A Environment Details
Details of the MuJoCo manipulation environments are listed below:

e Visual Fetch Reach (OpenAI Gym [I]). The goal is to move the end effector of the Fetch Robot to
a randomly sampled 3D location. The agent receives a positive reward if the end effector position is
within 5 cm from the goal position. The observation for our policy is the current RGBD image and
the goal is an RGBD image of the end effector in the goal position.

e Visual Hand Reach (OpenAI Gym [I]). A target hand pose with the positions of the five fingers of
a 24 DOF Shadow hand are randomly sampled from a 3D space; the policy is required to control the
hand to reach the positions of all five fingers. The policy outputs motors commands for the 24 DOFs
of the hand. The agent receives a positive reward if the total distance of the end points of the fingers
from the goal positions is less than 3 cm. The observation for our policy is the current RGBD image
and the goal is an RGBD image of the hand in the desired pose.

e Visual Finger Turn (DeepMind Control Suite [2]). A policy needs to control a 3 DOF robot finger
to rotate a body on an unactuated hinge. The agent receives a positive reward if the body tip coincides
with a randomly sampled target location. The observation is three stacked RGBD frames and goal is
an RGBD image with the body rotated in the goal position.

During evaluation, for both environments, a binary sparse reward is given at each time step. A positive
reward Ry = 1 is given when the goal is reached, i.e. ||s;11 — s4]| < € and a negative reward R_ = —1
is given otherwise. Other environment details are summarized in Table [1} Visual Fetch Reach and Visual
Hand Reach environments are taken from OpenAl gym robotics environments. Visual Finger Turn is taken
from DeepMind’s DM Control Suite.

Environment Observation  Goal Action Horizon € (m)
Dimension  Dimension Dimension (T)

Visual Fetch Reach  100x100x4 3 3 50 0.05

Visual Hand Reach  100x100x4 15 24 50 0.03

Visual Finger Turn  100x100x12 2 2 75 0.07

Table 1: Environment details including observation dimensions, goal dimensions in state space (though we
use image goals with the same dimension as the observation for learning), the time horizon, and the distance
threshold for defining task success.

B Auxiliary tasks
In the context of manipulation from visual observations, we consider a set of auxiliary tasks described below:

1. Forward Dynamics [3]: This task enforces forward consistency in the learned latent representa-
tion. Given the current visual observation and the action, the network is asked to predict the latent
representation of the next state. The loss is defined as the following:

L = ||frx(e(or; ), a; 051) — e(or1; 0)|[3,

where fy, and e are the latent space forward model and the CNN encoder respectively, o) is an
observation, and a; is an action.

2. Inverse Dynamics [3]: Given two consecutive image observations, this task predicts the action taken.
The loss is specified by

Lix = || fir(e(os; 8), e(0441; 9); dir) — al[3.

where f;; is the latent space inverse dynamics model.


https://github.com/openai/gym/tree/master/gym/envs/robotics/
https://github.com/deepmind/dm_control

3. Egomotion [4]: Given an image observation and a random transformation of this image, the network
needs to predict the performed transformation. This task forces the network to learn visual correspon-
dences between the transformed image and the original image. In our experiments, the transformation
is constrained to be a planar rotation with a degree of # € [-30°,30°]. The transformed image is then
clipped and scaled to have the same size as the original image. The input to the egomotion prediction
network also shares the convolutional features with other tasks, including the main task. The loss is
defined as:

£eg = Hng(e(Ot; ¢)7€(T0t; ¢);¢eg) - 9”3;

where 7 is the transformation.

4. Autoencoder: This task aims to reconstruct the image observation given the latent representation
e(0; ). It enforces a representation that preserves the information in the original observation as much
as possible. The loss is defined as:

Eae = Hfae(e(ot;gﬁ)); ¢ae) - OtH%

5. Optical Flow [0]: Between every two consecutive visual observations, we first compute the visual
representation of optical flow using Farneback’s [6] algorithm. Then, the network needs to predict
the optical flow result from the latent representation of the two images. This task encourages a latent
representation that focuses more on the moving pixels and could be helpful for the object manipulation
tasks. The optical flow loss is defined as:

Lop = || fop(e(0t; 0), e(0t41; 8)); Pop) — FK (04, 0411)| 3,

where f,, denotes the optical flow prediction network to be learned and FK denotes the Farneback’s
algorithm. Target optical flow representation for two NxNxD frames is an NxNx1 mask where the
value of each pixel in the mask represents the strength of the flow vector at that location.

C Hyper-parameters

All the experiments are run for five random seeds. The hyper-parameters for the manipulation environments
are described in Table [2| For all experiments, the parameters of the encoding convolution layers are shared
among the observation input and the goal input along with all visual information for the auxiliary rewards.

Parameter Value
positive reward (R.) 1
negative reward (R_) -1
optimizer Adam [7]
learning rate 0.001
learning rate for w (af) 0.005 x N (where N comes from
OL-AUX-N)
T

discount (vy) T
target network smoothing (7) 0.98

nonlinearity tanh

replay buffer size 5-103

minibatch size 64

network architecture 4 convolution layers with 64 fil-

ters each followed by 3 hidden
layers with 256 neurons for each

Table 2: Summarized hyper-parameters. We did not tune these hyper-parameters.



D Training Details

To generate success rate plots, after 400 training cycles, we evaluate the policy for 25 episodes. Each plot
is generated from running the same experiment for two random seeds. The solid line represents the median
across different random seeds while the shaded region represents the 25 and 75 percentile. Auxiliary reward
weights (w) are recorded at the same rate as the evaluation cycles. Each experiment was run on a compute
node with an Intel Xeon processor and NVIDIA GeForce Titan X Pascal 12 GB GPU. We used 8 parallel
threads to generate rollouts for each cycle.

E OL-AUX Outperforms Hand-tuned Weights

As doing grid search over all auxiliary tasks weights are infeasible due to the large amount of computation,
we try to approximate the optimal hand-tuned weights in two ways: 1) In the single auxiliary task case, we
use grid search to find the optimal weight for that auxiliary task. 2) In the multiple auxiliary tasks case, we
use the final weights learned by OL-AUX-5 as the optimal hand-tuned weights. We compare with these two
baselines in the Visual Hand Reach environments. The results are shown in Supplementary Figure [I} We
can see that in either cases, OL-AUX performs the optimal hand-tuned weights. This shows that OL-AUX is
able to eliminate the need to hand-tune the auxiliary task weights. Additionally, the grid search experiment
shows that it is beneficial to have dynamic weights instead of static weights.
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Supplementary Figure 1: Comparison of our method to grid search or hand tuned fixed weights.
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