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Abstract

We present an approach to learn SAT solver heuristics from scratch through deep
reinforcement learning with a curriculum. In particular, we incorporate a graph
neural network in a stochastic local search algorithm to act as the variable selection
heuristic. We consider Boolean satisfiability problems from different classes and
learn specialized heuristics for each class. Although we do not aim to compete
with the state-of-the-art SAT solvers in run time, we demonstrate that the learned
heuristics allow us to find satisfying assignments in fewer steps compared to a
generic heuristic, and we provide analysis of our results through experiments.

1 Introduction

Recently there has been a surge of interest in applying machine learning to combinatorial optimiza-
tion [7, 24, 32, 27, 9]. The problems of interest are often NP-complete and traditional methods
efficient in practice usually rely on heuristics or produce approximate solutions. These heuristics
are commonly manually-designed, requiring significant insight into the problem. Similar to the way
that the recent developments in deep learning have transformed research in computer vision [28] and
artificial intelligence [43] by moving from engineered methods to ones that are learned from data and
experience, the expectation is that it will lead to advancements in search and optimization algorithms
as well. Interest in this line of work has been fueled by the developments in neural networks that
operate on graphs [5] since many combinatorial problems can be naturally represented using graphs.

A problem that is becoming a popular target for machine learning is satisfiability [11]. Boolean
satisfiability (abbreviated SAT) is the decision problem of determining whether there exists a satisfying
assignment for a given Boolean formula. The task of finding such assignments if they exist or proving
unsatisfiability otherwise is referred to as SAT solving. SAT is the canonical NP-complete problem
[13]. It is heavily researched, and there exist efficient heuristic algorithms that can solve problems
involving millions of variables and clauses. In addition to its fundamental place in complexity theory,
SAT is practically relevant, and there is a plethora of problems arising from artificial intelligence,
circuit design, planning, and automated theorem proving that can be reduced to SAT [37].

Assuming we are given instances from a known class of SAT problems, it is an interesting question
whether we can discover a heuristic from scratch specialized to that class which improves upon a
generic one. While handcrafting such heuristics for every single class is not feasible, an alternative is
to sample problems from a class and learn a heuristic by training to solve the problems. In practice,
we are often interested in solving similar problems coming from the same distribution, which makes
this setting worth studying. In this paper we focus on stochastic local search (SLS) and propose a
learnable algorithm with a variable selection heuristic computed by a graph neural network. Through
reinforcement learning, we train from scratch a suite of solvers with heuristics specialized to different
classes, and demonstrate that this approach can lead to algorithms that require fewer, although costlier,
steps to arrive at a solution compared to a generic heuristic.
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2 Related work

Lately, neural networks have seen an increased interest in applications to SAT solving. Selsam et al.
[42] propose an approach where a graph neural network (called NeuroSAT) is trained to classify SAT
problems as satisfiable or unsatisfiable. They provide evidence that as a result of training to predict
satisfiability on their specifically crafted dataset, a local search algorithm is synthesized, through
which they can often decode the satisfying assignments. In their work, the graph neural network
itself acts as a learnable solver while we use it as a relatively cheap heuristic in an explicitly specified
search algorithm. It is unclear whether their approach can be applied to learning distribution-specific
algorithms as it is hypothesized to be crucial that NeuroSAT be trained on “patternless” problems,
hence the reason for our approach. In a more recent work, Selsam and Bjgrner [41] also use a
simplified NeuroSAT to guide the search process of an existing solver. Another similar approach
is that of Lederman et al. [31], where they attempt to learn improved heuristics to solve quantified
Boolean formulas through reinforcement learning while using a heuristic computed by a graph neural
network. A critical difference of our work from theirs is that we have a minimal set of features
(one-hot encodings of the assignments) just enough to obtain a lossless encoding of the solver state
while they make use of a large set of handcrafted features. On another front, Amizadeh et al. [1] use a
graph neural network and a training procedure mimicking reinforcement learning to directly produce
solutions to the Circuit-SAT problem.

SAT solving community has also experimented with more practical applications of machine learning
to SAT, possibly the most successful example being SATzilla [48]. Closest to our approach are the
works of Fukunaga [18, 19], KhudaBukhsh et al. [25], [lletskova et al. [22]. Briefly summarized, they
evolve heuristics through genetic algorithms by combining existing primitives, with the latter two
aiming to specialize the created heuristics to particular problem classes. We adopt a similar approach,
with the crucial difference that our approach involves learning heuristics from experience as opposed
to combining designed ones. There have also been other approaches utilizing reinforcement learning
to discover variable selection heuristics [33, 34, 35, 29, 17], although they focus mostly on crafting
reward functions. We turn our attention to learning with little prior knowledge, and use a terminal
reward which is nonzero only when a satisfying assignment is found.

3 Background

3.1 Boolean formulas

We limit our attention to Boolean formulas in conjunctive normal form (CNF), which consist of the
following components: a list of n Boolean variables (x1, . .., x, ), and a list of m clauses (¢1, . .., ¢
where each clause c; is a disjunction (V) of literals (a literal refers to different polarities of a Boolean
variable: x; and —z;). The CNF formula is the conjunction (A) of all clauses. Throughout the paper,
¢ :{0,1}" — {0, 1} refers to a Boolean formula, X € {0, 1}" to a particular truth assignment to the
list of variables (1, ..., zy), and ¢(X) is simply the truth value of the Boolean formula evaluated at
assignment X . Also, n and m always refer to the number of variables and clauses, respectively.

3.2 Local search Algorithm 1 Local search for SAT
SAT solvers based on stochastic local search Input: Boolean formula ¢, maximum number of
start with a random initial candidate solution and trials X', maximum number of flips L

for: < 1to K do

iteratively refine it by moving to neighboring so-
X < Initialize(¢)

1:
lutions until arriving at a satisfying assignment. ~ 2
Neighboring solutions differ by the assignment 3 for j <— 1to L do
of a single variable, that is, the assigned value 4 if 9(X) = 1 then
of a variable is flipped between solutions. Al- 5: return X
gorithm 1 shows the pseudocode for a generic S else

8

stochastic local search algorithm for SAT. index < SelectVariable(¢, X)
o i : X < Flip(X, index)
As an example heuristic, the SelectVariable 0- end if

function of WalkSAT [39] first randomly selects . end for

a clause unsatisfied by the current assignment  |{. end for

and flips the variable within that clause which, . return unsolved
when flipped, would result in the fewest number




of previously satisfied clauses becoming unsatisfied, or with some probability (referred to as walk
probability) it selects a variable randomly within the clause.

Our algorithm fits into the same template, with the difference being that the function SelectVariable
employs a graph neural network to select a variable. Unlike WalkSAT we do not limit the selection to
the variables in unsatisfied clauses, so it is possible to pick a variable that occurs only in currently
satisfied clauses. However, similar to WalkSAT, with some probability we also randomly select a
variable from a randomly selected unsatisfied clause.

3.3 Graph neural networks

Graph neural networks (GNNG5) are a family of neural network architectures that operate on graphs
with their computation structured accordingly [21, 38, 20, 5]. In order to explain our specific
architecture in Section 4 more easily, here we describe a formalism for GNNs similar to the message-
passing framework of Gilmer et al. [20].

Assume we have an undirected graph G = (V, E) where V is the set of vertices (nodes) and
E C V x V is the set of edges. Further suppose that for each node v € V' we have a row vector
hd e RV of node features (possibly derived from node labels) with some dimension dY,. Similarly,
for an edge vw € E between two nodes v, w € V we have a row vector h,,, € R9E of edge features
with some dimension dg. A GNN maps each node to a vector space embedding by iteratively
updating the representation of the node based on its neighbors. In this formalism we do not extract
edge features. At each iterationt € {1,...,T'}, for each v € V we update its previous representation

ht=1to hi € RV as

Wh=U' [ R > M (R R huw) |
weN (v)

where N (v) denotes the set of neighbors of node v. Message functions M* and update functions U*
are differentiable functions whose parameters are learned. After 7 iterations, we obtain the extracted
features h for each node v in the graph.

For a compact notation, define the stacked node features H{, € RIVI*9v such that HY, (i, ) = hy

where V(i) is the i-th node in the graph under some indexing. Similarly define Hg € RIZIXdz (o be
the stacked edge features. Then a GNN with 7' iterations computes H ‘; = fo (H 9,, Hg, G) where
fo is a function parameterized by 6 that encodes each node of the graph G as a real-valued vector.

4 Model

In this section we first describe the graphical representation for CNF formulas, then explain the exact
input of the model, and finally define the architecture of the graph neural network that we use.

4.1 Factor graph of CNF formulas

We opt for a factor graph representation of CNF formulas.
With this representation we obtain an undirected bipartite graph
with two node types (variable and clause) and two edge types
(positive and negative polarities). For each variable in the
formula we have a node and for each clause we have a node of
a different type. Between a clause and each variable that occurs
in it there is an edge whose type depends on the polarity of the Figure 1: Factor graph of the for-
variable in the clause. mula (z1 V z3) A (22 V —x3) A
(mx1 Vas) A(—z Voz) Az V
—z3). Solid and dashed edges cor-
respond respectively to positive and
negative polarities of variables in
clauses.

Note that unlike the graphical representation employed by Sel-
sam et al. [42] and Lederman et al. [31], each variable (as
opposed to a literal) has a corresponding node, which results in
a slightly more compact mapping of a CNF formula to a graph.
Figure 1 displays the factor graph of a simple CNF formula.



4.2 Input representation

For variable selection, we use a GNN that takes as input a formula ¢ with an assignment X to its
variables and outputs a vector of probabilities corresponding to variables (described further in the
next section). The actual input to the model consists of the adjacency information of the factor graph
and node features. Edge features are apparent from the adjacency matrices and do not act as explicit
inputs to the model.

Since the factor graph of a CNF formula is bipartite and there are edges of two different types, we
store a pair of n x m biadjacency matrices A = (A1, A_) such that A, (i,5) = 1{x; € ¢;} and
A,(Z,j) = 1{"%1 € Cj}.

As node features we use one-hot vectors. When variable assignments are taken into account, there are
three node types: variable assigned True, variable assigned False, and clause. More concretely, node
features are stored as a pair H’ = (H?, H?) of stacked variable features H) € R™*3 and clause
features H? € R™*3, As aresult, the pair (A, HY) is all that is needed to perform local search on a
formula using the GNN variable selection heuristic.

For a single run of the local search algorithm, H? is set at first to reflect a random initial assignment
to variables and at each search iteration the row corresponding to the variable selected by the heuristic
is modified to flip its assignment.

4.3 Policy network architecture

In Section 3.3 we explained the abstract GNN architecture. The specific GNN that we implement,
which we call the policy network along with the output layer, can be described as an instance of this
architecture. In particular, it has four different message functions, one for each combination of nodes
(variable, clause) and edges (positive, negative), and two different update functions for variables
and clauses. The policy network runs for 7" iterations, and as its components we have the following
learnable functions, with dependence on parameters omitted for brevity, where ¢t € {1,...,T}:

o M!, :R¥-1 — R% and M!_ :R%-1 — R% compute the incoming messages to each
variable from clauses they positively and negatively occur in.

o M!, :R¥1 — R%and M!_ :R%-* — R% compute the incoming messages to each
clause from variables that occur positively and negatively in them.

o Ul :R¥-1 x R* — R% and U! : R4t x R% — R% update the representations of
variables and clauses based on their previous representation and the sum of the incoming
messages.

e 7 : R — R produces a score given the extracted node features of a variable.

In the actual implementation we have d; = d for ¢ > 0, that is, the same at each iteration, and dy = 3
for input features. With a slight abuse of notation we will assume that we can apply the functions
above to matrices, in which context they mean row-wise application. Having described the individual
components, let f* be the function, with dependence on parameters omitted again, that computes the
node representations of a graph with adjacency A at iteration t. We can write f* compactly as

ft((Hqt)_la Hé_l)) = (Hqiv HD

_ M, (H! o [AL] T [, (Y
- (Us (aas acy [V ) ooe (e 2] ) )
For the same graph, the policy network computes a probability vector p € R™ over variables as
HT _ (fTofol O~--Of1) (HO)
p = softmax (Z(H/))

where softmax(y) = exp(y)/ > exp(y;). In order to refer to the above computation concisely we
define the function 7y computed by the policy network as p = 7y (¢, X ) where we assume H” will
be obtained from the initial assignment X, and A will be obtained from the formula ¢. As before, 6
is the list of all neural network parameters. In our implementation, all of M}, M!_, M}, M!_,
Ut, Ut, Z are multilayer perceptrons (MLP). Also, we use 7' = 2 which is the minimum number of
iterations to allow messages to travel between variables that occur together in a clause. Remaining
hyperparameters are described in Appendix A.



(d) Graph coloring (e) Dominating set

Figure 2: Examples of factor graphs exhibiting distinct structures, each corresponding to problems
sampled from different distributions. Structures of the graphs corresponding to formulas have been
studied in the SAT solving community as a way to explain the effectiveness of CDCL [6] on industrial
problems [2]. With a similar intuition, our aim is to learn heuristics that can exploit the structure.

5 Data

As our goal is to learn specialized heuristics for different classes of satisfiability problems, we
generate problems from various distributions to train on. There are five problem classes we perform
experiments with: random 3-SAT, clique detection, vertex cover, graph coloring, dominating set.
Table | presents the notation for the problem classes that we consider.

Random 3-SAT' is of theoretical interest in computa-
Table 1: As before, n and m refer 0 (jonal complexity and also serves as a common bench-
the number of variables and clauses. For a1k for SLS-based SAT algorithms. The latter four are
graph problems N refers to the number  Np_complete graph problems. For each of these problems
of vertices in the graph and p to the prob- e sample Erdés—Rényi graphs [16] from the distribution
ability that an edge exists. k refers to the  jepoed as @ (N, p) to mean that it has N > 0 vertices
problem specific size parameter. From ;4 petween any two vertices an edge exists independently
each distribution [ on the table we can yith probability p € [0, 1]. Then we encode them as SAT
sample a CNF formula ¢ ~ D. problems. As a result we obtain five parameterized ran-
dom distributions that we can sample formulas from. For

Class Distribution training and evaluation we generate problems of various
Random 3-SAT  randz(n,m) sizes (made explicit later) from these five families of dis-
k-clique clique, (N, p) tributions. It is worth noting that the generated problem
k-cover covery (N, p) instances are not particularly difficult for state-of-the-art
k-coloring colorg (N, p) SAT solvers, and for our purpose they serve as simple
k-domset domsety (N, p) benchmarks to help demonstrate the feasibility of a purely

learning-based approach.

In creating problem instances we use CNFgen [30] to generate formulas and Minisat [15] to filter out
the unsatisfiable ones. Since our local search algorithm is an incomplete solver it can only find an
assignment if one exists and otherwise returns unsolved.

6 Training

6.1 Markov decision process formulation

To learn heuristics through reinforcement learning [44], we formalize local search for SAT as a
Markov decision process (MDP). For each problem distribution D shown on Table 1 we have a
separate MDP represented as a tuple (Sp, A, T, R, ) with the following components:

e Sp is the set of possible states. Each state is characterized by a pair s = (¢, X ), the CNF
formula and a truth assignment to its variables. At the start of an episode we sample a
formula ¢ ~ D with n variables and m clauses, and a uniformly random initial assignment

"For random 3-SAT, experimental research [40, 14] indicates that formulas with a ratio of the number of
clauses to the number of variables approximately 4.26 and a large enough number of variables are near the
satisfiability threshold, that is, the probability of a sampled formula being satisfiable is near 1/2. We focus on
random 3-SAT problems near the threshold.



X € {0,1}™ where each element is either 0 or 1 with probability 1/2. The episode
terminates either when we arrive at a satisfying assignment or after L (a predetermined
constant) steps are taken.

o A is formally a function that maps states to available actions. For a state s = (¢, X) we
have A(s) = {1,...,n} where n is the number of variables in ¢.

e 7:8p x{l,...,n} — Sp is the transition function, mapping from a state-action pair to
the next state. It is defined as 7 (s,a) = T ((¢, X),a) = (¢, Flip(X, a)) where Flip simply
negates the assignment of the variable indexed by a € {1,...,n}.

e R :Sp — {0,1} is the reward function, defined as R(s) = R((¢, X)) = ¢(X), thatis, 1
for a satisfying assignment and O otherwise.

e v € (0,1] is the discount factor, which we set to a constant strictly less than 1 in order to
encourage finding solutions in fewer steps.

With the MDP defined as above, the problem of learning a good heuristic is equivalent to finding
an optimal policy m which maximizes the expected accumulated reward obtained when starting at a
random initial state and sampling a trajectory by taking actions according to 7. In trying to find an
optimal policy, we use the REINFORCE algorithm [47]. As our policy we have a function py(¢, X)
which returns an action (variable index) a ~ 7y (¢, X') where 7y is the policy network we described in
Section 4.3. With probability 1/2, py returns a randomly selected variable from a randomly selected
unsatisfied clause.

When training to learn a heuristic for a problem distribution D, at each training iteration we sample a
formula ¢ ~ D and generate multiple trajectories for the same formula with several different initial
assignments X. Then we accumulate the policy gradient estimates from all trajectories and perform a
single update to the parameters. Algorithm 2 in Appendix B shows the pseudocode for training.

6.2 Curriculum learning

In our MDP formulation, a positive reward is achieved only when an episode ends at a state corre-
sponding to a satisfying assignment. This means that to have non-zero policy gradient estimates, a
solution to the SAT problem has to be found. For difficult problems, we are unlikely to arrive at a
solution by taking uniformly random actions half the time, which is what happens at the beginning of
training with a policy network that has randomly initialized parameters. This may not prevent learning,
but makes it prohibitively slow. In order to solve this problem, we opt for curriculum learning [8].
With curriculum learning, training is performed on a sequence of problems of increasing difficulty.
The intuition is that the policy learned for easier problems should at least partially generalize to more
difficult problems, and that this should lead to faster improvement compared to training directly on
the difficult problem of interest. Specifically, we follow an approach where we run the training loop
in sequence for distributions of increasing size within the same problem class.

As an example, assuming our goal is to learn heuristics for rands(25, 106), we begin by training to
solve rands (5, 21) for which a positive reward is obtained often enough to yield a quick improvement
in the policy. This improvement translates to larger problems, and we continue training the same
policy network to solve randsz (10, 43) for which it becomes easier to quickly find a solution compared
to starting from scratch. More specifically, at the ith curriculum step we train on a small distribution
D, for a fixed number of steps while evaluating on a slightly larger distribution D;_;. For the next
step, we train on D, ; beginning with the model parameters from before that took the lowest median
number of steps during evaluation on D, ;. In this manner we keep stepping up to larger problems
and finally we train on the distribution of the desired size.

7 Experiments

Evaluation As a baseline we have the SLS algorithm WalkSAT as described by Selman et al.
[39]. Note that although there have been improvements over WalkSAT in the last three decades, we
selected it due to its simplicity and its foundational role in the development of the state-of-the-art
SAT solvers that use SLS [3, 10]. That being said, competing with the state-of-the-art SAT solvers in
run time is not our primary goal as the scalability of the heuristic computed by the GNN is currently
bound to be lacking, which we expect will be alleviated by the ongoing rapid advancements in



Table 2: Performance of the learned heuristics and WalkSAT. In the first column, n and m on the
second line of each cell refers to the maximum number of variables and clauses in the sampled
formulas. For graph problems, the size of the graph G(V,p) and the size of the factor graph
corresponding to the SAT encoding are different. At each cell, there are three metrics (top to bottom):
average number of steps, median number of steps, percentage solved.

rands(n,m) cliquey(N,p) covery(N,p) colorg(N,p) domsety(N,p) WalkSAT

367 743 749 736 642 385
rands (50, 213) 273 750 750 750 750 297
84% 0% 0% 0% 20% 80%

N 529 116 623 743 725 237
LEQ&)% (20, 013252 750 57 750 750 750 182
n="0U,m= 1l 48% 100% 16% 0% 0% 100%
covers(9,0.5) 749 750 181 750 224 319
5 700 750 750 115 750 162 280
= 09,Mm = 0% 0% 100% 0% 100% 96%
675 748 750 342 645 416

fi’[l)%r")@(f 2'853 750 750 750 223 750 379
n=1um= 16% 0% 0% 88% 16% 80%
, 729 660 304 748 205 217
dof%%“(l%%‘gg 750 750 169 750 121 140
n=0um= 0% 16% 76% 0% 100% 100%

domain-specific processors. Hence, WalkSAT serves mostly as a “sanity-check” for the learned
heuristics. This has been the case for other purely neural network-based approaches to SAT solving or
combinatorial optimization, and these kinds of studies are currently more of scientific than practical
interest. Nevertheless, we provide a comparison to WalkSAT.

In order to evaluate the algorithms, we sample 50 satisfiable formulas from five problem distributions
to obtain evaluation sets, and perform 25 search trials (with each trial starting at a random initial
assignment) using the learned heuristics and WalkSAT. Each algorithm runs for a maximum of
750 steps unless specified otherwise and has a walk probability of 1/2. We model our evaluation
methodology after that of KhudaBukhsh et al. [25] and report three metrics for each evaluation set on
Table 2: the average number of steps, the median of the median number of steps (the inner median
is over trials on each problem and the outer median is over the problems in the evaluation sets), the
percentage of instances considered solved (median number of steps less than the allowed number of
steps). For all the results reported in the next section we follow the same method. Our implementation
is available at https://github.com/emreyolcu/sat.

7.1 Results

Comparison to WalkSAT Table 2 summarizes the performance of the learned heuristics and
WalkSAT. Each column on the table corresponds to a heuristic trained to solve problems from a
certain class. For each heuristic we follow a curriculum as explained in Section 6.2, that is, we train
on incrementally larger problems of the same class and finally train on the distribution that we want
to evaluate the performance on. Each row of the table corresponds to an evaluation set.

After training, the learned heuristics require fewer steps than WalkSAT to solve their respective
problems. The difference is larger for graph problems than it is for random 3-SAT, which makes
sense as there is no particularly regular structure to exploit in its factor graph. While the number of
steps is reduced, we should emphasize that the running time of our algorithm is much longer than
WalkSAT. With this work, our goal has not been to produce a practical SAT solver, but to demonstrate
that this approach might allow us to create specialized algorithms from scratch for specific problems.

Specialization to problem classes As expected, the performance of each heuristic degrades on
unseen classes of problems compared to the one it is specialized to. This provides evidence that the
learned heuristics exploit class-specific features of the problems. Also, it is interesting to note that the
performance of the learned heuristics on vertex cover and dominating set problems correlate. They
are indeed similar problems, and it is not surprising to see that a good heuristic for one also performs
well for the other. Their similarity is also visible from their example factor graphs in Figure 2.
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Figure 3: Curriculum during training. The plots display the average number of steps taken over
multiple trials during training when learning to solve SAT problems. Each plot includes two curves,
one for the small distribution from which we sample training problems, and another for a fixed set of
evaluation problems from a larger distribution of the same problem class.

Effect of the curriculum Example training runs of the curriculum that we employ are shown in
Figure 3. They demonstrate that the learned heuristic for a smaller distribution transfers to a slightly
larger distribution from the same class, which allows us to step up to larger problems.

Generic heuristics Each learned heuristic is ex-

pected to exploit the specific structure of its problem Tgple 3: Generalization from SR.(10) to dif-

class as much as possible. Intuition suggests that
when there is no discernible structure to exploit, the
resulting heuristic may generalize relatively well to
other classes. As an experiment, we learn a heuristic
to solve satisfiable formulas from the SR distribution,
created by Selsam et al. [see 42, section 4] to generate
formulas that are difficult to classify as satisfiable or
unsatisfiable based on crude statistics. We then eval-
uate this heuristic on the graph problems. Random
3-SAT near the threshold is another similarly difficult
distribution, although its difficulty is an asymptotic
statement and not necessarily useful for our case with
small formulas. Still, we repeat the experiment with
random 3-SAT for completeness. Table 3 shows that
a heuristic learned on SR(10) generalizes better to

ferent problem distributions. Each cell dis-
plays the average number of steps and the
percentage of problems solved.

SR(10) rands(10,43)
clique;(10,0.1) 363 649
n=30,m =420  98% 4%
covery(8,0.5) 410 643
n = 40, m = 450 86% 16%
colory(15,0.5) 204 390
n = 60, m = 200 98% 84%
domset,(12,0.2) 499 653
n = 60, m = 995 70% 16%

the slightly larger and different problem distributions
compared to a heuristic learned on rands (10, 43).

Search behavior Table 2 shows that the largest differences between the learned heuristics and
WalkSAT are on clique detection and vertex cover problems. In order to gain an understanding of
how the learned heuristics behave differently, we look at a few statistics of how they traverse the
search space. Table 4 shows the ratio of the flips during the search that flip a previously flipped
variable (undo), move to a solution that increases (upwards), does not change (sideways), or decreases
(downwards) the number of unsatisfied clauses. The reported statistics are computed by taking into
account only the flips that are made deterministically by the heuristics, although if a variable was
previously randomly flipped and the heuristic chooses to flip the same variable again then this is
counted as an “undo”. The striking difference is that the learned heuristics make sideways moves far
less often, and instead appear to zoom in on a solution with downwards moves. It is also intriguing
that they make “bad” moves (upwards) with relatively high frequency.

Table 4: Macroscopic comparison of the search behaviors of the learned heuristics and WalkSAT.

clique;(20,0.05) covers(9,0.5)

Heuristic Undo Upwards Sideways Downwards Undo Upwards Sideways Downwards
Learned 0.26 0.28 0.14 0.57 0.37 0.38 0.13 0.48
WalkSAT 0.33 0.16 0.54 0.29 0.39 0.24 0.40 0.35




Different random graphs Above experiments on

SAT encoded graph problems all use the Erd6s—Rényi  Taple 5: Performance of the learned heuristics
model for random graphs. Although the results on  3nd WalkSAT on problems with graphs from
Table 2 provide evidence that each heuristic is spe- {istributions unseen during training. Each
cialized to its respective problem class, they do not  ce|j displays the average number of steps and
allow us to conclude that the heuristics should still  pe percentage of problems solved.

work for different random graphs. Ideally, the heuris-
tic learned on graph coloring problems should more
heavily be exploiting the fact that the formula is the

Learned WalkSAT

SAT encoding of a coloring problem than the fact cliquey, 198 285
that the encoding is for a graph sampled according to 3<k<5 100% 98%
the Erd6s—Rényi model. covery, 306 370
.. . . 4<k<6
To test whether the heuristics can generalize to dif- - - 0% 2%
ferent random graphs, for each graph problem we colory, 162 193
generate satisfiable instances on graphs from four dis- 3<k<5  100% 100%
tributions (random regular [26], random geometric domset, 271 255
[36], Barabdsi—Albert [4], Watts—Strogatz [46]) with 2<k<4 9% 92%

the number of vertices varying from 10 to 15 and use
these instances to re-evaluate the previously learned
heuristics. Table 5 shows the results compared to WalkSAT. Each row on the table corresponds to a
set of 60 problems with varying problem specific size parameters k£ and graphs sampled from the
four distributions. While the shift in the evaluation distribution causes some decline in the relative
performance of the learned heuristics against WalkSAT, they can still find solutions in fewer steps
than WalkSAT most of the time. Recall that the goal here is not necessarily to perform better than
WalkS AT, but being able to do so provides evidence of the robustness of the learned heuristics.

Larger problems In order to show the extent to
which a learned heuristic can generalize to larger 1001
problems, we run the heuristic learned only on the
small problems from SR(10) to solve satisfiable 501
problems sampled from SR(n) for much larger n
with a varying number of maximum steps. Figure 4
shows that as we increase the number of maximum
iterations, the percentage of problems solved scales
accordingly with no sign of plateauing. For compar-
ison, WalkSAT results are also included.

/
104 S ~®- Learned, SR(10)

Percentage of problems solved

-8 WalksAT, SR(10)
WalkSAT, SR(20)
WalkSAT, SR(10)
WalkSAT, SR(60)

B WalkSAT, SR(80)

10° 10* 10*
Number of maximum iterations

8 Conclusion
Figure 4: Generalization of the SR(10)

We have shown that it is possible to use a graph heuristic to larger problems. Solid and dashed
neural network to learn distribution-specific variable lines correspond to the learned heuristic and
selection heuristics for local search from scratch. As WalkSAT, respectively.

formulated, the approach does not require access to

the solutions of the training problems, and this makes it viable to automatically learn specialized
heuristics for a variety of problem distributions. While the learned heuristics are not competitive with
the state-of-the-art SAT solvers in run time, after specialization they can find solutions consistently in
fewer steps than a generic heuristic.

There are a number of avenues for improvement. Arguably, the most crucial next step would be
to reduce the cost of the heuristic to scale to larger problem instances. If a GNN is to be used for
computing the heuristic, more lightweight architectures than we have can be of interest. Also, in
this work we focused on stochastic local search, however, the SAT solvers used in practice perform
backtracking search. Consequently, model-based algorithms such as Monte Carlo tree search [12]
can provide critical improvements. As a step towards practicality, it is also important to incorporate
the suite of heuristics in an algorithm portfolio. In this work, we have achieved promising results for
learning heuristics, and we hope that this helps pave the way for automated algorithm design.
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