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Supplementary Materials

A Preliminaries Detailed proofs

In this first subsection, we show that the forward finite differences method can be used to
construct an approximate gradient oracle. Similar oracles can be constructed using back-
ward, symmetric finite differences or Richardson extrapolation which have even higher
gradient approximation accuracy. Additionally, we compute the Lipschitz constant of our
method and we show that our definition of ”well-behaved” approximate gradient is well de-
fined. In other words, there are simple approximation oracles which follow the smoothness
requirements that our work assumes.

A.1 Gradient Approximation using Zero Order Information

Lemma 4 ( Lemma 1 restated ). Let f be `-gradient Lipschitz. Then rf (·, h) as defined in Equation
1 is
√
d` Lipschitz for all h ∈ R and it holds that: ‖rf (x, h)−∇f(x)‖ ≤ `

√
d|h|

Proof. For the first part of the lemma we split our proof into two cases:

• For any h 6= 0 and any x,x′ ∈ Rd we have

‖rf (x, h)− rf (x′, h)‖ =

∥∥∥∥∥
d∑
l=0

f(x + hel)− f(x)

h
el −

d∑
l=0

f(x′ + hel)− f(x′)

h
el

∥∥∥∥∥
=

√√√√ d∑
l=0

∣∣∣∣f(x + hel)− f(x′ + hel)− (f(x)− f(x′))

h

∣∣∣∣2
Let us define the function ql(s) = f(x+sel)−f(x′+sel) for all l ∈ [d]. Then by applying
the mean value theorem we get

‖rf (x, h)− rf (x′, h)‖ =

√√√√ d∑
l=0

∣∣∣∣ql(h)− ql(0)

h

∣∣∣∣2 =

√√√√ d∑
l=0

|q′l(ξl)|2

for some ξl ∈ (0, h). We have that q′l(ξl) = ∂f(x+ξlel)
∂xl

− ∂f(x′+ξlel)
∂xl

. If f is `-gradient
Lipschitz so are all the partial derivatives

‖rf (x, h)− rf (x′, h)‖ ≤

√√√√ d∑
l=0

`2‖x− x′‖2 =
√
d`‖x− x′‖

• For the special case of h = 0

‖rf (x, 0)− rf (x′, 0)‖ = ‖∇f(x)−∇f(x′)‖ ≤ `‖x− x′‖ ≤
√
d`‖x− x′‖
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Similarly, for the second part of the lemma we have that for any h 6= 0 and any x

‖rf (x, h)−∇f(x)‖ =

∥∥∥∥∥
d∑
l=0

f(x + hel)− f(x)

h
el −∇f(x)

∥∥∥∥∥
=

√√√√ d∑
l=0

∣∣∣∣f(x + hel)− f(x)

h
− ∂f(x)

∂xl

∣∣∣∣2
For each l ∈ [d] we use the mean value theorem so that for some xl : |ξl| ≤ |h| we have

‖rf (x, h)−∇f(x)‖ =

√√√√ d∑
l=0

∣∣∣∣∂f(x + ξlel)

∂xl
− ∂f(x)

∂xl

∣∣∣∣2

≤

√√√√ d∑
l=0

(`ξl)2 ≤ `
√
d|h|

For h = 0 the requested inequality holds as an equality.

As noted in the main paper, recent studies have analyzed zero order optimization by care-
fully crafting a smoothed version of the original objective function. These arguments are
also applicable to our case as well.The following lemmas show why these approaches lead
poly(d, ε−1) slowdown in terms of number of iterations and function evaluations.

A.2 Black box reductions to first order methods

Algorithm 3 of [JLGJ18], uses approximate gradient evaluations at randomly sampled points around
the current iterate to get an estimate of the gradient of f . This estimate is then perturbed with noise
in order to avoid any potential saddle point.

Algorithm 3 First order Perturbed Stochastic Gradient Descent (FPSGD)
Input: x0, learning rate η, noise radius r, mini-batch size m.

for t = 0, 1, . . . , do
sample (z

(1)
t , · · · , z(m)

t ) ∼ N (0, σ2I)

gt(xt)←
∑m
i=1 g(xt + z

(i)
t )

xt+1 ← xt − η(gt(xt) + ξt), ξt uniformly ∼ B0(r)
end for
return xT

Lemma 5. Let f : Rd → R be a bounded, L-continuous, `-gradient, ρ-Hessian Lipschitz function.
Additionally, suppose that we have access to a function g : Rd → R such that ‖∇g −∇f‖∞ ≤ ν.
Then, [JLGJ18]’s FPSG method needs Õ(d

3

ε4 ) evaluations of∇g to converge to an ε-SOSP .

Proof. We will show the main steps that [JLGJ18] followed in Section E of the Appendix. The first
step of the proof is to define the Gaussian smoothing of function g with parameter σ

gσ(x) = Ez∼N (0,σ2I)g(x + z)

One can show that

∇gσ(x) = Ez∼N (0,σ2I)∇g(x + z)

∇2gσ(x) = Ez∼N (0,σ2I)∇2g(x + z)

Additionally Lemma 48 of [JLGJ18] tells us that the gradients and Hessians of gσ and f are close
to each other and that gσ is gradient Lipschitz and Hessian Lipschitz.
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• gσ is O(`+ ν
σ ) gradient Lipschitz and O(ρ+ ν

σ2 ) Hessian Lipschitz.

• ‖∇gσ(x)−∇f(x)‖ ≤ O(ρdσ2 + ν) and ‖∇2gσ(x)−∇2f(x)‖ ≤ O(ρ
√
dσ + ν)

Then Lemma 54 of [JLGJ18] proves that a ε√
d

-SOSP of gσ is also a O(ε) stationary point of f if

σ ≤ O(

√
ε

ρd
)

ν ≤ O(
ε√
d

)

For the aforementioned choices of ν and σ,∇g is bounded

‖∇gσ(x)‖ ≤ ‖∇gσ(x)−∇f(x)‖+ ‖∇f(x)‖ ≤
√
dν + L ≤ ε+ L

So g(x + z) is O(ε + L) sub-gaussian. Notice also that by replacing with the upper bounds on σ
and ν one can observe that the Lipschitz constant of ∇2gσ is O(ρ

√
d). This is the main reason that

a ε√
d

-SOSP of gσ is required.

According to Theorem 65 of [JLGJ18] getting an ε-SOSP of gσ requires Õ(d/ε4) number of evalu-
ations of ∇g. So to get an ε√

d
-SOSP of gσ , one would require Õ(d3/ε4) number of evaluations of

∇g.

Notice that the above theorem makes the technical assumption that the gradient approximator is
a gradient of a function, that may not be true for standard finite differences approximators. The
Lemma below for ZPSG does not have the same limitation. In contrast to FPSG, Algorithm 4 works
with function evaluations directly to come up with appropriate gradient evaluations.

Algorithm 4 Zero order Perturbed Stochastic Gradient Descent (ZPSGD)
Input: x0, learning rate η, noise radius r, mini-batch size m.

for t = 0, 1, . . . , do
sample (z

(1)
t , · · · , z(m)

t ) ∼ N (0, σ2I)

gt(xt)←
∑m
i=1 z

(i)
t [f(xt + z

(i)
t )− f(xt)]/(mσ

2)
xt+1 ← xt − η(gt(xt) + ξt), ξt uniformly ∼ B0(r)

end for
return xT

Lemma 6. Let f : Rd → R be a bounded, L-continuous, `-gradient, ρ-Hessian Lipschitz function.
Then, [JLGJ18]’s ZPSG method needs Õ(d

2

ε5 ) evaluations of f to converge to an ε-SOSP .

Proof. We will show the main steps that [JLGJ18] followed in Section A of the Appendix. The first
step of the proof is to define the Gaussian smoothing of function f with parameter σ

fσ(x) = Ez∼N (0,σ2I)f(x + z)

One can show that

∇fσ(x) = Ez∼N (0,σ2I)∇f(x + z)

∇2fσ(x) = Ez∼N (0,σ2I)∇2f(x + z)

Additionally Lemma 18 of [JLGJ18] for ν = 0, tells us that the gradients and Hessians of fσ and f
are close to each other and that fσ is gradient Lipschitz and Hessian Lipschitz.

• fσ is O(`) gradient Lipschitz and O(ρ) Hessian Lipschitz.

• ‖∇fσ(x)−∇f(x)‖ ≤ O(ρdσ2) and ‖∇2fσ(x)−∇2f(x)‖ ≤ O(ρ
√
dσ)
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Based on this we can see that an ε-SOSP of fσ is also a O(ε) stationary point of f if

σ ≤ O(

√
ε

ρd
)

We also need to develop a random gradient approximator of ∇fσ given only evaluations f . Based
on Lemma 19

∇fσ(x) = Ez∼N (0,σ2I)z
f(x + z)− f(x)

σ2

Let us define

g(x; z) = z
f(x + z)− f(x)

σ2

Lemma 24 shows that g is B
σ subgaussian where B is the upper bound on |f(x)| (it exists since f is

bounded). Replacing with the upper bound on σ, it turns out that g is O(B
√

ε
ρd ) subgaussian. This

dependence on d and ε is the main reason of the slowdown in this case.

According to Theorem 65 getting an ε-SOSP of fσ requires Õ(d2/ε5) number of evaluations of g.
Each evaluation of g requires 2 evaluations of f .
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In the next section, we show the complete proof of our first main result. We will use the
Stable Manifold Theorem (SMT) to prove that zero-order approximate gradient descent
(AGD) avoids strict saddle points.

B Approximate Gradient Descent Detailed proofs

Our first two lemmas prove the equivalence between the first order stationary points of f
and the fixed points of the AGD. Additionally we show that saddle points of the objec-
tive function correspond exactly to the unstable fixed of the proposed zero order method.
Finally we show that for sufficiently small size-step the dynamical system is diffeomor-
phism. This critical property will allow us to generalize the consequences of SMT from a
local region around a saddle point to the global domain.

B.1 Avoiding strict saddle points

Lemma 7. Assume that g0 is an (L,B, c) well behaved function. If β < 1
B and η < 1

L for every
strict saddle point x∗ of f and we have that

(
x∗

0

)
is not a stable fixed point of g0. Additionally, these

are the only unstable fixed points of g0.

Proof. For h = 0 and at a strict saddle x∗, we will calculate the general differential of g0.

Dg0

(
x∗

0

)
=

(
I − ηDxqx(x∗, 0) −ηDhqx(x∗, 0)

0 β ∂qh(0)
∂h

)
=

(
I − η∇2f(x∗) −ηDhqx(x∗, 0)

0 β ∂qh(0)
∂h

)
with eigenvalues β ∂qh(0)

∂h , (1 − ηλi) , where λi are eigenvalues of ∇2f(x∗). Since x∗ is a strict
saddle, then there is at least one eigenvalue λi < 0, and 1− ηλi > 1. Thus

(
x∗

0

)
is an unstable fixed

point of g0. To prove that these are the only unstable fixed points, observe that β ∂qh(0)
∂h ∈ (0, 1) so

the only way Dg0

(
x∗

0

)
has an eigenvalue greater than 1 is for some λi to be negative and therefore

x∗ should be a strict saddle.

For the sake of completeness here we provide an extra lemma that proves the equivalence between
the first order stationary points of f and the fixed points of g0.

Lemma 8. Assume that g0 is an (L,B, c)-well-behaved function for a function f with β < 1
B . Then

for each first order stationary point of f x∗,
(
x∗

0

)
is a fixed point of g0. Additionally g0 has no other

fixed points.

Proof. For β < 1
B we have that gh = βqh(h) is a contraction since its Lipschitz constant is less

than one. So the only fixed point of gh is 0. Therefore for h 6= 0 no point
(
x
h

)
is a stable point. Now

for h = 0 we get that qx(x, h) = ∇f(x) so we have

xk+1 = xk − η∇f(xk) (1)

So x is a fixed point if and only if ∇f(x) = 0. Combining this with the requirement that all fixed
points of g0 have h = 0 proves the lemma.

In order to prove Theorem 1 we also have to prove the diffeomorphism property of g0.

Lemma 9. If g0 is an (L,B, c) well behaved function and η < 1
L , then det(Dg0(·)) 6= 0.

Proof. Let
K = Dxqx(x, h) (2)
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By straightforward calculation

Dg0

(
x

h

)
=

(
I − ηK −ηDhqx(x, h)

0 β ∂qh(h)
∂h

)
Given that g(·, h) is L-Lipschitz for all h ∈ R, we have that ‖K‖2 ≤ L. Clearly we have that
det(I − ηK) 6= 0 since ‖I − ηK‖2 ≥ 1− ηL > 0. Finally we have that

det(Dg0

(
x

h

)
) = β

∂qh(h)

∂h
det(I − ηK) 6= 0.

A straightforward application of result of [LPP+19] and SMT will yields a saddle-
avoidance lemma following kind :

Let X∗f be the set of the strict saddle points of f , η < 1
L and β < 1

B . Then it holds:

Pr
(
{
(
x0

h0

)
: lim
k→∞

xk ∈ X∗f}
)

= 0 .

Notice that the random choice would be both on x0, h0. In the following subsection we
will prove that a stronger result where the random initialization refers only to the x0’s
domain is surprisingly possible via a new refinement of SMT:

∀h0 ∈ R : Pr( lim
k→∞

xk = x∗) = 1

Let us first describe our general strategy for proving this refinement:
1. We will restate the Stable Manifold Theorem and understand its implications.

(Section B.2.1)
2. We will study the structure of the eigenvalues of Dg0 at fixed points of g0.

(Section B.2.2)
3. We will show how this affects the projections to the stable and unstable eignes-

paces of Dg0.
(Section B.2.3)

4. Finally we will see how this enables us to study the dimension of the stable mani-
fold when h0 is fixed.
(Section B.2.4)

B.2 A Refinement of the Stable Manifold Theorem

B.2.1 Understanding the Stable Manifold Theorem

Theorem 5 (Theorem III.2 & III.7 of [Shu87]). Let p be a fixed point for the Cr local diffeomor-
phism h : U → Rn where U ⊂ Rn is an open neighborhood of p inRn and r ≥ 1. LetEs⊕Ec⊕Eu
be the invariant splitting ofRn into generalized eigenspaces ofDh(p) corresponding to eigenvalues
of absolute value less than one, equal to one, and greater than one. To theDh(p) invariant subspace
Es ⊕ Ec there is an associated local h invariant embedded disc W loc

sc which is the graph of a Cr
function r : Es ⊕ Ec → Eu, and ball B around p such that:

h(W loc
sc ) ∩B ⊂W loc

sc . If hn(x) ∈ B for all n ≥ 0, then x ∈W loc
sc

We will give some intuition on how the Stable Manifold Theorem restricts the dimensionality of the
stable manifold. It essentially boils down to restricting the dimensionality of the manifold W loc

sc .
Let us have a x ∈ U , then this can be decomposed in two vectors xsc and xu, the projection of
x to Es ⊕ Ec and Eu respectively. Thus by the construction of W loc

sc in the proof of the Stable
Manifold theorem, we know that there is a function r : Es ⊕ Ec → Eu such that if x ∈ W loc

sc
then (xsc,xu) ∈ graph(r), or equivalently it holds that xu = r(xsc). By the construction of r,
r is smooth so now dim(W loc

sc ) = dim(graph(r)) = dim(Es ⊕ Ec). To understand why the last
statement is true, the interested reader can look at example 5.14 of [Lor08].
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B.2.2 Eigenvalues of the Jacobian at fixed points

Our main tool for understanding the structure of the eigenvalues of Dg0 at fixed points of g0 is com-
paring it and contrasting it with its first order counterpart, gradient descent. Here is the dynamical
system of gradient descent:

xk+1 = g1(xk) = xk − η∇f(xk)

Now let us pick a fixed point of f , x∗. Then

Dg1(x∗) = I − η∇2f(x∗)

is a symmetrical matrix for the C2 function f . Then we can write down its real orthonormal eigen-
vectors {vi}di=1. Without loss of generality we can reorder them so that the k first eigenvectors
correspond to eigenvalues less than one, the next s correspond to eigenvalues that are equal to one
and and the last ones correspond to eigenvalues that are larger than one in absolute value. Based on
this separation between the eigenvectors, we can now define the following three vector spaces

Eg1s = [{v1, · · · ,vk}]
Eg1c = [{vk+1, · · · ,vk+s}]
Eg1u = [{vk+s+1, · · · ,vd}]

Then we can prove the following interesting lemma

Lemma 10. If v is eigenvector of Dg1(x∗) then
(
v
0

)
is eigenvector of Dg0

(
x∗

0

)
with the same

eigenvalue.

Proof. By straightforward calculation

Dg0

(
x∗

0

)
=

(
I − ηDxqx(x∗, 0) −ηDhqx(x∗, 0)

0 β ∂qh(0)
∂h

)
=

(
I − η∇2f(x∗) −ηDhqx(x∗, 0)

0 β ∂qh(0)
∂h

)
=

(
Dg1(x∗) −ηDhqx(x∗, 0)

0 β ∂qh(0)
∂h

)
Indeed if v is eigenvector of Dg1(x∗) with eigenvalue λ then

Dg0

(
x∗

0

)(
v

0

)
=

(
Dg1(x∗) −ηDhqx(x∗, 0)

0 β ∂qh(0)
∂h

)(
v

0

)
=

(
λv

0

)
= λ

(
v

0

)

Now we now the form of the d out of the d + 1 generalized eigenvalues of Dg
(
x∗

0

)
. There must be

at least one more generalized eigenvector along with its corresponding eigenvalue. It is known that
generalized eigenvectors span the whole space. But so far all the eigenvectors have a zero in the last
coordinate. So the last generalized eigenvector must have a non-zero value in the last coordinate.
Without loss of generality we can assume that the last coordinate is 1. So the vector will be of the
form

(
ṽ
1

)
. We would like to determine its corresponding eigenvalue.

Lemma 11. The eigenvalue of Dg0

(
x∗

0

)
that corresponds to

(
ṽ
1

)
is β ∂qh(0)

∂h

Proof. Since the last row of Dg0

(
x∗

0

)
contains only one non-zero element, we know that the char-

acteristic polynomial p0 of Dg can be written as

det(Dg0

(
x∗

0

)
− λId+1×d+1) = det(Dg1(x∗)− λId×d) det(β

∂qh(0)

∂h
− λ)

Given that all the other eigenvalues cover the roots of the first term, we know that the last eigenvalue
is β ∂qh(0)

∂h .
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By assumption we know that 0 < β ∂qh(0)
∂h < 1. Thus the last generalized eigenvector corresponds

to a stable eigenvalue. Now we can write down the following

Egs =

[{(
v1

0

)
, · · · ,

(
vk
0

)
,

(
ṽ

1

)}]
Egc =

[{(
vk+1

0

)
, · · · ,

(
vk+s

0

)}]
(3)

Egu =

[{(
vk+s+1

0

)
, · · · ,

(
vd
0

)}]
B.2.3 Projections to stable and unstable eigenspaces of the Jacobian

In this paragraph we want to learn more about the projection to the stable and unstable eigenspaces
of Dg. Specifically for any vector

(
x
h

)
, there are unique xg0sc , xg0u , hs, hu such that(
x

h

)
=

(
xg0sc
hs

)
+

(
xg0u
hu

)
(
xg0sc
hs

)
∈ Eg0s ⊕ Eg0c and

(
xg0u
hu

)
∈ Eg0u

Let us compute these projections. Given that the generalized eigenvectors span the whole space, we
have that there are unique λi ∈ R such that(

x

h

)
=

n∑
i=1

λi

(
vi
0

)
+ λn+1

(
ṽ

1

)
⇔

λn+1 = h and x =

n∑
i=1

λivi + hṽ⇔

λn+1 = h and x− hṽ =

n∑
i=1

λivi ⇔

λn+1 = h and λi = 〈x− hṽ,vi〉
Since vi are orthogonal as eigenvectors of a symmetrical matrix. We can now find the vectors and
values xg0sc , xg0u , hs, hu

xg0sc =

k+∑̀
i=1

λivi + hṽ

=

k+∑̀
i=1

〈x− hṽ,vi〉vi + hṽ

=

k+∑̀
i=1

〈x,vi〉vi + h

(
ṽ −

k+∑̀
i=1

〈ṽ,vi〉vi

)

xg0u =

n∑
i=k+`+1

λivi

=

n∑
i=k+`+1

〈x− hṽ,vi〉vi

=

n∑
i=k+`+1

〈x,vi〉vi − h
n∑

i=k+`+1

〈ṽ,vi〉vi

hs = h and hu = 0

Once again we will compare and contrast with the first order case. Equivalently for every vector x
there are unique xg1sc , xg1u such that

x = xg1sc + xg1u
xg1sc ∈ Eg1s ⊕ Eg1c and xg1u ∈ Eg1u
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Let us define

q = ṽ −
k+∑̀
i=1

〈ṽ,vi〉vi

=

n∑
i=k+`+1

〈ṽ,vi〉vi (4)

Then clearly

xg0sc = xg1sc + hq

xg0u = xg1u − hq (5)
hsc = h

hu = 0

B.2.4 Restricting the dimension of the stable manifold for fixed initial h

In this paragraph we are ready to finally prove Theorem 1.
Theorem 6 (Theorem 1 restated). Let g0 be a (L,B, c)-well-behaved function for function f . Let
X∗f be the set of strict saddle points of f . Then if η < 1

L and β < 1
B :

∀h0 ∈ R : µ({x0 : lim
k→∞

xk ∈ X∗f}) = 0

Proof. Without loss of generality let us have a fixed h = h0. Let us define Mh0
as

Mh0
= {x0 ∈ Rn : lim

k→∞
gk0 (x0, h0) = (x∗, 0) and x∗ ∈ X∗f}

We want to prove that the setM has measure 0. Let us apply the Stable Manifold Theorem on g0 for
all fixed points p = (x∗, 0) ∈ X∗f ×{0}. Let Bp, W loc

sc,p be the ball and the corresponding manifold
derived by Theorem 5. We consider the union of those balls B =

⋃
Bp. The following property for

RN holds:

Theorem (Lindelöfs lemma). For every open cover there is a countable subcover.

Therefore due to Lindelöfs lemma, we can find a countable subcover for B, i.e., there exists a
countable family of fixed-points p0,p1, · · · such that B =

⋃+∞
m=0Bpm . Once again, based on

Theorem 5, if starting from x0 one converges to an unstable fixed point then it holds that

x0 ∈Mh0
⇒ ∃m, t0 : ∀t ≥ t0 (xt, ht) = gt0(x0, h0) and (xt, ht) ∈ Bpm

⇒ ∃m, t0 : (xt0 , ht0) = gt00 (x0, h0) and (xt0 , ht0) ∈W loc
sc,pm

Let us define

Umt = {x0 ∈ Rd : (xt, ht) = gt0(x0, h0) and (xt, ht) ∈W loc
sc,pm

}

Therefore we have

Mh0
⊆
∞⋃
m=0

∞⋃
t=0

Umt

Now it suffices to prove that all Umt sets have zero measure. Let us first prove the following lemma
as a stepping stone.

Lemma. Let us define the following set of points

Rmh = {x ∈ Rd : (x, h) ∈W loc
sc,pm

}

Then dim(Rmh ) < d.
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Proof. Based on our discussion on the Stable Manifold Theorem, we know that there is a smooth
function r : Egs ⊕ Egc → Egu such that(

x

h

)
∈W loc

sc,pm
⇒
(
xg0u
hs

)
= r(xg0sc , hu)

where xgu, xgsc , hs and hu the components of the projections to Eg0s ⊕ Eg0c and Eg0u as defined in
the Equations of 3. Now using our analysis in the Equations of 5(

x

h

)
∈W loc

sc,pm
⇒
(
xg1u − hq

0

)
= r(xg1sc + hq, h)

where q is the vector we defined in Equation 4. Let
∏

be the projection that for each
(
x
h

)
∈ Rd+1

returns x. Then we can define the following smooth function

r′h : Eg1s ⊕ Eg1c → Eg1u r′h(x) = hq +
∏

r(x + hq, h).

Using the {vi}ni=1 as a basis we can write(
x

h

)
∈W loc

sc,pm
⇒ xg1u = r′h(xg1sc)⇒ x ∈ graph(r′h)

Therefore dim(Rmh ) ≤ dim(Eg1s ⊕ Eg1c ) < d since pm corresponds to an unstable fixed point of
g1.

Then we can prove the following lemma

Lemma 12. The measure of Umt is zero.

Proof. We will do this by contradiction. Let us assume that Ut has non-zero measure. Let us define

Wm
0 = {x ∈ Rn : x ∈ Umt }

Wm
1 = {x ∈ Rn : x ∈ g0(Wm

1 , h1)}
...

Wm
t = {x ∈ Rn : x ∈ g0(Wm

t−1, ht−1)}

Given that g(·, hi) is a diffeomorphism for all i, we have that Wi has non zero measure. Observe
that

Wm
t ⊆ Rmht

and so dim(Wm
t ) < d and Wm

t has measure zero leading to a contradiction.

Since the countable union of zero measure sets is zero measure we clearly have thatMh0 has measure
zero as requested.

In the previous section, we provided sufficient conditions to avoid convergence to strict
saddle points. These results are meaningful however only if lim

k→∞
xk = x∗. Thus in order

to complete the proof of 3, in the following section we will provide sufficient conditions
such that the dynamic system of AGD converges.

10



B.3 Convergence

We will refer to the error of the gradient approximation as

εk = qx(xk, hk)−∇f(xk).

In order to prove the convergence firstly we establish a lower bound for the decrease of
the function that is connected with the norm of the gradient and its approximation error
(Lemma 2). We also prove that our scheme yields to an exponential decrease of that error
(Lemma 14). Given those lemmas we can prove an exact and an ε−first order stationary
convergence theorem.

Lemma 13 (Lemma 2 restated). Suppose that g0 is a (L,B, c)-well-behaved function for a `-
gradient Lipschitz function f . If η ≤ 1

` then we have that

f(xk+1) ≤ f(xk)− η

2

(
‖∇f(xk)‖2 − ‖εk‖2

)
(6)

Proof.

f(xk+1) ≤ f(xk) +∇f(xk)>(xk+1 − xk) +
`

2
‖xk+1 − xk‖2

≤ f(xk)− η∇f(xk)>qx(xk, hk) +
η2`

2
‖qx(xk, hk)‖2

≤ f(xk)− η∇f(xk)>(∇f(xk) + εk) +
η2`

2
‖∇f(xk) + εk‖2

≤ f(xk)− η∇f(xk)>(∇f(xk) + εk) +
η

2
‖∇f(xk) + εk‖2

≤ f(xk)− η

2

(
‖∇f(xk)‖2 − ‖εk‖2

)

Lemma 14 (Exponentially Decreasing εk). Suppose that g0 is a (L,B, c)-well-behaved function
for a function f . Then we have that

‖εk‖ ≤ c|h0|(βB)k

Proof. Since qh is B-Lipschitz

|hk+1| = |βqh(hk)− βqh(0)| ≤ βB|hk|
Therefore we have that

|hk| ≤ (βB)k|h0|
Based on property 3 of the (L,B, c)-well-behaved function we have that

‖εk‖ = ‖qx(xk, hk)−∇f(xk)‖ ≤ c|hk| = (βB)k|h0|

Now we are ready to start our proof for the convergence to the first order stationary points.
Theorem 7 ( Theorem 2 Restated). Suppose that g0 is a (L,B, c)-well-behaved gradient function
for a `-gradient Lipschitz function f . Let η ≤ 1

` , β < 1
B . Then if f is lower bounded

lim
k→∞

‖∇f(xk)‖ = 0

11



Proof. Applying Lemma 2 repeatedly we get

f(x0)− f(xk) ≥ η

2

k∑
i=0

(
‖∇f(xi)‖2 − ‖εi‖2

)

We now have that

f(x0)− f(xk) +
η

2

k∑
i=0

‖εi‖2 ≥
η

2

k∑
i=0

‖∇f(xi)‖2

f(x0)− f(xk) +
η

2

∞∑
i=0

‖εi‖2 ≥
η

2

k∑
i=0

‖∇f(xi)‖2

f(x0)− f(xk) +
η

2

∞∑
i=0

(
c|h0|(βB)i

)2 ≥ η

2

k∑
i=0

‖∇f(xi)‖2

f(x0)− f(xk) +
η

2

c2h2
0

1− (βB)2
≥ η

2

k∑
i=0

‖∇f(xi)‖2

Given that f is lower bounded, f(x0) − f(xk) and therefore the whole left hand side is upper
bounded which means the series sum in the right hand side is upper bounded. Since this is a series
of non negative terms this means that the series converges and therefore

lim
k→∞

‖∇f(xk)‖ = 0

For the sake of completeness, we will analyze the convergence rate to ε-first order station-
ary points in this setting. This would enable us to to make a fair comparison with previous
results that assume a fixed hk = h0. Notice that the following result improves over pre-
vious work in randomized zero order gradient approximations. In [NS17], it was proved
that using a randomized oracle that requires 2 function evaluations per iteration, one could
get an in expectation ε-first order stationary point afterO

(
d` (f(x0)− f∗) /ε2

)
iterations.

For the case of qx using rf as defined in Equation 1 of the Section 3, we have just proved
that with d+ 1 function evaluations per iteration we can get a ε-first order stationary point
after onlyO

(
` (f(x0)− f∗) /ε2

)
iterations. Thus for the same number of function evalua-

tions up to constants, our work provides deterministic guarantees whereas [NS17] provides
guarantees only in expectation.

Theorem 8 (ε-first order stationary points). Suppose that g0 is a (L,B, c)-well-behaved gradient
function for a `-gradient Lipschitz function f . Let qh(h) = h and β = 1, η = 1

` . Then if f
has minimum value f∗ and h0 = ε√

2c
, the required number of iterations to reach a ε-first order

stationary point is

O
(
` (f(x0)− f∗)

ε2

)

Proof. Applying Lemma 2 repeatedly we get

f(x0)− f(xk) ≥ 1

2`

k∑
i=0

(
‖∇f(xi)‖2 − ‖εi‖2

)

12



We now have that

f(x0)− f(xk) +
1

2`

k∑
i=0

‖εi‖2 ≥
1

2`

k∑
i=0

‖∇f(xi)‖2

f(x0)− f(xk) +
k + 1

2`
(c|h0|)2 ≥ 1

2`

k∑
i=0

‖∇f(xi)‖2

`(f(x0)− f(xk))

2(k + 1)
+ c2|h0|2 ≥

1

k + 1

k∑
i=0

‖∇f(xi)‖2

`(f(x0)− f∗)
2(k + 1)

+
ε2

2
≥ 1

k + 1

k∑
i=0

‖∇f(xi)‖2

Choose the smallest k0 such that `(f(x0)−f∗)
(k0+1) ≤ ε2. Then we have

ε2 ≥ 1

k0 + 1

k0∑
i=0

‖∇f(xi)‖2

Since the average of the squared norms of the gradients is less than ε2, there should be at least one
that is less or equal to ε2. That is there is a k ≤ k0 such that ‖∇f(xk)‖ ≤ ε. Given the definition of
k0 we get the iteration bound stated in the theorem.

The last theorems give us a guarantee that the norm of the gradient is converging to zero
but this is not enough to prove convergence to a single stationary point if f has non isolated
critical points. To establish a stronger result we prove that {‖∇f(xk)‖} does not decrease
arbitrarily quickly.

Lemma 15 (Sufficiently large gradients). Suppose that g0 is a (L,B, c)-well-behaved function for
a `-gradient Lipschitz function f . Then we have that

‖∇f(xk+1)‖ ≥ (1− η`)‖∇f(xk)‖ − η`‖εk‖

Proof.

‖∇f(xk+1)‖ ≥ ‖∇f(xk)‖ − ‖∇f(xk+1)−∇f(xk)‖
≥ ‖∇f(xk)‖ − `‖xk+1 − xk‖
≥ ‖∇f(xk)‖ − η`‖qx(xk, hk)‖
≥ ‖∇f(xk)‖ − η`‖∇f(xk) + εk‖
≥ ‖∇f(xk)‖ − η`‖∇f(xk)‖ − η`‖εk‖
≥ (1− η`)‖∇f(xk)‖ − η`‖εk‖

13



Having established the above lemma we can use the Theorem 3.2 in [AMA05] and we are
able to provide sufficient conditions to get convergence to a single stationary point even for
functions with non isolated critical points.

Theorem 9. Assume that f is `-gradient Lipschitz, is analytic and that it has compact sub-level sets
and that g0 is a (L,B, c)-well-behaved gradient oracle. Let η < 1

2` , β < 1−2η`
B . Then limxk exists

and is a stationary point of f .

Proof. We will first prove that given the fact that f has compact sub-level sets {xk} is confined in
compact set. Based on Lemma 2 we have that for all k ≥ 0

f(xk+1)− f(xk) ≤ η

2
‖εk‖2

Applying this recursively and adding the inequalities

f(xk+1) ≤ f(x0) +
η

2

k∑
i=0

‖εi‖2

≤ f(x0) +
η

2

k∑
i=0

(
c|h0|(βB)i

)2
≤ f(x0) +

η

2
c2h2

0

k∑
i=0

(βB)2i

≤ f(x0) +
η

2
c2h2

0

1

1− (βB)2

So clearly {f(xk)} is bounded and therefore {xk} stays in one of the compact sub-level sets of f
forever.

Let us define the following
φk(h0) = c|h0|(βB)k

We will split the proof of the theorem in two cases. For the first case we will assume that there is a
k0 ∈ N such that

‖∇f(xk0)‖ ≥ φk0(h0)

Then by Lemma 15

‖∇f(xk0+1)‖ ≥ (1− η`)‖∇f(xk0)‖ − η`‖εk0‖2
≥ (1− η`)φk0(h0)− η`φk0(h0)

≥ (1− 2η`)φk0(h0)

≥ 1− 2η`

βB
βBφk0(h0)

≥ 1− 2η`

βB
φk0+1(h0)

≥ φk0+1(h0)

By induction we have that ∀k ≥ k0 + 1

‖∇f(xk)‖ ≥ 1− 2η`

βB
φk(h0)

By Lemma 14
‖∇f(xk)‖
‖εk‖

≥
(

1− 2η`

βB

)
= q > 1

14



At the same time

−∇f(xk)>(xk+1 − xk) = η∇f(xk)>(∇f(xk) + εk)

= η‖∇f(xk)‖2 + η∇f(xk)>εk

≤ η
(

1 +
1

q

)
‖∇f(xk)‖2

Additionally using similar arguments as above

−∇f(xk)>(xk+1 − xk)

‖∇f(xk)‖‖(xk+1 − xk)‖
≥
η
(

1− 1
q

)
‖∇f(xk)‖2

η
(

1 + 1
q

)
‖∇f(xk)‖2

=

(
1− 1

q

)
(

1 + 1
q

)
Let us define

c1 =
1

2

(
1− 1

q

)

c2 =

(
1− 1

q

)
(

1 + 1
q

)
Clearly by Lemma 2 we have that

f(xk)− f(xk+1) ≥ η

2

(
‖∇f(xk)‖2 − ‖εk‖2

)
≥ η

2

(
1− 1

q2

)
‖∇f(xk)‖2

We can conclude that

f(xk)− f(xk+1) ≥ −c1∇f(xk)>(xk+1 − xk) ≥ c1c2‖∇f(xk)‖‖(xk+1 − xk)‖
with c1c2 > 0. Moreover, ‖∇f(xk)‖ ≥ φk(h0) > 0 so we do not have to worry about arriving
on stationary points in finite time. Given that f is analytic, we have all the necessary conditions
of Theorem 3.2 in [AMA05] and we have ruled out the possibility of {xk} escaping to infinity.
Therefore, we can now claim that {xk} converges.

For the second case we have that for for all k ∈ N
‖∇f(xk)‖ < φk(h0).

We will now prove that {xk} is a Cauchy sequence.

‖xk − xm‖ ≤
k∑

i=m

‖xi+1 − xi‖

≤
k∑

i=m

‖ηqx(xi, hi)‖

≤ η
k∑

i=m

‖∇f(xi, hi) + εi‖

≤ 2η

k∑
i=m

φi(h0)

We know that
∑∞
i φi(h0) converges so the partial sums must converge to 0. Then

lim
m,k→∞

‖xk − xm‖ ≤ 2η lim
m,k→∞

k∑
i=m

φi(h0) = 0

So limm,k→∞‖xk − xm‖ = 0 and {xk} is a Cauchy sequence bounded in a compact set and
therefore it converges.

In either of the cases the limit of {xk} is of course a stationary point.
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We can now conclude our analysis with this final theorem.
Theorem 10 (Theorem 3 restated). Let f : Rd → R ∈ C2 be a `-gradient Lipschitz function. Let
us also assume that f is analytic, has compact sub-level sets and all of its saddle points are strict.
Let g0 be a (L,B, c)-well-behaved function for f with η < min{ 1

L ,
1
2`} and β < 1−2η`

B . If we pick
a random initialization point x0, then we have that for the xk iterates of g0

∀h0 ∈ R Pr( lim
k→∞

xk = x∗) = 1

where x∗ is a local minimizer of f .

Proof. Given the assumptions, we can apply Theorem 9 and get that limk→∞ xk exists and is a
stationary point of f . We can also apply Theorem 1 in order to guarantee that the limit is not a strict
saddle of f with probability 1. Given the assumption that f has only strict saddles, then limk→∞ xk
is with probability 1 a local minimum of f .
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C Escaping Saddle Points Efficiently Detailed proofs

Before presenting the iteration complexity proof ( Theorem 4 ) we will state our main probabilistic
lemma.
Lemma 16. There exists an absolute constant cmax, such that for any f that is `-gradient Lipschitz
and ρ-Hessian Lipschitz function and any c ≤ cmax, and χ ≥ 1. Let η, r, gthres, fthres, tthres, hlow be
calculated same way as in Algorithm 1. Then, if xt satisfies:

‖∇f(xt)‖ ≤ gthres and λmin(∇2f(xt)) ≤ −
√
ρε

Let x̃0 = xt + ξ, where ξ comes from the uniform distribution over B0(r), and let {x̃i} be the
iterates of approximate gradient descent from x̃0 with stepsize η and h = hlow, then with at least
probability 1− d`√

ρεe
−χ, we have:

∃ i ≤ tthres : f(xt)− f(x̃i′) ≥ fthres

This lemma will be the “workhorse” which will offer the high probability guarantees of Algorithm
1 given that substantial progress can be made in the low gradient phase. The proof of the above
lemma is deferred to the end of this section.

We are ready now to prove our main theorem:
Theorem 11 (Theorem 4 restated). There exists absolute constant cmax such that: if f is `-gradient
Lipschitz and ρ-Hessian Lipschitz, then for any δ > 0, ε ≤ `2

ρ ,∆f ≥ f(x0) − f?, and constant
c ≤ cmax, with probability 1 − δ, the output of PAGD(x0, `, ρ, ε, c, δ,∆f ) will be ε-SOSP , and
terminate in iterations:

O
(
`(f(x0)− f?)

ε2
log4

(
d`∆f

ε2δ

))
Proof. Denote c̃max to be the absolute constant allowed in Lemma 16. In this theorem, we let
cmax = min{c̃max, 3/32}, and choose any constant c ≤ cmax.

In this proof, that Algorithm 1 returns a point x that satisfies the following condition:

‖∇f(x)‖ ≤ gthres =

√
c

χ2
· ε, λmin(∇2f(x)) ≥ −√ρε (7)

Since c ≤ 1, χ ≥ 1, we have
√
c

χ2 ≤ 1, which implies any x satisfies Equation (7) is also a ε-SOSP .

Starting from x0, we know if x0 does not satisfy Equation 7, there are only two cases:

1. ‖z0‖ =
∥∥∥q (x0,

gthres
4ch

)∥∥∥ > 3
4gthres

In this case, ‖∇f(x0)‖ ≥ gthres
2 and Algorithm 1 will not add perturbation. By Lemma 2:

f(x0)− f(x1) ≥ η

2
· (‖∇f(x0)‖2 − ‖ε0‖2)

where ε0 = q
(
x0,

gthres
4ch

)
−∇f(x0). Therefore we get ‖ε0‖ ≤ gthres

4

f(x0)− f(x1) ≥ η

2
· (‖∇f(x0)‖2 − ‖ε0‖2) ≥ 3η

32
g2

thres ≥
3c2ε2

32`χ4

2. ‖z0‖ =
∥∥∥q (x0,

gthres
4ch

)∥∥∥ ≤ 3
4gthres

In this case, ‖∇f(x0)‖ ≤ gthres and Algorithm 1 will add a perturbation ξ of radius r such
that x̃0 ← x0 + ξ, and will perform approximate gradient descent (without perturbations)
for at most tthres steps. Since x0 is not a second-order stationary point then by Lemma 16
there exists i′ ≤ tthres such that:

f(x0)− f(x1) = f(x0)− f(x̃i′) ≥ fthres =
c

χ3
·

√
ε3

ρ

17



This means on average every step decreases the function value by

f(x0)− f(x̃i′)

i′
≥ fthres

tthres
=
c3

χ4
· ε

2

`

Hence, we can conclude that as long as Algorithm 1 has not terminated yet, on average, every step
decreases function value by at least c

3

χ4 · ε
2

` . However, we clearly can not decrease function value by
more than f(x0)−f?, where f? is the minimum value of f . This means Algorithm 1 must terminate
within the following number of iterations:

f(x0)− f?
c3

χ4 · ε
2

`

=
χ4

c3
· `(f(x0)− f?)

ε2
= O

(
`(f(x0)− f?)

ε2
log4

(
d`∆f

ε2δ

))

Finally, we have to ensure that the above statement holds with high probability. In the worst case
scenario, in each outer-loop iteration the algorithm will be enforced to add a perturbation yielding a
decrease of fthres. Thus, the maximum number of perturbations are at most:

f(x0)− f?

fthres
=
f(x0)− f?

c
χ3 ·

√
ε3

ρ

Applying Lemma 16, we know that the guaranteed decrease of fthres happens with probability at least
1 − d`√

ρεe
−χ each time. By union bound, the probability that all perturbations satisfy the decrease

guarantee is at least

1− d`
√
ρε
e−χ · f(x0)− f?

c
χ3 ·

√
ε3

ρ

= 1− χ3e−χ

c
· d`(f(x0)− f?)

ε2

Recall our choice of χ = 3 max{log(
d`∆f

cε2δ ), 4}. Since χ ≥ 12, we have χ3e−χ ≤ e−χ/3, this gives:

χ3e−χ

c
· d`(f(x0)− f?)

ε2
≤ e−χ/3 d`(f(x0)− f?)

cε2
≤ δ

which finishes the proof.

What remains to be proven is why adding a perturbation is guaranteed to help the algorithm decrease
the value of f substantially with high probability. Following the proof strategy of [JGN+17] we will
define some additional notation. Let the condition number be the ratio of the Lipschitz constant of
∇f and the smallest negative eigenvalue of the Hessian of xt before adding the perturbation, i.e
κ = `/γ ≥ 1. Additionally we define the following units:

p← log(dκδ ),L← η`,F← L

p3

γ3

ρ2
,G←

√
L

p2

γ2

ρ
,S ←

√
L

p

γ

ρ
,R← 2S

κp
,T← p

ηγ

Following the above definitions, it holds that: S =
√

Fp
γ = Gp

γ , `R = 2G and ηTG = S

(A): The first argument in this proof is that if the x̃i iterates do not achieve a decrease of 2.5F in cT steps
then they must remain confined in a small ball around x̃0.

Lemma 17. For any constant c ≥ 3, define:

T = min
{

inf
t
{t|f(u0)− f(ut) ≥ 2.5F} , cT

}
then, for any η ≤ 1/`, we have for all t < T that ‖ut − u0‖ ≤ 100(S · c).
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Proof of Lemma 17. Applying repeatedly Lemma 2, we get for t < T

f(ut)− f(u0) ≤ −η
2

t∑
i=0

(
‖∇f(ui)‖2 − ‖εi‖2

)
where

εi = qx(ui, hlow)−∇f(ui).

By definition of T we have that the function value of f has not yet decreased by 2.5F.

η

2

t∑
i=0

‖∇f(ui)‖2 ≤ f(u0)− f(ut) +
η

2

t∑
i=0

‖εi‖2

η

2

t∑
i=0

‖∇f(ui)‖2 ≤ 2.5F +
η

2

t∑
i=0

‖εi‖2

Since T ≤ cT and also ‖εi‖ ≤ G we then have

η

2

t∑
i=0

‖∇f(ui)‖2 ≤ 2.5F +
η

2
G2cT

t∑
i=0

‖∇f(ui)‖2 ≤
5

η
F + G2cT

t∑
i=0

(
‖∇f(ui)‖2 + ‖εi‖2

)
≤ 5

η
F + 2G2cT

We also have that ‖qx(ui, hlow)‖2 ≤ 2
(
‖∇f(ui)‖2 + ‖εi‖2

)
. Therefore we have that

t∑
i=0

‖qx(ui, hlow)‖2 ≤ 10

η
F + 4G2cT

Now we can bound the difference between ut and u0:

‖ut − u0‖2 =

∥∥∥∥∥
t∑
i=1

ui − ui−1

∥∥∥∥∥
2

≤ t
t∑
i=1

‖ui − ui−1‖2

≤ tη2
t∑
i=0

‖qx(ui, hlow)‖2

≤ tη2

(
10

η
F + 4G2cT

)
≤ tη2

(
10

η
F + 4G2cT

)
≤ cTη2

(
10

η
F + 4G2cT

)
Manipulating the constants we get

‖ut − u0‖2 ≤
(
10c + c2

)
S2

‖ut − u0‖ ≤
√

(10c + c2)S
For any c ≥ 3 we have

‖ut − u0‖ ≤ 100(cS)
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(B):The second step in our proof strategy is to show that if all the iterates from u0 are constrained in a small
ball, iterates from w0 = u0+µ·R2 e1, for large enough µmust be able to decrease the function value. In order
to do that, we keep track of vector v which is the difference between {ui} and {wi}. We also decompose
v into two different eigenspaces: the direction e1 (the minimum-eigenvalue eigenvector) and its orthogonal
subspace.

Lemma 18. There exists absolute constant cmax, c such that: for any δ ∈ (0, dκe ], let f(·), x̂ satisfies
the following conditions

‖∇f(x̂)‖ ≤ G and λmin(∇2f(x̂)) ≤ −γ

and any two sequences {ut}, {wt} with initial points u0,w0 satisfying:

w0 = u0 + µ · R
2
· e1, µ ∈ [δ/(2

√
d), 1], ‖u0 − x̂‖ ≤ R

2

e1 is the eignevector of the minimum eigenvalue of ∇2f(x̂). Assume also that hlow ≤ ρSδ
2ch
√
d
R
2 .

Define

T = min
{

inf
t
{t|f(w0)− f(wt) ≥ 2.5F} , cT

}
then, for any η ≤ cmax/`, if ‖ut − u0‖ ≤ 100(S · c) for all t < T , we will have T < cT.

Proof of Lemma 18. Recall notation H̃ = ∇2f(x̂). Since δ ∈ (0, dκe ], we always have p ≥ 1.
Define vt = wt − ut, by assumption, we have v0 = µR

2 e1. Let us firstly define the gradient
approximation errors for these two sequences

εwt = qx(wt, hlow)−∇f(wt)

εut = qx(ut, hlow)−∇f(ut)

Now, consider the update equation for wt:

ut+1 + vt+1 =wt+1

=wt − ηqx(wt, hlow)

=wt − η(∇f(wt) + εwt
)

=ut + vt − η∇f(ut + vt)− ηεwt

=ut + vt − η∇f(ut)− η
[∫ 1

0

∇2f(ut + θvt)dθ

]
vt − ηεwt

=ut + vt − η∇f(ut)− η(H̃ + ∆′t)vt − ηεwt

=ut − η∇f(ut) + (I − ηH̃ − η∆′t)vt − ηεwt

=ut − η(∇f(ut) + εut) + (I − ηH̃ − η∆′t)vt − η(εwt − εut)

=ut − ηqx(ut, hlow) + (I − ηH̃ − η∆′t)vt − η(εwt − εut)

=ut+1 + (I − ηH̃ − η∆′t)vt − η(εwt
− εut

)

where

∆′t =

∫ 1

0

∇2f(ut + θvt)dθ − H̃

This gives the dynamic for vt satisfy:

vt+1 = (I − ηH̃ − η∆′t)vt − η(εwt
− εut

) (8)

Since f is Hessian Lipschitz, we have

‖∆′t‖ =

∥∥∥∥∫ 1

0

∇2f(ut + θvt)−∇2f(x̂)dθ

∥∥∥∥ ≤ ∫ 1

0

ρ‖ut+θvt−x̂‖dθ ≤ ρ(‖ut−u0‖+‖vt‖+‖x̂−u0‖).
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For t < T the sequence {wt} has not decreased the function f by −2.5F. In other words, it holds
that f(w0)− f(wt) ≤ 2.5F, so applying Lemma 17, we know for all t ≤ T

‖wt −w0‖ ≤ 100(Sc).
By condition of Lemma 18, we know ‖ut − u0‖ ≤ 100(Sc) for all t < T . This gives for all t < T :

‖vt‖ = ‖wt − ut‖ = ‖(wt −w0)− (ut − u0) + (w0 − u0)‖
≤ ‖(wt −w0)‖+ ‖ut − u0‖+ ‖w0 − u0‖

≤ 100(Sc) + 100(Sc) + µ
R

2

≤ 200(Sc) +
R

2
≤ (200c + 1)S (9)

where the last step holds because R
2 ≤ S This gives us for t < T :

‖∆′t‖ ≤ ρ(‖ut − u0‖+ ‖vt‖+ ‖x̂− u0‖) ≤ ρ(100cS + (200c + 1)S + R
2 ) ≤ ρS(300c + 2)

Let ψt be the norm of vt projected onto e1 direction and the normal vector and ϕt correspondingly
be the norm of vt projected onto remaining subspace. Let us define as λ = ηρS(300c+2). Equation
8 gives us:

ψt+1 =

∥∥∥∥∥∏
e1

(I − ηH̃)vt − η∆′tvt − η(εwt
− εut

)

∥∥∥∥∥
ϕt+1 =

∥∥∥∥∥∥
∏

Rd\{e1}

(I − ηH̃)vt − η∆′tvt − η(εwt
− εut

)

∥∥∥∥∥∥
Lower bound of ψt+1:

ψt+1 =

∥∥∥∥∥∏
e1

[(I − ηH̃)ψte1 − η∆′tvt − η(εwt
− εut

)]

∥∥∥∥∥
≥ ‖(I − ηH̃)ψte1‖ − η‖

∏
e1

[∆′tvt]‖ − η‖
∏
e1

[εwt
− εut

]‖

≥ (1 + γη)ψt − η‖∆′tvt‖ − η‖εwt
− εut

‖
≥ (1 + γη)ψt − η‖∆′t‖‖vt‖ − η‖εwt

− εut
‖

≥ (1 + γη)ψt − λ
√
ψ2
t + ϕ2

t − η‖εwt − εut‖

Upper bound of ϕt+1:

ϕt+1 = ‖
∏

Rd\{e1}

[(I − ηH̃)vt − η∆′tvt − η(εwt
− εut

)]‖

≤ ‖
∏

Rd\{e1}

[(I − ηH̃)vt]‖+ ‖
∏

Rd\{e1}

[η∆′tvt]‖+ η‖
∏

Rd\{e1}

[εwt
− εut

]‖

≤ ‖
∏

Rd\{e1}

[(I − ηH̃)vt]‖+ ‖η∆′tvt‖+ η‖εwt
− εut

‖

≤ (1 + γη)ϕt + λ
√
ψ2
t + ϕ2

t + η‖εwt
− εut

‖
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Therefore we have

ψt+1 ≥(1 + γη)ψt − λ
√
ψ2
t + ϕ2

t − η‖εwt
− εut

‖

ϕt+1 ≤(1 + γη)ϕt + λ
√
ψ2
t + ϕ2

t + η‖εwt
− εut

‖
We will now prove via induction the following fact:

Claim 1. ∀t < T ϕt ≤ 4λt · ψt and ‖εwt‖ ≤ λ
2η‖vt‖ and ‖εut‖ ≤ λ

2η‖vt‖

Proof. Let us prove the base case of the induction:

• By hypothesis of Lemma 18, we know ϕ0 = 0 so ϕ0 ≤ 4λ0 · ψ0 holds trivially

• Based on the choice of hlow we have that

‖εwt‖ ≤ ρS
δ

2
√
d

R

2
≤ λ

2η
ψ0 ≤

λ

2η
‖v0‖

‖εut
‖ ≤ ρS δ

2
√
d

R

2
≤ λ

2η
ψ0 ≤

λ

2η
‖v0‖.

Thus the base case of induction holds. Assume Claim 1 is true for τ ≤ t. Now we can rewrite the
inequalities based on the inductive hypothesis as follows:

ψt+1 ≥(1 + γη)ψt − 2λ
√
ψ2
t + ϕ2

t

ϕt+1 ≤(1 + γη)ϕt + 2λ
√
ψ2
t + ϕ2

t

For t+ 1 ≤ T , we have:{
4λ(t+ 1)ψt+1 ≥ 4λ(t+ 1)

(
(1 + γη)ψt − 2λ

√
ψ2
t + ϕ2

t

)
ϕt+1 ≤ 4λt(1 + γη)ψt + 2λ

√
ψ2
t + ϕ2

t

}
Thus it suffices to prove that:

4λt(1 + γη)ψt + 2λ
√
ψ2
t + ϕ2

t ≤ 4λ(t+ 1)

(
(1 + γη)ψt − 2λ

√
ψ2
t + ϕ2

t

)
(2 + 8λ(t+ 1))

√
ψ2
t + ϕ2

t ≤ 4(1 + γη)ψt.

By choosing
√
cmax ≤ 1

300c+2 min{ 1
2
√

2
, 1/3

8c }, using the facts
{
ηρST =

√
η`

η ≤ cmax/`
, we have

8λ(t+ 1) ≤ 8λT ≤ 8ηρS(300c + 2)cT = 8
√
η`(300c + 2)c ≤ 1/3

This gives:

4(1 + γη)ψt ≥ 4ψt ≥ 7
3

√
2ψ2

t ≥ (2 + 8λ(t+ 1))
√
ψ2
t + ϕ2

t

which finishes the induction of the first part.

Now, using again the induction hypothesis, we know ϕt ≤ 4λt · ψt ≤ ψt, this gives:

ψt+1 ≥ (1 + γη)ψt −
√

2λψt ≥ (1 +
γη

2
)ψt (10)

where the last step follows from
√

2λ =
√

2ηρS(300c + 2) =
√

2
√
η` γρp ≤

√
cmax(300c + 2)γ

η

p
<
γη

2
.

Equation 10 yields that ψt is increasing sequence. Clearly

‖εwt+1
‖ ≤ λ

2η
ψ0 ≤

λ

2η
ψt+1 ≤

λ

2η
‖vt+1‖

‖εut+1‖ ≤
λ

2η
ψ0 ≤

λ

2η
ψt+1 ≤

λ

2η
‖vt+1‖

Thus we have completed the induction.
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Finally, combining Eq.(9) and (10) we have for all t < T :

(200c+1)S ≥ ‖vt‖ ≥ ψt ≥ (1+
γη

2
)tψ0 = (1+

γη

2
)tµR

2 = (1+
γη

2
)t
S
κ

1

p
= (1+

γη

2
)t

δ

2
√
d

S
κ

1

p

This implies:

T <
log( (200c+1)

2
√
d

κd
δ · p)

log(1 + γη
2 )

≤
log((200c + 1)) + log(κdδ ) + log p

(γη2 )
≤ 2 log(200c + 1)

γη
+2

log(κdδ )

γη
+2

p

γη

The last inequality is due to the following facts

• p = log(κdδ ) ≥ 1 and ∀x ≥ 1 : log x ≤ x.

• ∀x ≥ 0 : log(1 + x) ≤ x thus log(1 + γη
2 ) ≤ γη

2 .

• T = p
γη

Therefore, it holds that:

T < 2 log(200c + 1)
p

γη
+ 4T ≤ T(2 log(200c + 1) + 4)

By choosing constant c to be large enough to satisfy 2 log(200c + 1) + 4) ≤ c, for example (i.e
c ≥ 21), we will have T < cT, which finishes the proof.
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(C): Until now we have proved that firstly if approximate gradient descent from u0 does not decrease func-
tion value, then all the iterates must lie within a small ball around u0 (Lemma 17) and secondly starting an
approximate descent from w0, which is u0 but displaced along e1 direction (negative eigenvalue’s eigen-
vector for at least a certain distance), will decreases the function value if {ut} is bounded. (Lemma 18).

The following lemma combines the above two lemmas:

Lemma 19. There exists a universal constant ĉmax, for any δ ∈ (0, dκe ], let f(·), x̂ satisfies the
following conditions

‖∇f(x̂)‖ ≤ G and λmin(∇2f(x̂)) ≤ −γ

and e1 be the minimum eigenvector of∇2f(x̂). Consider two algorithm sequences {ut}, {wt} with
initial points u0,w0 satisfying:

‖u0 − x̂‖ ≤ R
2 , w0 = u0 + µ · R2 · e1, µ ∈ [δ/(2

√
d), 1]

Then, for any step size η ≤ ĉmax/`, at least one of the following is true

• there exists Tu ≤ 1
ĉmax

T such that f(u0)− f(uTu) ≥ 2.5F

• there exists Tw ≤ 1
ĉmax

T such that f(w0)− f(wTw) ≥ 2.5F

Proof of Lemma 19. Let (c
(1)
max, c) be the absolute constant so that Lemma 18 holds. Choose

ĉmax = min{1, c(1)
max,

1

c
}

Let T ? = cT. Notice that by definition T ? ≤ 1
ĉmax

T. Finally , define:

T ◦ = inf
t
{t|f(u0)− f(ut) ≥ 2.5F}

Let’s consider following two cases:

Case T ◦ ≤ T ?: Clearly for this case we have for Tu = T ◦ that

f(u0)− f(uTu) ≥ 2.5F

Case T ◦ > T ?: In this case, by Lemma 17, we know ‖ut − u0‖ ≤ O(S) for all t ≤ T ?. Define

T ◦◦ = inf
t
{t|f(w0)− f(wt) ≥ 2.5F}

By Lemma 18, we immediately have T ◦◦ ≤ T ? = cT. Clearly for this case we have for Tu = T ◦◦

we have that
f(w0)− f(wTw

) ≥ 2.5F.
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Having expanded the basic lemmas ((A),(B),(C)) of [JGN+17] for the zero order case, we are able to use
the basic geometric upper bound of the stuck region. For the sake of completeness we state again the main
lemma:

Lemma 20. Let f be a `-gradient Lipschitz and ρ-Hessian Lipschitz function. There exists universal
constant cmax, for any δ ∈ (0, dκe ], suppose we start with point x̂ satisfying following conditions:

‖∇f(x̂)‖ ≤ G and λmin(∇2f(x̂)) ≤ −γ
Let x0 = x̂ + ξ where ξ come from the uniform distribution over ball with radius r = R

2 , and let
xt be the iterates of approximate gradient descent from x0 and T = T

cmax
. Then, when step size

η ≤ cmax/`, with at least probability 1− δ, we have that:

∃t ≤ T : f(x̂)− f(xt) ≥ F

Proof of Lemma 20. By adding perturbation, in worst case we increase function value by:

f(x0)− f(x̂) ≤ ∇f(x̂)>ξ +
`

2
‖ξ‖2 ≤ 3`

8
R2 =

3`

8

4S2

κ2p2
=

3`

2

Fp
γ

κ2p2
≤ 3

2
F

1

κp
≤ 3

2
F

We know x0 come from the uniform distribution over Bx̂(r). Let A ⊂ Bx̂(r) denote the set of bad
starting points

A = {x ∈ Bx̂(r)| ∀t ≤ T : f(x0)− f(xt) < 2.5F}
otherwise if x0 ∈ Bx̂(r) \ A, we have that

∃t ≤ T : f(x0)− f(xt) ≥ 2.5F

By applying Lemma 18, we know for any x0 ∈ A, it is guaranteed that

x0 ± µre1 6∈ A where µ ∈ [
δ

2
√
d
, 1]

where e1 is the eigenvector of∇2f(x̂) with the smallest negative eigenvalue.

Let us denote IA(·) be the indicator function of being inside set A. For a vector x let us define the
following quantities

xe1
= 〈x, e1〉

x¬e1 =
∏

Rd\{e1}

x

Recall B(d)(r) be d-dimensional ball with radius r. By calculus, this gives an upper bound on the
volume of A:

Vol(A) =

∫
B(d)

x̂ (r)

dx · IA(x)

=

∫
B(d−1)

x̂ (r)

dx¬e1

∫ x̂e1+
√
r2−‖x̂¬e1−x¬e1‖2

x̂e1−
√
r2−‖x̂¬e1−x¬e1‖2

dxe1 · IA(x)

≤
∫
B(d−1)

x̂ (r)

dx¬e1
·
(

2 · δ

2
√
d
r

)
= Vol(B(d−1)

0 (r))× δr√
d

Then, we immediately have the ratio:

Vol(A)

Vol(B(d)
x̂ (r))

≤
δr√
d
× Vol(B(d−1)

0 (r))

Vol(B(d)
0 (r))

=
δ√
πd

Γ(d2 + 1)

Γ(d2 + 1
2 )
≤ δ√

πd
·
√
d

2
+

1

2
≤ δ

The second last inequality is by the property of Gamma function that Γ(x+1)
Γ(x+1/2) <

√
x+ 1

2 as long
as x ≥ 0. Therefore, with at least probability 1− δ, x0 6∈ A. In this case, we have that there exists
a t ≤ T :

f(x̂)− f(xt) =f(x̂)− f(x0) + f(x0)− f(xt)

≤2.5F− 1.5F ≥ F

which finishes the proof.
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It is easy to check that our initial Lemma 16 can be derived by substituting η = c
` , γ =

√
ρε, δ =

d`√
ρεe

χ and simply applying the definitions of G,T,F, gthres, tthres, fthres into Lemma 20.
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