = vT + �(vTC✓̃v � k k

2)
Taking the derivative of this with respect to v shows us that when � < 0, this quantity is maximized
by v = � 1

2�C
�1
✓̃
 . In addition we clearly have strong duality for this problem by Slater’s condition

whenever k k > 0 (since in this case v = 0 is a feasible interior point). This therefore gives us the
following dual formulation for k k2:

k k2 = inf
�<0
� 1

2�
k k2 + �(

1

4�2
k k2 � k k2)

= inf
�<0
� 1

4�
k k2 � � k k2

Taking derivative with respect to � we can see that this is minimized by setting � = � 1
2 . Given

this and strong duality, we know it must be the case that k k2 = supv L(v,� 1
2 ) = supv v

T �
1
2v

TC✓̃v +
1
2 k k

2. Rearranging terms and doing a change of variables v  2v gives us the identity:

k k2 = sup
v

vT � 1

4
vTC✓̃v

Finally, we can note that any vector v 2 Rm corresponds to some f 2 span(F), such that f =P
i vifi, and according to this notation we have vT =  n(f ; ✓) and vTC✓̃v = C✓̃(f, f). Therefore

our required result follows directly from the previous identity.

Proof of Theorem 2. Define m(✓, ⌧, ✓̃) = f(Z; ⌧)(Y�g(X; ✓)� 1
4f(Z; ⌧)2(Y�g(X; ✓̃))2, M(✓) =

sup⌧2T E[m(✓, ⌧, ✓̃)], and Mn(✓) = sup⌧2T En[m(✓, ⌧, ✓̃n)], where En refers to the empirical
measure (average over the n data points) and ✓̃n !p ✓̃. We will proceed by proving the following
three conditions, and then proving our results in terms of these conditions:

1. sup✓ |Mn(✓)�M(✓)|!p 0

2. for every � > 0 we have infd(✓,✓0)�� M(✓) > M(✓0)

3. Mn(✓̂n) Mn(✓0) + op(1)

We will proceed by proving these conditions one by one. For the first, we can derive the inequality:
sup
✓

|Mn(✓)�M(✓)|

= sup
✓

����sup
⌧

En[m(✓, ⌧, ✓̃n)]� sup
⌧

E[m(✓, ⌧, ✓̃)]

����

 sup
✓,⌧

���En[m(✓, ⌧, ✓̃n)]� E[m(✓, ⌧, ✓̃)]
���

 sup
✓,⌧

���En[m(✓, ⌧, ✓̃n)]� E[m(✓, ⌧, ✓̃n)]
���+ sup

✓,⌧

���E[m(✓, ⌧, ✓̃n)]� E[m(✓, ⌧, ✓̃)]
���

 sup
✓1,✓2,⌧

|En[m(✓1, ⌧, ✓2)]� E[m(✓1, ⌧, ✓2)]|+ sup
✓,⌧

���E[m(✓, ⌧, ✓̃n)]� E[m(✓, ⌧, ✓̃)]
���
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Next we will bound these two terms separately, which we will term B1 and B2. For the first term,
we can derive the following bound, where ✏i are iid Rademacher random variables, mi(✓, ⌧, ✓̃n) =
f(Zi; ⌧)(Yi � g(Xi; ✓)� 1

4f(Zi; ⌧)2(Yi � g(Xi; ✓̃))2, and m0
i(✓, ⌧, ✓̃

0
n) are shadow variables:

E[B1] = E
"

sup
✓1,✓2,⌧

�����
1

n

X

i

mi(✓1, ⌧, ✓2)� E[m0
i(✓1, ⌧, ✓

0
2)]

�����

#

 E
"

sup
✓1,✓2,⌧

�����
1

n

X

i

mi(✓1, ⌧, ✓2)�m0
i(✓1, ⌧, ✓

0
2)

�����

#

= E
"

sup
✓1,✓2,⌧

�����
1

n

X

i

✏i(mi(✓1, ⌧, ✓2)�m0
i(✓1, ⌧, ✓

0
2))

�����

#

 2E
"

sup
✓1,✓2,⌧

�����
1

n

X

i

✏imi(✓1, ⌧, ✓2)

�����

#

 2E
"
sup
✓,⌧

�����
1

n

X

i

✏if(Zi; ⌧)(Yi � g(Xi; ✓)

�����

#

+
1

2
E
"
sup
✓,⌧

�����
1

n

X

i

✏if(Zi; ⌧)
2(Yi � g(Xi; ✓))

2

�����

#

 E
"
sup
✓,⌧

�����
1

n

X

i

✏if(Zi; ⌧)
2

�����

#
+ E

"
sup
✓,⌧

�����
1

n

X

i

✏i(Yi � g(Xi; ✓)
2

�����

#

+
1

4
E
"
sup
✓,⌧

�����
1

n

X

i

✏if(Zi; ⌧)
4

�����

#
+

1

4
E
"
sup
✓,⌧

�����
1

n

X

i

✏i(Yi � g(Xi; ✓))
4

�����

#

Note that in the final inequality we apply the inequality xy  0.5(x2+y2). Now given Assumption 5,
the functions that map (f(Zi; ⌧) and g(Xi; ✓)) to the summands in each term are Lipschitz. Now for
any function class F and L-Lipschitz function � we have Rn(� � F)  LRn(F), where Rn(F) is
the Rademacher complexity of class F [25, Thm. 4.12]. Therefore we have

E[B1]  L(Rn(G) +Rn(F)),

for some constant L. Thus given Assumption 2 it must be case that E[B1] ! 0. Now let B0
1 be

some recalculation of B1 where we are allowed to edit the i’th X , Z, and Y values. Then given
Assumption 5 we can derive the following bounded differences inequality:

sup
X1:n,Z1:n,Y1:n,X0

i,Z
0
i,Y

0
i

|B1 �B0
1|  sup

✓1,✓2,⌧,X1:n,Z1:n,Y1:n,X0
i,Z

0
i,Y

0
i

����
1

n
(mi(✓1, ⌧, ✓2)�m0

i(✓1, ⌧, ✓2))

����

 c

n
for some constant c. Therefore from McDiarmid’s Inequality we have P (|B1 � E[B1]| � ✏) 
2 exp

⇣
� 2n✏2

c2

⌘
. Putting this and the previous result for E[B1] together we get B1 !p 0.

Next, define !n =
���(Y � g(X; ✓̃n))2 � (Y � g(X; ✓̃))2

���. Recall that from the premise of the

theorem we have ✓̃n !p ✓̃. Then by Slutsky’s Theorem, the Continuous Mapping Theorem, and
Assumption 4 we have !n = op(1). Given this we can bound B2 as follows:

B2 = sup
✓,⌧

���E[m(✓, ⌧, ✓̃n)]� E[m(✓, ⌧, ✓̃)]
���

=
1

4
sup
✓,⌧

���E[f(Z; ⌧)2(Y � g(X; ✓̃n))
2]� E[f(Z; ⌧)2(Y � g(X; ✓̃))2]

���

 1

4
sup
✓,⌧

���E[f(Z; ⌧)2(Y � g(X; ✓̃))2]� E[f(Z; ⌧)2(Y � g(X; ✓̃))2]
���+

1

4
sup
⌧

��E[f(Z; ⌧)2!n]
��

=
1

4
sup
⌧

��E[f(Z; ⌧)2!n]
��
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Now we know from Assumption 5 that f(Z; ⌧) is uniformly bounded, so it follows that B2 
b
4E[|!n|] for some constant b. Next we can note, again based on our boundedness assumption, that
!n is uniformly bounded. Therefore it follows from the Lebesgue Dominated Convergence Theorem
that E[|!n|]! 0. Thus we know that both B1 and B2 converge, so we have proven the first of the
three conditions, that sup✓ |Mn(✓)�M(✓)| converges in probability to zero.

For the second condition we will first prove that M(✓0) is the unique minimizer of M(✓). Clearly
by Assumptions 1 and 3 we have that ✓0 is the unique minimizer of sup⌧ E[f(Z; ⌧)(Y � g(X; ✓)],
since it sets this quantity to zero, and by these assumptions any other value of ✓ must have at least
one ⌧ that can be played in response that makes this expectation strictly positive. Now we can
see that M(✓0) = 0 also, since M(✓0) = sup⌧ � 1

4f(Z; ⌧)2(Y � g(X; ✓̃))2, and the inside of the
supremum is clearly non-positive but can be set to zero using the zero function for f , which is
allowed given Assumption 3. Furthermore, for any other ✓0 6= ✓0, let f 0 be some function in F
such that E[f(Z)(Y � g(X; ✓0)] > 0. If we have E[f 0(Z)2(Y � g(X; ✓̃))2] = 0 then it follows
immediately that M(✓0) > 0. Otherwise, consider the function �f 0 for arbitrary 0 < � < 1. Since by
Assumption 3 this function is also contained in F , it follows that:

M(✓0) = sup
f2F

E[f(Z)(Y � g(X; ✓0))� 1

4
f(Z)2(Y � g(X; ✓̃))2]

� �E[f 0(Z)(Y � g(X; ✓0))]� �2

4
E[f 0(Z)2(Y � g(X; ✓̃))2]

This expression is a quadratic in � that is clearly positive when � is sufficiently small, so therefore it
still follows that M(✓0) > 0.

Given this, we will prove the second condition by contradiction. If this were false, then for some
� > 0 we would have that inf✓2B(✓0,�) M(✓) = M(✓0), where B(✓0, �) = {✓ | d(✓, ✓0) � �}. This
is because from Assumption 1 we know ✓0 is the unique minimizer of M(✓). Given this there must
exist some sequence (✓1, ✓2, . . .) in B(✓0, �) satisfying M(✓n) ! M(✓0). Now by construction
B(✓0, �) is closed, and the corresponding limit parameters ✓⇤ = limn!1 ✓n 2 B(✓0, �) must satisfy
M(✓⇤) = M(✓0), since given Assumption 4 M(✓) is clearly a continuous function of ✓ so we can
swap function application and limit. However d(✓⇤, ✓0) � � > 0, so ✓⇤ 6= ✓0. This contradicts the
fact that ✓0 is the unique minimizer of M(✓), so we have proven the second condition.

Finally, for the third condition we will use the fact that by assumption ✓̂n satisfies the approximate
equilibrium condition:

sup
⌧2T

Enm(✓̂n, ⌧, ✓̃n)� op(1)  Enm(✓̂n, ⌧̂n, ✓̃n)  inf
✓
Enm(✓, ⌧̂n, ✓̃n) + op(1)

Now by definition Mn(✓̂n) = sup⌧2T Enm(✓̂n, ⌧, ✓̃n). Therefore,

inf
✓
Enm(✓, ⌧̂n, ✓̃n)  inf

✓
sup
⌧

Enm(✓, ⌧, ✓̃n) = inf
✓
Mn(✓) Mn(✓0).

Thus we have
Mn(✓̂n)� op(1)  Enm(✓̂n, ⌧̂n, ✓̃n) Mn(✓0) + op(1).

At this point we have proven all three conditions stated at the start of the proof. For the final part we
can first note that from the first and third conditions it easily follows that Mn(✓̂n) M(✓0) + op(1),
since |Mn(✓0)�M(✓0)|!p 0. Therefore we have:

M(✓̂n)�M(✓0) M(✓̂n)�Mn(✓̂n) + op(1)

 sup
✓

���M(✓̂)�Mn(✓̂)
���+ op(1)

 op(1)

Next, define ⌘(�) = infd(✓,✓0)�� M(✓) �M(✓0). Now by definition of ⌘ we know that whenever
d(✓̂n, ✓) � � we have M(✓̂n)�M(✓0) � ⌘(�). Therefore P[d(✓̂n, ✓) � �]  P[M(✓̂n)�M(✓0) �
⌘(�)]. Now since for every � > 0 we have ⌘(�) > 0 from the second condition, and we know
M(✓̂n)�M(✓0) = op(1), we have that for every � > 0 the RHS probability converges to zero. Thus
d(✓̂n, ✓0) = op(1), so we can conclude that ✓̂n !p ✓0.
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Proof of Lemma 2. We prove this lemma by redefining the parameter space ⇥ such that it satisfies
Assumptions 1 to 5, and then appealing to the proof of Theorem 2. We define the pseudo parameter
space ⇥⇤ as

⇥⇤ = {⇥0} [ {✓ 2 ⇥ : ✓ /2 ⇥0}.

In other words, we group together all elements of ⇥0 as a single element that we will refer to as ✓⇤.
Note that by definition of ⇥0 the set of functions g(·; ✓) induced by ✓ 2 ⇥0 is the same as for the
original parameter space, and that the function g(·; ✓⇤) is well-defined given Assumption 6. Next we
define the metric d0 for the new parameter space in terms of the metric of the original space d as

d0(✓1, ✓2) = min{d(✓1, ✓2), inf
✓02⇥0

d(✓1, ✓0) + inf
✓02⇥0

d(✓2, ✓0)}

Next we justify that d0 is a metric. First of all it is trivial from this definition that d0(✓, ✓) = 0 for
every ✓ 2 ⇥0, and also that non-negativity and symmetry are maintained. Finally it is easy to verify
that this definition still satisfies the triangle inequality, given that d is a metric and satisfies the triangle
inequality itself.

In order to verify that we still have continuity, consider ✓1 and ✓2 such that d0(✓1, ✓2) < ✏. In
the case that d(✓1, ✓2) = d0(✓1, ✓2), continuity follows trivially from Assumption 4. That is, it is
trivial to construct an ✏, � argument in this case. If this isn’t the case, there must exist ✓⇤1 , ✓⇤2 2
⇥0 such that d(✓1, ✓⇤1) + d(✓2, ✓⇤2) = ✏. In addition for any x we have |g(x; ✓1)� g(x; ✓2)| 
|g(x; ✓1)� g(x; ✓⇤1)|+ |g(x; ✓⇤2)� g(x; ✓2)|, given Assumption 6. Thus continuity still follows and
it is trivial to construct a formal ✏, � argument given Assumption 4.

Given that all the other assumptions only depend on the space of functions g(·; ✓) not on the parameter
space itself, they are unaffected via switching from ⇥ to ⇥⇤. Also, by construction using ⇥⇤ instead
of ⇥ means we satisfy Assumption 1. Thus we satisfy Assumptions 1 to 5, so we can appeal to
Theorem 2 to argue that d0(✓̂n � ✓⇤) ! 0 in probability. Finally it follows from the definition of
d0 that d0(✓, ✓⇤) = inf✓02⇥0 d(✓, ✓0), which gives us our final result that inf✓02⇥0 d(✓̂n, ✓0)! 0 in
probability.

B Additional Methodology Details

B.1 Hyperparameter Optimization Procedure

We provide more details here about the hyperparameter optimization procedure described in Section 4.
Let m be the total number of hyperparameter choices under consider. Then for each candidate set
of hyperparameters �i 2 {�1, . . . , �m} we run our learning algorithm for a fixed number of epochs
using �i, training it on our train partition. Every keval epochs we save the current parameters ⌧̂ and
✓̂ at that epoch. This gives, for each hyperparameter choice �i, a finite set of f functions F̂i, and a
finite set of ✓ values ⇥̂i.

Now, define the set of functions F̂ = [mi=1F̂i. We define our approximation of our variational
objective as

 ̂n(✓) =  n(✓; F̂ , ✓),

where  n is as defined in Eq. (7). Note that this means for every ✓ we wish to evaluate we choose to
approximate ✓̃ using that value of ✓.

Given this, we finally choose the set of hyperparameters �i whose corresponding trajectory of
parameter values ⇥̂i minimizes the objective function min✓2⇥̂i

 ̂n(✓), calculated on the validation
data. Note that this objective function is meant to approximate the value of the variational objective
we would have obtained if we performed learning with that set of hyperparameters using early
stopping.

Note that in practice, since we only ever calculate  ̂n on the validation data, and we only ever use
⇥i in optimizing the above objective function on the validation data, instead of saving the actual
parameter values ⌧̂ and ✓̂ we can instead save vectors f(Zval, ⌧) and g(Xval, ✓), where Zval and Xval
are the vectors of Z and X values respectively in our validation data. This makes our methodology
tractable when working with very complex deep neural networks.
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scenario g model f model g learning rates �f
low-dimensional FCNN (20, 3) FCNN (20) (5 ⇤ 10�4, 2 ⇤ 10�4, 1 ⇤ 10�3) 5.0

MNISTz FCNN (200, 200) CNN (2 ⇤ 10�5, 5 ⇤ 10�5, 1 ⇤ 10�4) 5.0
MNISTx CNN FCNN (20) (1 ⇤ 10�6, 2 ⇤ 10�6, 5 ⇤ 10�6) 1000.0
MNISTx,z CNN CNN (1 ⇤ 10�6, 2 ⇤ 10�6, 5 ⇤ 10�6) 5.0

Table 3: Hyperparameters used in our experiments.

B.2 Hyperparameter Details

We describe here the specific hyperparameter choices used in all our experiments. In all scenarios
we parametrized the f and g networks either as fully connected neural networks (FCNN) with leaky
ReLU activations with various numbers and sizes of hidden layers, or using a fixed deep convolutional
neural network (CNN) architecture designed to perform well with non-causal inference on the MNIST
data. We refer readers to our code release for exact details on our CNN construction. In addition in
all cases we performed the hyperparameter optimization procedure described above over a range of
learning rates. Specifically, in every scenario we explore a range of learning rates for g, and compute
the f learning rate as lrf = �f lrg , where �f is chosen separately for each scenario.

We summarize our choices for each scenario in Table 3. Note that we made the same hyperparameter
choices in all low-dimensional scenarios. In the case of FCNN models, we list the hidden layer sizes
in parentheses.

B.2.1 Low-dimensional Scenarios

In the low dimensional scenarios we parametrized both f and g as fully-connected neural networks,
using a single hidden layer of size 20 for f , and two hidden layers of sizes 20 and 3 for g. We
performed hyperparameter optimization over a range of learning rates, searching over the learning
rates [5 ⇤ 10�4, 2 ⇤ 10�4, 1 ⇤ 10�3] for g, and in each instance multiplying learning rate by 5 for f .

B.2.2 MNISTz Secario

In this scenario we parametrized

C One-Step GMM Using All Square Integrable Moments

We describe here the equivalence of performing one-step GMM using all square integrable functions
of the instruments, and non-causal least squares. Since we are considering an infinite collection
of moment functions we only consider the infinity norm (i.e.kvk = kvk1.) In addition, the mea-
sure we use for integration is the empirical measure. That is, we use all instruments f such thatPn

i=1 f(Zi)2 = 1. Letting B1 denote this set, En denote expectation with respect to the empricial
measure, and otherwise using the same notation as in Section 2.1, we obtain:

k n(fi; ✓), . . . k2 = sup
f2B1

En[f(Z)(Y � g(X; ✓))]2

= sup
f2B1

En[f(Z)En[Y � g(X; ✓) | Z]]2

=

✓
En[En[Y � g(X; ✓) | Z]2]

En[En[Y � g(X; ✓) | Z]2]1/2

◆2

= En[En[Y � g(X; ✓) | Z]2]

= En[(Y � g(X; ✓))2],

where the third line follows because f takes it supremum at f(Z) = En[Y �g(X; ✓) | Z] by Cauchy-
Schwarz, and the final line follows under the additional assumption that Z is a continuous random
variable, which implies that Y � g(Z; ✓) has zero conditional variance under the empirical measure
given any Zi. Thus we observe that using the infinity norm and under the additional assumption
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that Z is continuous, one-step GMM using these moment functions is equivalent to non-causal least
squares, since they both involve picking ✓ to minimize the same loss function.
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