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1.1 Proof of the Optimality Condition for qθ2

In pLogicNet, we use a mean-field variational distribution qθ(vH) to approximate the true posterior3

distribution pw(vH |vO). In this section, we prove that the optimal variational distribution is given by4

the following fixed-point condition:5

qθ(vH) =
∏

(h,r,t)∈H

qθ(v(h,r,t)) =
∏

(h,r,t)∈H

Ber(v(h,r,t)|f(xh,xr,xt)), (1)

To prove the claim, recall that our goal for qθ is to minimize the KL divergence between qθ(vH)6

and pw(vH |vO). If we consider each individual indicator variable v(h,r,t), the objective function for7

qθ(v(h,r,t)) is given as follows:8

O(qθ(v(h,r,t))) = −KL(qθ(vH)||pw(vH |vO)) =
∑
vH

qθ(vH)[log pw(vH |vO)− log qθ(vH)]

=
∑
vH

∏
(h′,r′,t′)∈H

qθ(v(h′,r′,t′))

log pw(vH ,vO)− ∑
(h′,r′,t′)∈H

log qθ(v(h′,r′,t′))

+ const

=
∑

v(h,r,t)

∑
vH\(h,r,t)

qθ(v(h,r,t))
∏

(h′,r′,t′) 6=(h,r,t)

qθ(v(h′,r′,t′))

log pw(vH ,vO)− ∑
(h′,r′,t′)∈H

log qθ(v(h′,r′,t′))

+ const

=
∑

v(h,r,t)

qθ(v(h,r,t))
∑

vH\(h,r,t)

∏
(h′,r′,t′) 6=(h,r,t)

qθ(v(h′,r′,t′)) log pw(vH ,vO)−

∑
v(h,r,t)

qθ(v(h,r,t))
∑

vH\(h,r,t)

∏
(h′,r′,t′) 6=(h,r,t)

qθ(v(h′,r′,t′))

 ∑
(h′,r′,t′)6=(h,r,t)

log qθ(v(h′,r′,t′)) + log qθ(v(h,r,t))

+ const

=
∑

v(h,r,t)

qθ(v(h,r,t)) logF (v(h,r,t))−
∑

v(h,r,t)

qθ(v(h,r,t)) log qθ(v(h,r,t)) + const

=− KL
(
qθ(v(h,r,t))||

F (v(h,r,t))

Z

)
+ const.

(2)
Here, Z is a normalization term, which makes F (v(h,r,t)) a valid distribution on v(h,r,t), and we9

have10

logF (v(h,r,t)) =
∑

vH\(h,r,t)

∏
(h′,r′,t′)6=(h,r,t)

qθ(v(h′,r′,t′)) log pw(vH ,vO) = Eqθ(vH\(h,r,t))[log pw(vH ,vO)].

Based on the Eq.(2), the optimal qθ(v(h,r,t)) is achieved when it equals to F (v(h,r,t))

Z , and thus we11

have:12

log qθ(v(h,r,t)) = logF (v(h,r,t)) + const = Eqθ(vH\(h,r,t))[log pw(vH ,vO)] + const

= Eqθ(vH\(h,r,t))

[
log pw(v(h,r,t)|vO∪H\(h,r,t)

]
+ const

= Eqθ(vH\(h,r,t))

[
log pw(v(h,r,t)|vMB(h,r,t))

]
+ const

= Eqθ(vMB(h,r,t)∩H)

[
log pw(v(h,r,t)|vMB(h,r,t))

]
+ const.

Here, pw(v(h,r,t)|vO∪H\(h,r,t)) = pφ(v(h,r,t)|vMB(h,r,t)) is derived from the conditional indepen-13

dence property of Markov networks.14

1.2 Derivative w.r.t. w in the M Step15

In pLogicNet, we optimize w through the gradient descent algorithm. For each expected conditional16

distribution Eqθ(vH)[p(v(h,r,t)|vMB(h,r,t))], suppose that v(h,r,t) connects with vMB(ijk) through a17
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set of rules. Then for each of such rules l, the derivative with respect to wl is computed as:18

OwlEqθ(vH)[log p(v(h,r,t)|vMB(h,r,t))] '
{

1− pw(v(h,r,t) = 1|v̂MB(h,r,t)) if (h, r, t) ∈ O,
qθ(v(h,r,t) = 1)− pw(v(h,r,t) = 1|v̂MB(h,r,t)) if (h, r, t) ∈ H,

where v̂MB(h,r,t) = {v̂(h′,r′,t′)}(h′,r′,t′)∈MB(h,r,t) is a sample from qθ. For each (h′, r′, t′) ∈19

MB(h, r, t), v̂(h′,r′,t′) = 1 if (h′, r′, t′) is observed, and otherwise v̂(h′,r′,t′) ∼ qθ(v(h′,r′,t′)).20

Next, we prove the above claim. Specifically, we consider a logic rule l connecting v(h,r,t) with21

vMB(h,r,t), then we discuss two cases, i.e., (h, r, t) ∈ O and (h, r, t) ∈ H .22

Case 1: (h, r, t) is an observed triplet.23

Since (h, r, t) ∈ O, we have Eqθ(vH)[log p(v(h,r,t)|vMB((h,r,t)))] ' log p(v(h,r,t) = 1|v̂MB((h,r,t))),24

where v̂MB(h,r,t) is defined in the above paragraphs, and p(v(h,r,t) = 1|v̂MB(h,r,t)) is computed as:25

p(v(h,r,t) = 1|v̂MB(h,r,t)) =
p(v(h,r,t) = 1, v̂MB(h,r,t))

p(v(h,r,t) = 1, v̂MB(h,r,t)) + p(v(h,r,t) = 0, v̂MB(h,r,t))

=
exp(wl + b)

exp(wl + b) + 1
= σ(wl + b).

(3)

Here, b is a term which does not depend on wl, and σ is the sigmoid function, i.e., σ(x) = 1
1+exp(−x) .26

Based on that, the derivative with respect to wl is computed as:27

OwlEqθ(vH)[log p(v(h,r,t)|vMB(h,r,t))] ' Owl log p(v(h,r,t) = 1|v̂MB(h,r,t)) = Owl log σ(wl + b)

=
Owlσ(wl + b)

σ(wl + b)
=
σ(wl + b)(1− σ(wl + b))

σ(wl + b)
= 1− σ(wl + b) = 1− p(v(h,r,t) = 1|v̂MB(h,r,t)).

(4)

Case 2: (h, r, t) is a hidden triplet.28

Since (h, r, t) ∈ H , we have Eqθ(vH)[log p(v(h,r,t)|vMB(h,r,t))] '29

Eqθ(v(h,r,t))[log p(v(h,r,t)|v̂MB(h,r,t))], where v̂MB(h,r,t) is defined in the above paragraphs,30

and p(v(h,r,t) = 1|v̂MB(h,r,t)) is computed as:31

p(v(h,r,t) = 1|v̂MB(h,r,t)) =
p(v(h,r,t) = 1, v̂MB(h,r,t))

p(v(h,r,t) = 1, v̂MB(h,r,t)) + p(v(h,r,t) = 0, v̂MB(h,r,t))

=
exp(wl + b)

exp(wl + b) + 1
= σ(wl + b).

(5)

Here, b is a term which does not depend on wl, and σ is the sigmoid function, i.e., σ(x) = 1
1+exp(−x) .32

Based on that, the derivative with respect to wl is computed as:33

OwlEqθ(vH)[log p(v(h,r,t)|vMB(h,r,t))] ' OwlEqθ(v(h,r,t))[log p(v(h,r,t)|v̂MB(h,r,t))]

= Owl [qθ(v(h,r,t) = 1) log p(v(h,r,t) = 1|v̂MB(h,r,t)) + qθ(v(h,r,t) = 0) log p(v(h,r,t) = 0|v̂MB(h,r,t))]

= Owl [qθ(v(h,r,t) = 1) log σ(wl + b) + qθ(v(h,r,t) = 0) log(1− σ(wl + b))]

= qθ(v(h,r,t) = 1)
σ(wl + b)(1− σ(wl + b))

σ(wl + b)
− qθ(v(h,r,t) = 0)

σ(wl + b)(1− σ(wl + b))

1− σ(wl + b)

= qθ(v(h,r,t) = 1)− qθ(v(h,r,t) = 1)σ(wl + b)− qθ(v(h,r,t) = 0)σ(wl + b) = qθ(v(h,r,t) = 1)− σ(wl + b)

= qθ(v(h,r,t) = 1)− pw(v(h,r,t) = 1|v̂MB(h,r,t)).
(6)

1.3 Statistics of the Datasets34

The statistics of the four datasets are presented in Tab. 1.35
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Table 1: Dataset statistics.

Dataset # Entities # Relations # Training # Validation # Test
FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 2: The best hyperparameter setting of pLogicNet on several benchmarks.

Dataset Embedding Dimension Batch Size # Negative Samples α γ Learning Rate
FB15k 1000 2048 128 1.0 24 0.0001
WN18 500 512 1024 0.5 12 0.0001

FB15k-237 1000 1024 256 1.0 9 0.00005
WN18RR 500 512 1024 0.5 6 0.00005

1.4 Hyperparameters36

In pLogicNet, we parameterize the variational distribution qθ as a TransE model [1], and we use the37

method as used in [3] for training the model. More specifically, we define qθ(v(h,r,t)) by using a38

distance-based formulation, i.e., qθ(v(h,r,t) = 1) = σ(γ − ||xh + xr − xt||), where σ is the sigmoid39

function and γ is a hyperparameter, which is fixed during training. We generate negative samples40

by using self-adversarial negative sampling [3], and use Adam [2] as the optimizer. The detailed41

parameter settings can be found in Tab. 2.42
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