
A Evidence Lower Bound
The ELBO can readily be extended for Riemannian latent spaces by applying Jensen’s inequality w.r.t.
the metric induced measure dM which yield

ln p(x) = ln

Z

Z=M
p✓(x, z)dM(z) = ln

Z

M
p✓(x|z)p(z)dM(z)

= ln

Z

M

p✓(x|z)p(z)
q�(z|x)

q�(z|x)dM(z)

�
Z

M
ln

p✓(x|z)p(z)
q�(z|x)

q�(z|x)dM(z)

=

Z

M
[ln p✓(x|z)� ln p(z)� ln q�(z|x)] q�(z|x) dM(z)

= Ez⇠q�(·|x)M(·) [ln p✓(x|z) + ln p(z)� ln q�(z|x)]
, LM(x; ✓,�)

⇡
X

k

ln p✓(x|zk) + ln p(zk)� ln q�(z
k|x), zk ⇠ q�(·|x)

p
|G(·)|

B Hyperbolic normal distributions
In this section, we first review some canonical generalisation of the normal distributions to Riemannian
manifolds, and then introduce in more details the Riemannian and wrapped normal distributions on
the Poincaré ball. Finally, we give architecture and training details about the conducted experiments.

B.1 Probability measures on Riemannian manifolds

Probability measures and random vectors can intrinsically be defined on Riemannian manifolds so as
to model uncertainty on non-flat spaces (Pennec, 2006). The Riemannian metric G(z) induces an
infinitesimal volume element on each tangent space TzM, and thus a measure on the manifold,

dM(z) =
p
|G(z)|dz, (4)

with dz being the Lebesgue measure. Random variables z 2 M would naturally be characterised
by the Radon-Nikodym derivative of a measure ⌫ w.r.t. the Riemannian measure dM(·) (assuming
absolute continuity)

f(z) =
d⌫(z)

dM(z)
.

Since the normal distribution plays such a canonical role in statistics, generalising it to manifold is of
interest. Given a Fréchet expectation µ 2 M – defined as minimisers of

R
M dM(µ, z)2p(z)dM(z)

– and a dispersion parameter � > 0 (generally not equal to the standard deviation), several properties
ought to be verified by such generalised normal distributions. Such a distribution should tend towards
a delta function at µ when � ! 0 and to an (improper for non-compact) uniform distribution when
� ! 1. Also, as the curvature tends to 0, one should recover the vanilla normal distribution. Hereby,
we review canonical generalisations of the normal distribution, which have different theoretical and
computational advantages.

Maximum entropy normal The property that Pennec (2006) takes for granted is the maximization
of the entropy given a mean and a covariance matrix, yielding in the isotropic setting

d⌫R(z|µ,�2)

dM(z)
= N R

M(z|µ,�2) =
1

ZR exp

✓
�dM(µ, z)2

2�2

◆
, (5)

with dM being the Riemannian distance on the manifold induced by the tensor metric. Such a
formulation – sometimes referred as Riemannian Normal distribution – is used by Said et al. (2014)
in the Poincaré half-plane, or by Hauberg (2018) in the hypersphere S

d. Sampling from such
distributions and computing the normalising constant – especially in the anisotropic setting – is
usually challenging.
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Wrapped normal Another generalisation is defined by taking the image by the exponential map of
a Gaussian distribution on the tangent space centered at the mean value. Such a distribution has been
referred in literature as wrapped, push-forward, exp-map or tangential normal distribution. Sampling
is therefore straightforward. The pdf is then readily available through the change of variable formula
if one can compute the Jacobian of the exponential map (or its inverse). Hence such a distribution is
attractive from a computational perspective. Grattarola et al. (2019) and Nagano et al. (2019) rely on
such a distribution defined on the hyperboloid model. Wrapped distributions are often encountered in
the directional statistics (Ley and Verdebout, 2017; Hauberg, 2018).

Restricted normal What is more, for sub-manifolds of R
n, one can consider the restriction of a

normal distribution pdf to the manifold. This yields the Von Mises distribution on S
1 and the Von

Mises-Fisher distribution on S
d (Hauberg, 2018) and the Stiefel manifold.

Diffusion normal Yet another generalisation arises by defining the normal pdf through the heat

kernel, or fundamental solution of the heat equation, K : R
+ ⇥M⇥M ! M,

N�
M(z|µ,�2) = K(�2/2,µ, z). (6)

See for instance Hsu (2008) for an introduction of Brownian motion on Riemannian manifolds
and Paeng (2011) for conditions on existence and uniqueness of the kernel. Sampling amounts to
simulating a Brownian motion, which may be challenging for non sub-manifolds of R

n. Closed form
solutions of the heat kernel is available for some manifolds such as spheres or flat tori, otherwise
numerical approximations can be used. Such a distribution has been used in a VAE setting (Rey et al.,
2019; Li et al., 2019).

Other than normal distributions Of course one needs not to restrict itself to generalisations of
the normal distribution. For instance, one could consider a wrapped spherical Student-t as z ⇠
expµ# St(0, ⌫) or a Riemannian Student-t with density proportional to

�
1 + dM(z,µ)2/⌫

�(�⌫+1)/2

(by making sure that this density is dM-integrable).

B.2 Hyperbolic polar coordinates

In this subsection, we review the hyperbolic polar change of coordinates allowing us to reparametrise
hyperbolic normal distributions in a similar fashion than the Box–Muller transform (Box and Muller,
1958).

Polar coordinates Euclidean polar coordinates, express points z 2 R
d through a radius r � 0 and

a direction ↵ 2 S
d�1 such that z = r↵. Yet, one could choose another pole (or reference point)

µ 6= 0 such that z = µ+ r↵. Consequently, r = dE(µ, z). An analogous change of variables can
also be constructed in Riemannian manifolds relying on the exponential map instead of the addition
operator. Given a pole µ 2 B

d
c , the point of hyperbolic polar coordinates z = (r,↵) is defined

as z = �(r), with r = dcp(µ, z) and � : R
+ ! B

d
c a curve such that �0(0) = ↵ 2 S

d�1. Hence

z = expcµ

⇣
r
�c
µ
↵
⌘

since dcp(µ, z) = k lncµ(x)kµ = k r
�c
µ
↵kµ = r.

Tensor metric We derive below the expression of the Poincaré ball metric in such hyperbolic polar
coordinate, for the specific setting where µ = 0: z = expc0(

r
2↵). Switching to Euclidean polar

coordinate we get

ds2Bd
c
= (�c

z)
2(dz21 + · · ·+ dz2d) =

4

(1� ckxk2)2
dz2

=
4

(1� c⇢2)2
(d⇢2 + ⇢2ds2Sd�1). (7)

Let’s define r = dcp(0, z) = L(�), with � being the geodesic joining 0 and z. Since such a geodesic
is the segment [0, z], we have

r =

Z ⇢

0
�c
tdt =

Z ⇢

0

2

1� ct2
dt =

Z p
c⇢

0

2

1� t2
dtp
c
=

2p
c
tanh�1(

p
c⇢).
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Plugging ⇢ = 1p
c
tanh(

p
c r2 ) (and d⇢ = (1� c⇢2)/2dr) into Eq 7 yields

ds2Bd
c
=

4

(1� c⇢2)2
1

4
(1� c⇢2)2dr2 +

✓
2

⇢

1� c⇢2

◆2

ds2Sd�1

= dr2 +

0

B@2

1p
c
tanh(

p
c r2 )

1� c
⇣

1p
c
tanh(

p
c r2

⌘2

1

CA

2

ds2Sd�1

= dr2 +

✓
1p
c
sinh(

p
cr)

◆2

ds2Sd�1 . (8)

The Euclidean line element is recovered when c ! 0

ds2Rd = dr2 + r2ds2Sd�1 . (9)

In an appropriate orthonormal basis of TµB
d
c the hyperbolic polar coordinate leads to the following

expression of the matrix of the metric

G(z) =

 
1 0

0
⇣

sinh(
p
cr)p

cr

⌘2
Id�1

!
. (10)

Hence, the density of the Riemannian measure with respect to the image of the Lebesgue measure of
TµB

d
c by expcµ is given by

p
|G(z)| =

✓
sinh(

p
cr)p

cr

◆d�1

. (11)

This result holds for any reference point µ 2 B
d
c , with r = dcp(µ, z), since the metric induced

measure is invariant under the isometries of the manifold (i.e. Möbius transformations). This result
can also be found in Chevallier et al. (2015); Said et al. (2014). Also, the fact that the line element
ds2Bd

c
and equivalently the metric G only depends on the radius in hyperbolic polar coordinate, is a

consequence of the hyperbolic space’s isotropy.

Integration We now make use of the aforementioned hyperbolic polar coordinates to integrate
functions following Said et al. (2014). The integral of a function f : B

d
c ! R can be computed by

using polar coordinates,
Z

Bd
c

f(z)dM(z) =

Z

Bd
c

f(z)
p
|G(z)| dz

=

Z

TµBd
c
⇠=Rd

f(v)
p

|G(v)| dv (12)

=

Z

R+

Z

Sd�1

f(r)
p
|G(r)|dr rd�1 dsSd�1

=

Z

R+

Z

Sd�1

f(r)

✓
sinh(

p
cr)p

cr

◆d�1

dr rd�1 dsSd�1

=

Z

R+

Z

Sd�1

f(r)

✓
sinh(

p
cr)p

c

◆d�1

dr dsSd�1 . (13)

B.3 Wrapped hyperbolic normal distribution on B
d
c

Anisotropic The wrapped normal distribution considers a normal distribution in the tangent space
TµB

d
c being pushed-forward along the exponential map. One can obtain sampled as follow

z = expcµ

⇣
G(µ)�

1
2 v
⌘
= expcµ

✓
v

�c
µ

◆
, with v ⇠ N (·|0,⌃). (14)
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Then, its density is given by

NW
Bd
c
(z|µ,⌃) = N

⇣
G(µ)1/2 logµ(z)

��� 0,⌃
⌘✓ p

c dcp(µ, z)

sinh(
p
c dcp(µ, z))

◆d�1

= N
�
�c
µ logµ(z)

�� 0,⌃
�✓ p

c dcp(µ, z)

sinh(
p
c dcp(µ, z))

◆d�1

(15)

with G(µ)1/2 the unique square-root matrix of G(µ) (thanks to the positive definiteness of the metric
tensor). This can be shown by plugging this density as f in Equation (12) with v = r↵ = �c

µ logµ(z),
we get
Z

Bd
c

NW
Bd
c
(z|µ,⌃) dM(z) =

Z

TµBd
c
⇠=Rd

N (v | 0,⌃)
✓ p

c kvk2
sinh(

p
c kvk2)

◆d�1p
|G(v)| dv

=

Z

Rd

N (v | 0,⌃)
✓ p

c kvk2
sinh(

p
c kvk2)

◆d�1✓ sinh(
p
c kvk2)p

c kvk2

◆d�1

dv

=

Z

Rd

N (v | 0,⌃) dv.

kµ
k 2

=
0.
0

kµ
k 2

=
0.
4

� = (1.0, 1.0) � = (2.0, 0.5) � = (0.5, 2.0)

Figure 8: Anisotropic wrapped normal probability measures for Fréchet means µ (red +), concentra-
tions ⌃ = diag(�) and c = 1.

Isotropic In the isotropic setting, we therefore getZ

Bd
c

NW
Bd
c
(z|µ,�2) dM(z) =

Z

R+

Z

Sd�1

1

ZR e
� r2

2�2 rd�1dr dsSd�1 . (16)

The hyperbolic radius r = dcp(µ, z) consequently follows the usual � distribution with density

⇢W(r) / 1R+(r) e
� r2

2�2 rd�1, (17)
and the density of the wrapped normal given by

NW
Bd
c
(z|µ,�2) =

d⌫W(z|µ,�2)

dM(z)
= (2⇡�2)�d/2 exp

 
�
dcp(µ, z)

2

2�2

!✓ p
c dcp(µ, z)

sinh(
p
c dcp(µ, z))

◆d�1

.
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B.4 Maximum entropy hyperbolic normal distribution on B
d
c

Alternatively, by considering the maximum entropy generalisation of the normal distribution one gets
(Pennec, 2006)

N R
Bd
c
(z|µ,�2) =

d⌫R(z|µ,�2)

dM(z)
=

1

ZR exp

 
�
dcp(µ, z)

2

2�2

!
. (18)

Such a pdf can be computed pointwise once ZR is known, which we derive in Appendix B.4.3. Also,
we observe that as c and � get smaller (resp. bigger), the Riemannian normal pdf gets closer (resp.
further) to the wrapped normal pdf.

B.4.1 Reparametrisation

Plugging the Riemannian normal density as f in Equation (13), with r = dcp(µ, z), we have

Z

Bd
c

N R
Bd
c
(z|µ,�2) dM(z) =

Z

R+

Z

Sd�1

1

ZR e
� r2

2�2

✓
sinh(

p
cr)p

c

◆d�1

dr dsSd�1

=
1

ZR

 Z

R+

e�
r2

2�2

✓
sinh(

p
cr)p

c

◆d�1

dr

!✓Z

Sd�1

dsSd�1

◆
(19)

Hence, samples z ⇠ N R
M(z|µ,�2)dM(z) can be reparametrised as

z = expcµ

✓
r

�c
µ

↵

◆
(20)

with the direction ↵ being uniformly distributed on the hypersphere S
d�1, i.e.

↵ ⇠ U(Sd�1)

and the hyperbolic radius r = dcp(µ, z) distributed according to the following density (w.r.t the
Lebesgue measure)

⇢R(r) =
1R+(r)

ZR
r

e�
r2

2�2

✓
sinh(

p
cr)p

c

◆d�1

. (21)

Developed expression By expanding the sinh term using the binomial formula, we get

⇢R(r) =
1R+(r)

ZR
r

e�
r2

2�2

✓
sinh(

p
cr)p

c

◆d�1

=
1R+(r)

ZR
r

e�
r2

2�2

 
e
p
cr � e�

p
cr

2
p
c

!d�1

=
1R+(r)

ZR
r

e�
r2

2�2
1

(2
p
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d�1X
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d� 1

k

◆⇣
e
p
cr
⌘d�1�k ⇣

�e�
p
cr
⌘k

=
1R+(r)

ZR
r

1

(2
p
c)d�1

e�
r2

2�2

d�1X

k=0

(�1)k
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d� 1

k

◆
e(d�1�2k)

p
cr

=
1R+(r)

ZR
r

1

(2
p
c)d�1

d�1X

k=0

(�1)k
✓
d� 1

k

◆
e�

r2

2�2 +(d�1�2k)
p
cr

=
1R+(r)

ZR
r

1

(2
p
c)d�1

d�1X

k=0

(�1)k
✓
d� 1

k

◆
e

(d�1�2k)2

2 c�2

e�
1

2�2 [r�(d�1�2k)
p
c�2]2 . (22)
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B.4.2 Sampling

In this section we detail the sampling scheme that we use for the Riemannian normal distribution
N R

Bd
c
(·|µ,�2), along with a reparametrisation which allows to compute gradients with respect to the

parameters µ and �.

Sampling challenges due to the hyperbolic geometry Several properties of the Euclidean space
do not generalise to the hyperbolic setting, unfortunately hardening the task of obtaining samples
from Riemannian normal distributions. First, one can factorise a normal density through the space’s
dimensions – thanks to to the Pythagorean theorem – hence allowing to divide the task on several
subspaces and then concatenate the samples. Such a property does not extend to the hyperbolic
geometry, thus seemingly preventing us from focusing on 2-dimensional samples. Second, in
Euclidean geometry, the polar radius r is distributed according to ⇢W(r) =

1R+ (r)

Zr
e�

r2

2�2 rd�1,
making it easy by a linear change of variable to take into account different scaling values. The
non-linearity of sinh prevent us from using such a simple change of variable.

Computing gradients with respect to parameters So as to compute gradients of samples z with
respect to the parameters µ and � of samples of a hyperbolic distributions, we respectively rely on
the reparametrisation given by Eq 20 for rµz, and on an implicit reparametrisation (Figurnov et al.,
2018) of r for r�z. We have z = expcµ

⇣
r
�c
µ
↵
⌘

with ↵ ⇠ U(Sd�1) and r ⇠ ⇢R(·). Hence,

rµz = rµ expcµ(u), (23)

with u = r
�c
µ
↵ (actually) independent of µ, and

r�z = r� exp
c
µ(u) = ru expcµ(u)

↵

�c
µ

r�r, (24)

with r�(r) computed via the implicit reparametrisation given by

r�(r) = �
�
rrF

R(r,�)
��1 r�F

R(r,�)

= �
�
⇢R(r;�)

��1 r�F
R(r,�). (25)

Sampling hyperbolic radii Unfortunately the density of the hyperbolic radius ⇢R(r) is not a well-
known distribution and its cumulative density function does not seem analytically invertible. We
therefore rely on rejection sampling methods.

Adaptive Rejection Sampling By making use of the log-concavity of ⇢R, we can rely on a
piecewise exponential distribution proposal from adaptive rejection sampling (ARS) (R. Gilks and
Wild, 1992). Such a proposal automatically adapt itself with respect to the parameters �, c and d.
Even though NBd

c
is defined on a d-dimensional manifold, ⇢R is a univariate distribution hence the

sampling scheme is not directly affected by dimensionality. The difficulty in ARS is to choose the
initial set of points to construct the piecewise exponential proposal. To do so, we first compute
the mean m = Er⇠⇢R [r] and standard deviation s = Vr⇠⇢R [r]1/2 of the targeted distribution. Then
we choose a grid ⌘ = (⌘1, . . . , ⌘K) = (linspace(⌘max, ⌘min,K/2), linspace(⌘min, ⌘max,K/2)).
Eventually, we set the initial points (x1, . . . , xK) to xk = m + ⌘k ⇤min(s, 0.95 ⇤m/⌘max). For
our experiments we chose ⌘min = .1, ⌘max = 3,K = 20. We do not adapt the proposal within the
rejection sampling since we empirically found it unnecessary.

Alternatively, we derived bellow two non-adaptive proposal distributions along with their
rejection rate constants. Yet, we observe that these rates do not scale well the dimensionality d and
distortion �, making them ill-suited for practical purposes.

Rejection Sampling with truncated Normal proposal The developed expression of ⇢(r)R from
Eq (22) highlights the fact that the density can immediately be upper bounded by a truncated normal
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density:

⇢(r)R =
1R+(r)

ZR
r
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(2
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Then we choose our proposal g to be the truncated normal distribution associated with k = 0, i.e.
with mean (d� 1)

p
c�2 and variance �2

g(r) =
1r>0
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with

Zg =

r
⇡

2
�

✓
1 + erf

✓
(d� 1)

p
c�p

2

◆◆
. (27)

Computing the ratio of the densities yield
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Rejection Sampling with Gamma proposal Now let’s consider the following Gamma(2,�) den-
sity:

g(r) =
1r>0

Zg(�)
re�

r
�

with
Zg(�) = �(2)�2.

Then log ratio of the densities can be upper bounded as following:
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B.4.3 Normalisation constant

In order to evaluate the density of the Riemannian normal distribution, we need to compute the
normalisation constant, which we derive in this subsection.

Cumulative density function First let’s derive the cumulative density function of the hyperbolic
radius. Integrating the expended density of Eq (22) yields
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with � : x 7! 1
2

⇣
1 + erf

⇣
xp
2

⌘⌘
, the cumulative distribution function of a standard normal distribu-

tion.

Taking the limit FR
r (r) ���!r!1

1 in Eq (30) yield
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Note that by the antisymmetry of erf, one can simplify Eq (31) with a sum over dd/2e terms (as done
in Hauberg (2018)). Also, computing such a sum is much more stable by relying on the log sum exp

trick. Integrating Equation (19) of Appendix B.2 gives

ZR = ZR
r Z↵ (32)

As a reminder, the surface area of the d� 1-dimensional hypersphere with radius 1 is given by

Z↵ = ASd�1 =
2⇡d/2

�(d/2)
.

For the special case of c = 1 and d = 2 we recover the formula given in Said et al. (2014)
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�2

2 erf
✓

�p
2

◆
.

B.4.4 Expectation of hyperbolic radii

Computing the expectation of the hyperbolic radius r ⇠ ⇢R is of use to choose the initial set of points
to construct the piecewise exponential proposal. By integrating the expended density of Eq (22), we
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C Experimental details
In this section we give more details on the datasets, architecture designs and optimisation schemes
used for the experimental results given in Section 5.

C.1 Synthetic Branching Diffusion Process

Generation Nodes (y1, . . . ,yN ) 2 R
n of the branching diffusion process are sampled as follow

yi ⇠ N
�
· |y⇡(i),�

2
0

�
8i 2 1, . . . , N

with ⇡(i) being the index of the ith node’s ancestor and d(i) its depth. Then, noisy observations are
sampled for each node xi,

xi,j = yi + ✏i,j , ✏i,j ⇠ N
�
· |0,�2

j

�
8i, j.

The root x0 is set to 0 for simplicity. The observation dimension is set to n = 50. The dataset
(xi,j)i,j is centered and normalised to have unit variance. Thus, the choice of variance �2

0 does not
matter and it is set to �0 = 1. The number of noisy observations is set to J = 5, and its variance to
�2
j = �2

0/5 = 1/5. The depth is set to 6 and the branching factor to 2.

Architectures Both N -VAE and Pc-VAE decoders parametrise the mean of the unit variance
Gaussian likelihood N (·|f✓(z), 1). Their encoders parametrise the mean and the log-variance
of respectively an isotropic normal distribution N (·|g�(z)) and an isotropic hyperbolic normal
distribution NBd

c
(·|g�(z)). The N -VAE’s encoder and decoder are composed of 2 Fully-Connected

layers with a ReLU activation in between, as summed up in Tables 5 and 6. The Pc-VAE’s design is
similar, the differences being that the decoder’s output is mapped to manifold via the exponential map
expc0, and the decoder’s first layer is made of gyroplane units presented in Section 3.2, as summarised
in Tables 7 and 8. Observations live in X = R

50 and the latent space dimensionality d is set to d = 2.

Table 5: Encoder network for N -VAE
Layer Output dim Activation
Input 50 Identity

FC 200 ReLU

FC 2, 1 Identity

Table 6: Decoder network for N -VAE
Layer Output dim Activation
Input 2 Identity

FC 200 ReLU

FC 50 Identity
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Table 7: Encoder network for Pc-VAE
Layer Output dim Activation
Input 50 Identity

FC 200 ReLU

FC 2, 1 expc0, Identity

Table 8: Decoder network for Pc-VAE
Layer Output dim Activation
Input 2 Identity

Gyroplane 200 ReLU

FC 50 Identity

The synthetic datasets are generated as described in Section 5, then centred and normalised to unit
variance. There are then randomly split into training and testing datasets with a proportion 0.7.

Optimisation Gyroplane offset p 2 B
d
c are only implicitly parametrised to live in the manifold, by

projecting a real vector p = expc0(p
0). Hence, all parameters {✓,�} of the model explicitly live in

Euclidean spaces which means that usual optimisation schemes can be applied. We therefore rely
on Adam optimiser (Kingma and Ba, 2016) with parameters �1 = 0.9, �2 = 0.999 and a constant
learning rate set to 1e � 3. Models are trained with mini-batches of size 64 for 1000 epochs. The
ELBO is approximated with a MC estimate with K = 1.

Baselines The principal component analysis (PCA) embeddings are obtained via a singular-value
decomposition (SVD) by projecting the dataset on the basis associated with the two highest singular
values. The Gaussian process latent variable model (GPLVM) embeddings are obtained by maximising
the marginal likelihood of a (non-Bayesian) GPLVM with RBF kernel, and whose latent variables are
initialised with PCA.

C.2 MNIST digits

The MNIST dataset (LeCun and Cortes, 2010) contains 60,000 training and 10,000 test images of ten
handwritten digits (zero to nine), with 28x28 pixels.

Architectures The architectures used for the encoder and the decoder for Mnist are similar to
the ones used for the Synthetic Branching Diffusion Process. They differ by the dimensions of the
observation space (X = R

28⇥28) and hidden space. The output of the first fully connected layer is
here equal to 600. The latent space dimensionality d is set to 2, 5, 10 and 20 respectively. The bias
of the decoder’s last layer is set to the average value of digits (for each pixel). The architectures
used for the classifier are similar than the decoder architectures, the only difference being the output
dimensionality (10 labels). We initialise the classifier’s first layer with decoder’s first layer weights.
Then the classifier is trained to minimise the cross entropy for 5 epochs, with mini-batches of size 64
and a constant learning rate of 1e�3.

Optimisation We use [0, 1] normalised data as targets for the mean of a Bernoulli distribution,
using negative cross-entropy for log p(x|z). We set the prior distribution’s distortion to � = 1. We
rely on Adam optimiser with parameters �1 = 0.9, �2 = 0.999 and a constant learning rate of 5e�4.
Models are trained with mini-batches of size 128 for 80 epochs.

C.3 Graph embeddings

The PhD advisor-advisee relationships graph (Nooy et al., 2011) contains 344 nodes and 343 edges.
The phylogenetic tree expressing genetic heritage (Hofbauer et al., 2016; Sanderson and Eriksson,
1994) contains 1025 nodes and 1043 edges. The biological set representing disease relationships
(Goh et al., 2007; Rossi and Ahmed, 2015) contains 516 nodes and 1188 edges. We follow the
training and evaluation procedure introduced in Kipf and Welling (2016).

Architectures We also follow the featureless architecture introduced in Kipf and Welling (2016),
namely a two-layer GCN with 32 hidden dimensions to parametrise the variational posteriors, and
a likelihood which factorises along edges p(A|Z) =

QN
i=1

QN
j=1 p(Aij |zi, zj), with A being the

adjacency matrix. The probability of an edge is defined through the latent metric by p(Aij =
1|zi, zj) = 1� tanh(dM(zi, zj)). For the Poincaré ball latent space, the encoder output is projected
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on the manifold: µ = exp0(GCNµ(A)). The latent dimension is set to 5 for the experiments. We
use a Wrapped Gaussian prior and variational posterior.

Optimisation We use the adjacency matrix A as target for the mean of a Bernoulli distribution,
using negative cross-entropy for log p(A|Z). We rely on Adam optimiser with parameters �1 = 0.9,
�2 = 0.999 and a constant learning rate of 1e�2. We perform full-batch gradient descent for 800
epochs and make use of the reparametrisation trick for training.

D More experimental qualitative results
Figure 9 shows latent representations of Pc-VAEs with different curvatures. With "small" curvatures,
we observe that embeddings lie close the center of the ball, where the geometry is close to be
Euclidean. Similarly as Figure 9, Figure 10 illustrates the learned latent representations of Pc-VAE
with decreasing curvatures c, by highlighting the leaned gyroplanes of the decoder.

Figure 9: Branching diffusion process latent representations of Pc-VAE with decreasing curvatures
c = 1.2, 0.3, 0.1 (Left to Right).

Figure 10: Branching diffusion process latent representations of Pc-VAE with decreasing curvatures
c = 1.2, 0.3, 0.1 (Left to Right).
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Figure 11: Branching diffusion process latent representation of P1-VAE (Left) and N -VAE (Right)
with heatmap of the log distance to the hyperplane (in pink).

Figure 12: MNIST average confusion matrices of the classifiers trained on embeddings from the
P1.4-VAE (Left) and N -VAE (Right) models.
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