
A Supplementary material: missing proofs306

A.1 Proof of Lemma 5307

Proof. From the Davis-Kahan sin Θ theorem, ��Π − Π�2 ≤ 2�E�2/Δk therefore ��Π − Π�F ≤308

2
√
k�E�2/Δk. This implies that �Π = Π + E�, where E� ∈ Rd×d and �E��F ≤ 2

√
k�E�2/Δk.309

Then310

�Ak −Ak = �Π(A+ E)−Ak

= (Π+ E�)(A+ E)−Ak

= ΠE + E�A+ E�E

Third equation is from the fact that ΠA = Ak. Thus the H in the statement can be set to E�A+E�E.311

Let us bound its norm. We have �E�A�F ≤ �E��F �A�2 = λ1�E��F .3 The next term can similarly312

be bounded by �E��F �E�2. Combining these implies the claim.313

A.2 Proof of Lemma 7314

Proof. The proof requires relating Ak, because it is easier to obtain a bound on
���� �Ak −Ak�F

���
ψ1

.315

Let us write �Ak −A∗ as ( �Ak −Ak) + (Ak −A∗). As in the proof of Lemma 5,316

� �Ak −Ak�F = ��Π(A+ E)−ΠA�F
≤ �(�Π−Π)A�F + ��ΠE�F

≤ ��Π−Π�Fλ1 +
√
k�E�2 ≤ 2

√
kλ1�E�2
Δk

+
√
k�E�2 ≤ 3

√
kλ1�E�2
Δk

.

Now for the second term, using triangle inequality,317

�A∗ −Ak�F = �E[ �Ak −Ak]�F ≤ E[� �Ak −Ak�F ]

≤
���� �Ak −Ak�F

���
ψ1

≤
3
√
kλ1

����E�2
���
ψ1

Δk
.

Thus we have318

���� �Ak −A∗�F
���
ψ1

≤
���� �Ak −Ak�F

���
ψ1

+ �A∗ −Ak�F ≤
6
√
kλ1

����E�2
���
ψ1

Δk
.

Using Lemma 3 from [6] now completes the proof.319

A.3 Proof of Theorem 8320

Proof.

� �Ak −A∗�F = � 1

m

m�

i=1

Â
(i)
k −A∗�F

�A(i)
k −A∗ ∈ Rd×d. Let us define Yi as a Rd2

vector which is equal to the flattened �A(i)
k −A∗ matrix.321

Now � 1
m

�m
i=1 Yi� = � 1

m

�m
i=1

�A(i)
k −A∗�F . E[Yi] = 0 and

����Yi�
���
ψ1

≤ C1
λ1

Δk

�
kλ1Tr(A)

n for a322

constant C1. Using Lemma 4 in [6] (which is a consequence of Theorem 2.5 of [3]), for a constant323

3For any matrices X,Y , �XY �F ≤ �X�F �Y �2. (This is easy to show, by observing how Y acts on the
rows of X .)
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C2324

���� 1

m

m�

i=1

Yi�
���
ψ1

=
����

m�

i=1

Yi

m
�
���
ψ1

≤

����
m�

i=1

1

m2
C2

1

λ2
1

Δ2
k

· kλ1Tr(A)

n

≤ C2
λ1

Δk

�
kλ1Tr(A)

mn

This completes the proof.325

A.4 Proof of Theorem 9326

Proof. Let us define �Bk = 1
m

�
i∈[m]

�A(i) − �A(i)
k . By definition, �Bk = �A− �Ak, where �A is simply327

1
m

�
i∈[m]

�A(i). We start by showing some basic properties about �A, �Ak and �Bk.328

First, note that �A is the empirical average (over m machines) of �A(i), and each such matrix is the329

empirical average (over n) samples of xxT . Since samples across and within machines are all i.i.d.,330

the difference A− �A is simply the error in the estimate of A using mn i.i.d. samples x ∼ D. Thus,331

using Lemma 3 of [6], we have332

����A− �A�2
���
ψ1

≤ C

�
λ1Tr(A)

mn
. (5)

From Theorem 1, we have that for any δ > 0, with probability at least 1− δ,333

�Ak − �Ak�F ≤
�
κ1

n
+

κ2√
mn

�
log(1/δ). (6)

Let Π denote the projection matrix onto the span of the top k SVD directions of A, and Π⊥ = I −Π.334

We will also denote κ = κ1

n + κ2√
mn

, for convenience.335

Next, we claim that �Π �Bk� is O(κ log(1/δ)) with high probability. To see this, write �Bk = �A− �Ak =336

(A− Ak) + (Ak − �Ak)− (A− �A). Now, Π(A− Ak) = 0, by definition. Thus, using (6) and (5),337

the claim follows.338

Note that our goal is not to reason about the eigenvalues of �Ak, but the eigenvalues of �At, where339

t ≥ k. To this end, we define B� = 1
m

�
i∈[m]

�
�A(i)
t − �A(i)

k

�
. By definition, we have B� = �At− �Ak.340

Now, let us relate B� and �Bk. Note that for any machine, �A(i)
t − �A(i)

k � �A(i) − �A(i)
k , by definition.341

Thus by taking averages, we have that B� � �Bk.342

We will now argue that with probability ≥ 1− δ,343

B� = Π⊥B�Π⊥ + E, where �E� ≤ O(κ) log(1/δ). (7)

To see this, let us expand the first term on the RHS using Π⊥ = (I −Π):344

Π⊥B�Π⊥ = B� −B�Π−ΠB� +ΠB�Π.

Now, since B� � �Bk, we have �B�Π� ≤ � �BkΠ� ≤ O(κ) log(1/δ), by the earlier claim. Thus the345

last three terms are all bounded in norm by O(κ) log(1/δ), and hence we have the desired bound on346

�E�.347

Putting (6) and (7) together, we have that with probability at least 1− δ,348

�At = �Ak +B� = Ak +Π⊥B�Π⊥ + E�, where �E�� ≤ O(κ) log(1/δ).

Now, because Ak and Π⊥B�Π⊥ are in orthogonal spaces, the eigenvalues of Ak + Π⊥B�Π⊥ are349

precisely the union of the eigenvalues of the two matrices. The eigenvalues of Ak are simply350
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λ1, . . . ,λk. We claim that λmax(B
�) ≤ λk+1 + O(κ) log(1/δ), with probability at least (1 − δ).351

This can be shown as follows. First, since B� � �Bk, it suffices to bound λmax( �Bk). Since �Bk =352

(A−Ak) + (Ak − �Ak)− (A− �A), using (5) and (6), it follows that with probability at least 1− δ,353

λmax( �Bk) ≤ λmax(A−Ak) +O(κ log(1/δ)) = λk+1 +O(κ log(1/δ)).

Thus, due to the gap between λk and λk+1, the top k eigenvalues of Ak + Π⊥B�Π⊥ are exactly354

λ1, . . . ,λk. Thus by Weyl’s inequality, the eigenvalues of �At satisfy (3). This completes the355

proof.356
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