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A Search on Delaunay Graph

Greedy search on Delaunay graph is sufficient and necessary for achieving the global optimum in
ANN search [1, 2]. The sufficiency is generalized to a larger class of f in [4]. We first consider a
general optimization problem. Let X ⊂ Rd, we consider a data set S = {x1, . . . , xn} ⊂ X and aim
to solve the optimization problem, for q ∈ X ,

argmax
xi∈S

f(xi, q) where f : X ×X → R. (1)

Assuming f is continuous, we have the following theorem.
Theorem 2. For given f , we assume for any dataset S, each the Voronoi cell Ri is a connected. Let
G = (S,E) be the Delaunay graph w.r.t. the Voronoi cells. Then for any q ∈ X , simple greedy search
on Delaunay graph returns the solution of (1). In other words, letN(xi) = {xj ∈ S : {xi, xj} ∈ G}
be the neighbors of xi on Delaunay graph. If xi satisfies

f(xi, q) ≥ max
xj∈N(xi)

f(xj , q), (2)

then xi a solution of (1). Conversely, for any G′ does not contain Delaunay graph as a subgraph,
there exists a query q ∈ Y such that greedy search onG′ does not always retrieve all global maximum.

Proof. By the assumption on f , we have

R̃i =
⋂

x∈N(xi)

{q ∈ X : f(xi, q) ≥ f(xj , q)}

is connected and Ri ∪ {q} ⊂ R̃i. Hence we can define a path c : [0, 1] → Rk such that c(0) ∈ Ri

and c(1) = q. For every xj ∈ S, f(xj , c(0)) ≤ f(xi, c(0)). If f(xj , c(1)) ≥ f(xi, c(1)), then
by intermediate value theorem, there exists t ∈ [0, 1] such that f(xj , c(t)) = f(xi, c(t)). Hence
Ri ∩Rj 6= ∅, and xj is a neighbor of xi on G. In this case, by (2), we must have f(xi, q) = f(xj , q).
Therefore, for xj ∈ S, we have f(xi, q) ≥ f(xj , q).
Conversely, suppose G′ misses an edge in Delaunay graph, then there exists xi and xj such that
Ri ∩Rj 6= ∅, but xj /∈ N(xi). Suppose the query q ∈ Ri ∩Rj and the initial point is xi, then both
xi and xj are global maximum of f( · , q). xj is not neighbor xi, but xi is a global maximum, so
greedy search stops at this step. Thus, xj cannot be discovered as a global maximums.

B Additional Comments on Assumption 1

Assumption 1 eases the arguments in Section 3. For better understanding of Assumption 1, we
develop the following equivalent expressions.
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Proposition 3. The following are equivalent:

(a) S satisfies (A1).

(b) The convex hull of S contains 0 as an interior point.

(c) For every a ∈ Rd\{0}, there exists x ∈ S such that x>a > 0.

Proof. (a)⇒ (b). Suppose 0 is not an interior point of Conv(S), then there exists a closed half-space
H with a boundary point 0 contains S. H is a convex cone, so coni(S) ⊂ H $ Rd.

(b) ⇒ (c). For every a ∈ Rd\{0}, there exists β > 0 such that βa ∈ Conv(S). Hence βa =∑n
i=1 αixi for some αi ≥ 0. Then 0 < βa>a = βa>

∑n
i=1 αixi = β

∑n
i=1 αix

>
i a, so there exists

x ∈ S such that x>a > 0.

(c)⇒ (a). Suppose coni(S) 6= Rd, then coni(S) ⊂ H for some closed half-space H . For a /∈ H
such it is perpendicular to the boundary H , there does not exists x ∈ S such that x>a > 0.

Suppose Assumption 1 is not satisfied, the MIPS problem is still interesting. We will discuss this
situation in the following two cases.
Case 1. If Assumption 1 is not true, but the queries always locate in the conical hull of the dataset S,
then our approach is still valid because, for every query, the correct solution of MIPS problem is still
a neighbor of 0 after Möbius transformation.

Case 2. Suppose Assumption 1 is not true, and queries can be any points in the Euclidean space, then
our approach does not work. However, we can slightly change the graph construction algorithm as
follows. We find the center of the dataset, say c, then we apply the transformation

g(x) =
x− c
‖x‖2

to every data point to obtain S̃. We note that such g(x) is still a Möbius transformation since it is
of the form in (3). It is not difficult to check the isomorphism between IP-Delaunay graph and the
subgraph of `2-Delaunay graph introduced in Corollary 1. However, this method is only suggested
in this special case. Centering the data points changes all the norms, while the length of the vector
decides the chance of being returned in MIPS problem.

C Proof of Theorem 1

(a)⇒ (b). By Definition 1, the Voronoi cell Ri w.r.t. inner product and xi is

Ri = {q 6= 0 : x>i q ≥ x>k q for k ∈ [n]}.

Similarly,

Rj = {q 6= 0 : x>j q ≥ x>k q for k ∈ [n]}.

By Definition 2, (a) implies there exists a ∈ Ri ∩Rj . a also satisfies x>i a = x>j a ≥ max
x∈S

x>a > 0.

(b)⇒ (a). If a satisfies statement (b), then a ∈ Ri ∩Rj , which implies (a) by Definition 2.

(b)⇒ (c). Firstly, we notice that xi = yi/‖yi‖2, then we let b = x>i a and c = a
2b . We note that

b > 0 by Proposition 3 (c). Then we have

y>i c =
y>i a

2x>i a
=
y>i a‖yi‖2

2y>i a
=

1

2
‖yi‖2.

Hence,‖yi − c‖2 = ‖yi‖2 − 2y>i c + ‖c‖2 = ‖yi‖2 − ‖yi‖2 + ‖c‖2 = ‖c‖2. Using (A1), we have
x>i a ≥ maxx∈S x

>a > 0, so for x ∈ S and y = x/‖x‖2 ∈ S′,

y>c =
y>a

2x>i a
=
x>j a‖yj‖2

2x>a
≤ 1

2
‖yj‖2.
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Therefore, ‖y − c‖2 = ‖y‖2 − 2y>c+ ‖c‖2 ≤ ‖y‖2 − ‖y‖2 + ‖c‖2 = ‖c‖2. Since this is true for
all x ∈ S, we have ‖c‖ ≤ miny∈S′ ‖y − c‖. Since x>i a = x>j a, we can repeat the arguments for xj
to obtain statement (c).

(c)⇒ (b). This can be proved by observing that every step of the proof of (b)⇒ (c) is invertible.

(c)⇔ (d). This is due to empty sphere criterion. See Proposition 2.

D Additional Empirical Experiments

In [4], it was claimed that their algorithm can adopt any graph construction algorithm, including
NSW [2] and HNSW [3]. For the sake of fairness, we compare Möbius-Graph with different
versions of ip-NSW. Edge selection is a novel contribution of HNSW. However, there is no guarantee
for its applicability on non-metric measure. We compare the MIPS efficiency of ip-NSW with and
without edge selection step and find an interesting observation. Figure 6 shows that, for Amovie and
Yelp, edge selection results in poor performance, while the effect is not obvious on the other two
datasets. It is possible that edge selection is not helpful when the proportion of extreme points is small.

The hierarchical graph structure in HNSW is to perform multi-scale hopping. Our Möbius-Graph can
find good starting points, so it would be interesting to see whether ip-NSW can work well by starting
points found by Möbius-Graph. Here we design one variant for ip-NSW, ip-NSW-init, which gives
up the hierarchical index structure but exploits starting points found by Möbius-Graph. For each
query, we will exploit Möbius-Graph to find a start point by conducting one step greedy search. This
step is done offline and the time cost will not be counted as that of ip-NSW-init. The results are
represented in Figure 7. If ip-NSW starts searching from initial points found by Möbius-Graph, its
performance can be significantly improved in top-1 inner product search. However, such difference
disappears if we consider top-100 results. We also compare the effect of hierarchical graph structure
on the performance of ip-NSW. As can be seen in Figure 8, its impact is very little.
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Figure 6: Experimental results for Möbius-Graph, ip-NSW with and without edge selection.
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Figure 7: Experimental results for Möbius graph, ip-NSW using random initial points and ip-NSW
using initial points from Möbius graph.
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Figure 8: Experimental results for Möbius-Graph, ip-NSW with and without hierarchical structure.
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Figure 9 completes the experimental results of Figure 4 in Section 5.
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Figure 9: Experimental results for Recall vs. Percentage of Computations. We show remaining results
for top-1 and top-100 labels. The curves for Range-LSH on Music-100 are out of the showing scopes.
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