
Supplement: Proofs

Theorem 1

The minimizing hypothesis of the empirical risk Aerm(Sn) is attained for the mean that equals
µn := 1

n ∑
n
i=1 zi. Equivalently, we have µn+1 := 1

n+1 ∑
n+1
i=1 zi for the parameter value that defines

Aerm(Sn+1). Let F be the true cumulative distribution function for a single observation z and let Fn be
the true cumulative distribution function for µn. For simplicity, in what follows, all integrals are taken
over Rd and the density outside of Z is simply taken to be equal to 0. The negative log-likelihoods,
in expectation over the samples Sn, equals
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Following Equation (4), we consider the difference between the above term and the one corresponding
to n+1 training samples. As only the last term differs in the expressions for n and n+1 samples, we
find that this difference equals∫
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Z is bounded, so the (noncentral) second moment matrix M exists and the difference simplifies to∫
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This proves that the learner is globally (Z , `)-monotonic. �

Lemma 1

Let P(a) = q and P(b) = 1−q. The expected risk over Sn then equals

R(q) :=
n
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The derivative to q of the above equals
d
dq
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Taking the limit q→ 0, all terms become zero for k > 1. For k = 0, we get `(a,h0
n)− (n+1)`(b,h0

n)
and, for k = 1, we get n`(b,h1

n−1). Similarly, for a training sample size of n+1, the only nonzero
terms we get are for k ∈ {0,1}, as the expression for the derivative is essentially the same.

It shows that the q-derivative evaluated in 0 of the difference in expected risk from Equation (4) equals
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be further simplified to −`(b,h0
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n)− n`(b,h1
n−1), as `(a,h0

n) = `(a,h0
n+1) and

`(b,h0
n) = `(b,h0

n+1).

If this derivative is strictly larger than 0, continuity in q implies that there is a q > 0 such that the
actual risk difference becomes positive. This shows that Aerm is not locally (Z , `,n)-monotonic. �
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Theorem 2

Let us first consider the squared loss. Take a = (a1,0, . . . ,0,ad+1) and b = (b1,0, . . . ,0,bd+1), such
that the input vectors, (a1,0, . . . ,0) and (b1,0, . . . ,0), which constitute the first d coordinates are in
B0 ⊂ Z . The variables ad+1 and bd+1 constitute the outputs. Let both first input coordinates a1
and b1 not be equal to 0. All other input coordinates do equal 0. In this case, all (minimum-norm)
hypotheses are finite and Remark 2 applies to this setting. So we study whether (n+1)`(b,h1

n)−
n`(b,h1

n−1)> 0 in order to be able to invoke Lemma 1. To do so, we exploit that we can determine
h1

n in closed-form. As all input variation occurs in the first coordinate only, we have that h1
n =(

a1ad+1−nb1bd+1
a2

1+nb2
1

,0, . . . ,0
)
∈ Rd , which implies that `(b,h1
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. In the

same way we, find that `(b,h1
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. Now take the limit of b1 to 0 to

obtain (n+1)`(b,h1
n)−n`(b,h1

n−1) = (n+1)b2
d+1−nb2

d+1 = b2
d+1. For any bd+1 bounded away from

0, this shows that for all n∈N there is a b1 > 0, small enough, such that (n+1)`(b,h1
n)−n`(b,h1

n−1)>
0. This shows in turn that there exists a b1 and a corresponding bd+1 6= 0, such that Aerm under the
squared loss is not locally (Z , `,n)-monotonic. As this holds for all n, we conclude that it also is not
weakly (Z , `,N)-monotonic for any N ∈ N.

For the absolute loss, we consider the same setting as for the squared loss and its very beginning
proceeds along the exact same lines. The proof starts to deviate at the calculation of `(b,h1

n) and
`(b,h1

n−1). Still the same as for the squared loss, as all input variation occurs in the first coordinate,
we only have to study what happens in that subspace. This means that all other d−1 elements of the
minimum-norm solutions we consider will be 0. As h1

n is the empirical risk minimizer for one a and
n bs, we have

h1
n = argmin

h∈Rd

1
n+1

(|a1h1−ad+1|+n|b1h1−bd+1|) , (15)

where h1 is the first element of h. We can rewrite the main part of the objective function as
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From this, one readily sees that the first coordinate of the minimizer h1
n equals ad+1

a1
if |a1|> n|b1|

and bd+1
b1

if |a1| < n|b1|. If |a1| = n|b1|, then it picks min( ad+1
a1

,
bd+1

b1
) as we are looking for the

minimum-norm solution. For that same reason, all other entries of h1
n equal 0. Similar expressions,

with n− 1 substituted for n, hold for h1
n−1. If we take |b1| < |a1|

n+1 , then we get (n+ 1)`(b,h1
n)−

n`(b,h1
n−1) = (n+1)| ad+1

a1
b1−bd+1|−n| ad+1

a1
b1−bd+1|= | ad+1

a1
b1−bd+1|, which is larger than 0 if

a1bd+1 6= b1ad+1. Again along the same lines as for the squared loss, this shows that regression using
the absolute loss is not locally (Z , `,n)-monotonic and, as this holds for all n, we conclude that it is
not weakly (Z , `,N)-monotonic for any N ∈ N.

Finally, the hinge loss. As we are necessarily dealing with a classification setting now, ad+1 and bd+1
are in {−1,+1}. Now, take a1 > 0, b1 > 0, ad+1 = +1 and bd+1 = −1. Any choice of h can only
classify either a or b correctly, as both a1 and b1 are positive. With this, the empirical risk becomes

1
n+1 (max(0,1−a1h)+nmax(0,1+b1h)) and only solutions h for which the first coordinate is in
[− 1

b1
, 1

a1
] need to be considered, as values outside of this interval will only increase the loss for either

a or b, while the loss remains the same for the other value. Being limited to the interval [− 1
b1
, 1

a1
]

implies max(0,1− a1h) = 1− a1h = |1− a1h|. So we will find exactly the same solutions as we
found for the absolute loss, but with ad+1 and bd+1 limited to {−1,+1}. �

Theorem 3

Take a and b to be in B0 ⊂ Z . As opposed to the proof for Theorem 2, we now cannot use the
suggestion from Remark 2, as for the log-likelihood it does not hold that `(b,h0

n) = `(b,h0
n+1) = 0.

Therefore, we need to look at the full expression of Lemma 1: −`(b,h0
n+1) + (n+ 1)`(b,h1

n)−
n`(b,h1

n−1). The sigma that belongs to the empirical risk minimizing hypothesis h0
n+1 equals

√
b2.
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For h1
n−1 it is

√
a2+(n−1)b2

n and for h1
n we get

√
a2+nb2

n+1 . Therefore, we come to the following negative
log-likelihoods:

`(b,h0
n+1) = log |b|+ 1

2
+

1
2
(log(2)+ log(π)), (17)

`(b,h1
n) =

nb2

2(a2 +(n−1)b2))
+ log

(√
a2 +b2(n−1)

n

)
+

1
2
(log(2)+ log(π)), (18)

`(b,h1
n−1) =

(n+1)b2

2(a2 +nb2)
+ log

√a2 +b2n
n+1

+
1
2
(log(2)+ log(π)). (19)

Now, consider the limit of b going to 0. The last two negative log-likelihoods are finite in that case,
while `(b,h0

n+1) will go to minus infinite. This implies that for b > 0 small enough, we have that
−`(b,h0

n+1)+(n+1)`(b,h1
n)−n`(b,h1

n−1)> 0 (because of the term−`(b,h0
n+1)). In conclusion, our

density estimator is not locally (Z , `,n)-monotonic and, as this holds for all n, we conclude that it is
not weakly (Z , `,N)-monotonic for any N ∈ N. �
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