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A Mathematical formalism

A.1 Sensorimotor interaction

We consider the sensorimotor interaction between an agent and its environment immersed in an
Euclidean space. The agent has a base with a fixed position in space, and is equipped with an
exteroceptive sensor that it can move in space thanks to its motors. These motors are supposed to be
controlled in position, which means that each motor state corresponds to a fixed posture of the agent,
and thus to a fixed position of the sensor in space. The environment itself can move in a rigid fashion,
independently from the agent (see Fig. 4).
In this work, we show how performing sensorimotor prediction naturally leads such an agent to build
an internal representation of the egocentric position of its sensor which captures both the topology
and metric regularity of the external space.

Figure 4: Diagram of a three-segment agent (black) with a fixed base (red square) exploring an
environment (brown) that can move. The motor state m defines the configuration of the arm. It
is associated with a position p = [x, y] of its end-effector sensor (blue), relative to its base. This
egocentric frame of reference is represented as a grid centered on the agent’s basis. The sensor
generates a sensory state s. The agent can move its sensor in the environment, but the environment
can also move (red arrow) relatively to the agent’s basis, changing its state ε. Note that such a rigid
displacement of the whole environment is equivalent to an opposite displacement of the agent’s basis
in a static environment (red dotted arrow). (Best seen in color)
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Figure 5: Illustration of the variables and mappings involved in the formalism. (Best seen in color)

Note that, from a sensorimotor perspective, a displacement of the environment relative to the (fixed)
agent’s base is equivalent to a movement of the agent’s base relative to the (fixed) environment. This
equivalence is behind the concept of compensability introduced by Poincaré to characterize spatial
interactions [36]. Considering that the agent moves its base relative to a static environment sounds
like a more natural description, as we rarely experience rigid displacements of the whole environment
around us. However we favor the first description in this work, as a way to follow Poincaré’s original
insight and to better emphasize the interaction between motor changes and environmental changes in
the mathematical formalism.

A.2 Variables and mappings

We denote m the agent’s motor state, which corresponds to a static posture of its body, andM the
set of all m. We denote p the egocentric position of the sensor relative to the agent’s base, and P the
set of all p. We denote ε the state of the environment, which describes both its spatial and non-spatial
properties, and E the set of all ε. Finally, we denote s the agent’s sensory state, which corresponds to
an instantaneous reading of the sensor’s output without transient phase, and S the set of all s.
The different relations between these variables are illustrated in Fig.5. Each motor state m is
associated with a sensor position p via a forward mapping denoted f :

f : M→ P
m 7→ f(m) = p.

(1)

Similarly, each pair (p, ε) of sensor position and environmental state is associated with a sensory
state s via a sensory mapping denoted g:

g : P × E → S
p, ε 7→ g(p, ε) = s.

(2)

Due to the inherent properties of space, the sensory mapping g has the following invariance property:
∀δ,p, ε, g(p, ε+ δ) = g(p− δ, ε), (3)

where δ represents a rigid displacement of either the whole environment or of the sensor. In other
words, from a sensory perspective, a displacement of the environment is equivalent to an opposite
displacement of the sensor.

In this work, we consider that the agent is naive. It only has direct access to the motor states it
produces and to the related sensory states it receives: (m, s). It does not have a priori information
about f , g, or ε. From a sensorimotor perspective, the overall composite mapping g ◦ f can thus be
re-expressed as a sensorimotor mapping φε:

s = g
(
f(m), ε

)
= φε(m), (4)

where ε is treated as a parameter of the unknown mapping φ to emphasize that the agent has no
information about both φ and ε (see Fig. 5).
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A.3 Hypotheses

Taking inspiration from the differential geometry-based formalism introduced in [35], we assume that
M ⊂ RNm , S ⊂ RNs , P ⊂ RNp , and E ⊂ RNε are manifolds embedded in their respective finite
vector spaces. The variables m, s, p, ε can thus be expressed as real-valued vectors. Additionally, we
posit thatM and P are convex bounded Euclidean subspaces of their respective dimensions, to take
into account that the agent has a limited body and thus a limited working space in which it can move
its sensor.
Moreover, we make the strong assumption that the mappings f , g (and consequently φ) are continuous,
which means that an infinitesimally small change in their input leads to an infinitesimally small
change in their output. Without any loss of generality, we assume that f is surjective, in order to
accommodate for redundant motor systems for which multiple motor states m can be associated with
the same sensor position p. Finally, for convenience, let gε denote the sensory mapping associated
with a fixed environmental state ε:

∀ε, gε : P → S
p 7→ gε(p) = g(p, ε) = s.

(5)

In any environment, we assume that there is no sensory ambiguity between two different sensor
positions. Formally, the mapping gε is thus assumed to be bijective1 for all ε:

∀ε, s,∃!p such that: gε(p) = s, (6)
making it a homeomorphism between P and S , as it is also continuous. This means that, for a given
state ε of the environment, each position of the sensor p is associated with a unique sensory state s,
and vice versa. This hypothesis is expected to hold if the sensor is rich enough and if the environment
does not present symmetries. This apparently strong constraint of the model turns out to be relatively
weak in practice. Indeed, thanks to the statistical machine learning approach used in this work, this
non-ambiguity assumption has to hold statistically over all environmental states. In other words, it is
sufficient that two sensor positions lead to different sensory states for at least some environmental
states ε, but not necessarily all of them. In strongly unfavorable scenarios, one could also consider
extending the model by integrating sensorimotor experiences in time to avoid ambiguities.

A.4 Sensorimotor invariants:

The manifold of sensor positions P has a priori a different topology and metric than the motor
manifoldM. For instance, in the case of a redundant motor system, a single sensor position p ∈ P is
associated with a subset of dimension greater than 0 inM. As a consequence, the dimension of P is
lower than the one ofM and their topologies differ. Similarly, the same change (same direction and
amplitude) of sensor position in the external space is a priori associated with different motor changes
(different directions and amplitudes), depending on the starting sensor position (and vice versa). The
metrics of P andM thus differ in a non-linear way.
Yet, it has been shown in [26] that the topology and metric of P induce invariants in the sensorimotor
experiences of the agent. Here, we rigorously reformulate these invariants, and extend them to small
neighborhood by taking advantage of the assumption of continuity of φ.

Given the previously stated properties of the mappings, we can generally write, for any rigid
displacement δ, that:

∀ε, ε′ = ε+ δ, si = si′

(4)⇔ φε(mi) = φε′(mi′)

(4)⇔ g
(
f(mi), ε

)
= g
(
f(mi′), ε

′)
(1)⇔ g(pi, ε) = g(pi′ , ε+ δ)

(3)⇔ g(pi, ε) = g(pi′ − δ, ε)
(5)⇔ gε(pi) = gε(pi′ − δ)
(6)⇔ pi = pi′ − δ.

(7)

If both sensorimotor experiences (mi, si) and (mi′ , si′) are collected in the same environmental state
ε, then δ = 0 and we have:

∀ε, si = si′ ⇔ φε(mi) = φε(mi′)⇔ pi = pi′ . (8)
1Note that this assumption would not hold for g, as suggested by Eq. (3).
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Figure 6: Diagram illustrating topological and metric invariants with a three-segment arm agent. (a)
Two motor configurations mi and mi′ generating similar sensory states si and si′ are associated
with similar egocentric positions pi and pi′ of the sensor. (b) A displacement ε → ε′ (red arrow)
of the environment relative to the agent’s base (red square) can be compensated by the agent. As a
result, two motor states mi and mi′ are associated with similar sensory states si and si′ before and
after the displacement. The same logic applies to mj and mj′ , and their similar sensory states sj
and sj′ . This means that the 4 corresponding egocentric sensor positions pi, pi′ , pj′ , and pj form
a parallelogram in space. It is represented on the right, relatively to the agent’s base, with colored
double-headed arrows indicating metric equivalences of displacements between its vertices. Note
that a displacement of the environment is equivalent to a displacement of the base of the agent (red
dotted arrow). (Best seen in color)

This relation is invariant to the environmental state ε. Through the sensory experiences collected
when exploring environments, the agent can thus discover that different motor states are associated
with the same external sensor position. The necessary condition for such a discovery is that the agent
can explore more than one sensorimotor pair (mi, si) for any environmental state ε.

If we now consider not two but four sensorimotor pairs such that two of them {(mi, si), (mj, sj)}
are collected in a first environmental state ε, and the two others {(mi′ , si′), (mj′ , sj′)} are collected
in a second environmental state ε′, we can write:

∀ε, ε′ = ε+ δ,

{
si = si′

sj = sj′

(4)⇔
{
φε(mi) = φε′(mi′)

φε(mj) = φε′(mj′)

(7)⇔
{
pi = pi′ − δ
pj = pj′ − δ

⇔ pj − pi = pj′ − pi′ .

(9)

This relation is once again invariant to the environmental states ε and ε′, as long as δ corresponds to a
rigid displacement in space. Through the sensory experience collected when exploring environments
that can move, the agent can thus discover that different motor changes are associated with equivalent
external displacements of the sensor. To be precise, mi →mj and mi′ →mj′ are associated with
the same external displacement −−→pipj =

−−−→pi′pj′ . The necessary condition for such a discovery is that
the agent explores more than one sensorimotor pair (mi, si) in more than one environmental state ε.

Finally, let’s re-express equations (8) and (9) as follows:

∀ε, |φε(mi)− φε(mi′)| = 0⇔ |pi − pi′ | = 0, (10)

∀ε, ε′ = ε+ δ,

{
|φε(mi)− φε′(mi′)| = 0

|φε(mj)− φε′(mj′)| = 0

⇔ |(pj − pi)− (pj′ − pi′)| = 0,

(11)

where |.| denotes a norm, and let’s take advantage of the continuity of the mappings f , g, and φ, to
generalize them to local neighborhoods:

∀ε, |φε(mi)− φε(mi′)| � µ⇔ |pi − pi′ | � µ, (12)
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Figure 7: Illustration of the variables processed by the neural architecture. (Best seen in color)

∀ε, ε′ = ε+ δ,

{
|φε(mi)− φε′(mi′)| � µ

|φε(mj)− φε′(mj′)| � µ

⇔ |(pj − pi)− (pj′ − pi′)| � µ,

(13)

where µ is a small value.
Due to their nature, we refer to the invariants of Equation (12) as topological invariants, and the ones
of Equation (13) as metric invariants. A simple illustration of both types of invariants is proposed in
Fig. 6.

B Neural network architecture and training

B.1 Neural network

We propose a simple neural network architecture to perform sensorimotor prediction. It is composed
of two types of module: Netenc and Netpres.
The Netenc module projects a motor state mt onto a representation ht of dimension Nh. It consists
of a fully connected Multi-Layer Perceptron (MLP) with three hidden layers of respective sizes
(150, 100, 50) with SeLu activation functions [20], and a final output layer of size Nh with linear
activation functions. This last layer corresponds to the space RNh in which the motor representation
are analyzed in this work.
The Netpred module takes as input the concatenation (ht,ht+1, st) of a current motor representation,
a future motor representation, and a current sensory state, and outputs a prediction s̃t+1 of the future
sensory state st+1. It consists of a fully connected MLP with three hidden layers of respective
sizes (200, 150, 100) with SeLu activation functions, and a final output layer of size Ns with linear
activation functions.
The overall network architecture connects the predictive module Netpred to two siamese copies of
the Netenc module, ensuring that both motor states mt and mt+1 are consistently encoded using the
same mapping.
Note that the simulations have also be run with ReLu units [30] in place of the SeLu units and
produced qualitatively identical results.

As illustrated in Fig. 7, a parallel can be drawn between the network illustrated in Fig.1 and the
sensorimotor mapping illustrated in Fig. 5. Indeed, one can relate Netenc to the forward mapping
f , and Netpred to the sensory mapping g. However, as ε is not directly accessible to the agent, its
counterpart in the network corresponds to the current sensorimotor pair, where mt is encoded as ht
(red frame in Fig. 7). As we assume the sensorimotor experience to be unambiguous, the sensorimotor
experience (mt, st) indeed carries information about the state of the environment ε.
Note that in agreement with the hypothesis of Sec. A and the fact that Netenc instantiates a continuous
mapping, the setH ⊂ RNh of all representations h is also assumed to be a manifold.
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B.2 Loss minimization

The unsupervised (or self-supervised) objective of the network is to minimize the MSE loss:

Loss =
1

K

K∑
k=1

|̃s(k)t+1 − s
(k)
t+1|2,

where k denotes a sample index, K is the number of samples in the training dataset, and |.| denotes
the Euclidean norm. Importantly, no particular component is added to the loss function regarding
the structure of the representation h built by the network. The loss is minimized using the ADAM
optimizer [19], with a learning rate linearly decreasing from 10−3 to 10−5 in 8× 104 epochs, and
a mini-batch size of 100 sensorimotor transitions. The optimization is stopped after 105 epochs (a
single mini-batch is fed to the network at each epoch).

B.3 Training data

The training data are generated by having the simulated agent explore its environment and collect
sensorimotor transitions (mt, st) → (mt+1, st+1). A total of 150000 transitions are collected for
each simulation by randomly sampling pairs (mt,mt+1) in the motor space (uniform distribution) and
collecting the corresponding sensory inputs. Depending on the type of exploration, the environment
also translates during the data collection, instantaneously changing its position in the horizontal plane
relative to the agent’s base:

MEM case: for each transition, the environment translates between the collection of (mt, st) and
(mt+1, st+1). This ensures that the sensorimotor experiences collected by the agent do not fulfill
condition I, and a fortiori condition II.

MM case: the environment never translates and keeps its initial position during the collection of all
sensorimotor transitions. This ensures that the sensorimotor experiences collected by the agent fulfill
condition I, but not condition II.

MME case: for each transition, the environment translates after the collection of both (mt, st) and
(mt+1, st+1). This ensures that the sensorimotor experiences collected by the agent fulfill conditions
I and II.

Before being fed to the network, the whole collected dataset is normalized such that each motor
and sensory component spans [−1, 1] over the whole dataset (performed independently for each
simulation). For each training epoch, 100 quadruplets (mt, st,mt+1, st+1) are randomly drawn in
the dataset to form a mini-batch.

B.4 Remarks

The overall neural network architecture and training procedure have been kept simple. No particular
heuristics have been added to improve convergence, generalization, or any other property of the
network such as sparsity. Similarly, the architecture’s meta-parameters have not been optimized
beyond simply checking that the network was expressive enough to approximate the expected
mappings. The same size of Netenc and Netpred have for instance been used in both simulations, even
if the sensorimotor mapping is significantly more complex in the Arm in a room simulation than in the
Discrete world simulation. Moreover, the network’s generalization capacity has not been evaluated.
This is because the prime goal of this work is not to optimize a neural network to efficiently solve a
task, but rather to study if spatial invariants are captured as a byproduct of sensorimotor prediction,
without the need for additional priors.

The code to generate the sensorimotor data, train the neural network, and analyze the motor represen-
tation is available at https://github.com/alaflaquiere/learn-spatial-structure.

C Simulations

Two different agent-environment systems are simulated to generate sensorimotor experiences:

Discrete world: This corresponds to an artificial setup designed to optimally evaluate the impact
of the experience of sensorimotor invariants on the motor representation built by the network (no
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Figure 8: Examples of sensory states received by the agent in the Arm in a room simulation. The
spatial and RGB structure of each image is discarded before being fed to the network by flattening its
16× 16× 3 values into a simple vector of length 768. (Best seen in color)

sensory ambiguity, continuous sensorimotor mapping, no border effect).
The environment consists in a grid world of size 10 × 10. Each square of the grid is associated
with a sensory state s of dimension Ns = 4 that a sensor can capture. This sensory state is set to
vary smoothly with the position (r, c) of the square in the grid. To ensure such a smoothness, each
component si of the sensory state s = [s1, s2, s3, s4] is defined as a sum of random periodic functions
varying with respect to r or c:

si =

3∑
k

1

λi1,k
cos

(
2π
(
bλi1,ke

r

10
+ λi2,k

))
+

1

λi3,k
cos

(
2π
(
bλi1,ke

c

10
+ λi4,k

))
, (14)

where all λ parameters are randomly drawn in [−2, 2], and b.e denotes the rounding operation
necessary to ensure that the frequency of the function is a multiple of the size of the grid.
The agent’s base (invisible for the sensor) can be placed in any square of the grid. The agent has a
sensor that it can move in a working space of size 5 × 5 centered on its base. In each square, the
sensor receives the corresponding sensory state s. To change its sensor position, the agent generates
motor states m = [m1,m2,m3] of dimension Nm = 3. Each motor state m is associated with an
egocentric position p of the sensor in the working space in the following way:

p = 4× [ 3
√
m1, 3
√
m2]− 2, (15)

where each mi lives in [0, 1]. This arbitrary forward mapping is purposefully made non-linear and
redundant, as m3 does not affect the sensor position. Because of this non-linearity and the discrete
nature of the grid world, the agent can only sample its motor space in a non-linear fashion (see
Fig. 9). Note that this forward mapping is artificial, and we did not define any actual physical body to
instantiate it.
Finally, the environment can translate rigidly with respect to the agent’s base, effectively moving the
working space in the whole grid. The amplitude of this translation is drawn uniformly in [−10, 10]
for both its horizontal and vertical components. The whole grid world is set to act as a torus, which
means that the sensor appears on the other side of the grid displayed in Fig. 1 when the working
space extends beyond its limits.

Arm in a room: This corresponds to a more complex and realistic setup in which an arm explores a 3D
room. The environment is similar to the one proposed in [9]. The room is of size 7×7 units, has walls,
and is filled with 16 random simple geometric objects. The textures and colors of the walls/floor and
objects are picked randomly at the beginning of the simulation. The objects are distributed along a
regular grid, but disturbed with an additional small displacement drawn in U(−0.3, 0.3)2 in order to
add some randomness.
The agent is a three-segment arm moving in the horizontal plane at a height of 1.6 units. It is equipped
with a RGB camera of resolution 16× 16 at its end, orientated with a downward tilt of 0.62 rad, and
generating a sensory state s of dimension Ns = 16× 16× 3 = 768. Note that due to its orientation,
the sensor can see the objects in the room but not the arm segments (see Fig. 8). The three arm
segments are each of length 0.5 unit. Their respective relative orientation are controlled in [−π, π]
radians by three independent components of the motor state m of dimension Nm = 3. The effective
working space of the agent is thus an horizontal disk of diameter 3 units. During the arm movements,
the orientation of the sensor is kept fixed.
Finally, the environment can translate rigidly with respect to the arm’s base with a maximal horizontal
and vertical range of [−1.75, 1.75], where a translation of [0, 0] corresponds to the room being
centered on the agent’s base. The cumulative effect of the agent’s movements and the environment’s
movements is such that the sensor never moves outside the walls of the room.
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MEM MM MME

Figure 9: Visualization of the normalized regular motor sampling m (blue dots), its representation h
in the representational space (red dots), and the corresponding ground truth position p (blue circles)
for the three types of exploration in the Discrete world simulation. The affine projection h(p) of the
representations are also displayed in the space of positions. Lines have been added to visualize the
distances between each h(p) and its ground truth counterpart p. Finally, the predicted sensory states
s̃t+1 (magenta dots) outputted by the network are displayed in the 3 first dimensions of the sensory
space, alongside the ground-truth sensory states st+1 (green circles). (Best seen in color)

D Detailed results analysis

The results of Fig. 2 and Fig. 3 are here analyzed in more details.
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D.1 Discrete world

MEM exploration: One can see in Fig. 2 that the loss stays relatively high during the whole
training. This is due to the fact that it is impossible to accurately predict the future sensory input st+1

as the environment is always moving between t and t+ 1. As a consequence, the network learns to
output the average sensory state which minimizes the MSE (see the sensory space in Fig. 9).

The topological dissimilarity Dtopo also stays at a relatively high value during training, and displays
an important standard deviation. For each run, Dtopo varies greatly during the whole training,
although it tends to stabilize after 8× 104 epochs, when the learning rate reaches its minimum value.
This behavior seems to indicate that the topology of h differs from the one of p, and that the network
tends to build an arbitrary motor representation. This is confirmed in Fig. 9, where both h and its
affine projection h(p) in the space of positions display an arbitrary topology compared to the one of
the ground-truth p.

The metric dissimilarity Dmetric also stays at a relatively high value during training, and displays an
important standard deviation. Once again, Dmetric varies greatly for each run, but stabilizes a bit
after 8 × 104 epochs. Just like for the topology, this seems to indicate that the metric of h differs
from the one of p, which is confirmed in Fig. 9.

MM exploration: One can see in Fig. 2 that the loss quickly converges to very small values. It is
expected, as a static environment ensures that the network can easily learn to map the motor states to
their corresponding sensory states. This is confirmed in Fig. 9 where the future sensory states appear
to be accurately predicted.

The topological dissimilarity Dtopo also quickly converges to very small values. This seems to
indicate that the topology of h is similar to the one of p. This is confirmed in Fig. 9, where one can
see that all redundant motor states associated with the same sensor position are encoded with the
same representation, and that the global topology of the manifold of representations is equivalent to
the one of the ground-truth position. The manifold of motor encoding is thus practically of dimension
2, when the motor space is actually of dimension 3.

The metric dissimilarity Dmetric converges to an average value, between 0 and its value in the MEM
case. Its standard deviation is also significant. This seems to indicate that the metric of h differs from
the one of p, which is confirmed in Fig. 9. This lower value of Dmetric compared to the MEM case
is however due to the fact that capturing the topology of p in h necessarily entails that the metric
difference between the two is lower than compared to a random projection.

MME exploration: Just like in the MM case, the loss quickly converges to very small values as
the consistency of the sensorimotor transitions ensures that the network can predict the future sensory
state based on the current sensorimotor pair. This is once again confirmed in Fig. 9 where the future
sensory states are accurately predicted by the network.

The topological dissimilarity Dtopo also quickly converges to very small values. This seems to
indicate that the topology of h is similar to the one of p. This is confirmed in Fig. 9, where one can
see that all redundant motor states associated with the same sensor position are encoded with the
same representation, and that the global topology of the manifold of representations is equivalent to
the one of the ground-truth position.

Finally, the metric dissimilarity Dmetric converges to a very small value, with a very small standard
deviation. This seems to indicate that the metric of h is similar to the one of p, which is confirmed
in Fig. 9. In particular, we can see that h(p) perfectly aligns with the grid of ground-truth positions.
Thus there exists a simple affine transformation between the motor representation built by the network
and the external position of the sensor.

D.2 Arm in a room

The analysis done for the Discrete world also globally applies to the Arm in a room simulation. We
thus only focus on the differences below.

Expressivity of Netpred: The sensorimotor mapping to learn is significantly more complex in
the Arm in a room simulation, and the sensory space is of significantly higher dimension. As a
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Figure 10: Visualization of the normalized regular motor sampling m (blue dots), its representation h
in the representational space (red dots), and the corresponding ground truth position p (blue circles)
for the three types of exploration in the Arm in a room simulation. The affine projection h(p) of the
representations are also displayed in the space of positions. Lines have been added to visualize the
distances between each h(p) and its ground truth counterpart p. Finally, the predicted sensory states
s̃t+1 (magenta dots) outputted by the network are displayed in the 3 first dimensions of the sensory
space, alongside the ground-truth sensory states (green circles). (Best seen in color)

consequence the neural network, and in particular the Netpred module, is not expressive enough to
perfectly predict future sensory states, even in cases when it should be theoretically possible (MM
and MME cases). This results in the loss and its standard deviation being of greater amplitude than in
the Discrete world simulation. This phenomenon is also illustrated in Fig. 10, as one can see in the
sensory space that the predictions outputted by the network do not perfectly match the ground-truth
in the MM and MME cases.
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Figure 11: Visualization of the normalized regular motor sampling m (blue dots), its representation h
in the representational space (red dots), and the corresponding ground truth position p (blue circles)
for an Arm in a room simulation and an MME exploration. The affine projections h(p) are also
displayed in the space of positions. In this trial, the manifold of h slightly spread along a third
dimension in the representational space. (Best seen in color)

Note that this lack of expressivity could be seen as a shortcoming of our evaluation. But on the
contrary we consider it as a highlight, as it shows that the motor representation tends to capture
topological and metric invariants even when the overall performance of the sensorimotor prediction
is limited.

Limited exploration: An important difference between the Discrete world and Arm in a room
simulations is that the exploration is limited in the latter. Indeed, in the former, the amplitude of
environmental translations, coupled with the fact that the grid world acts as a torus, ensures that any
motor state can be associated with the sensor being in any square of the grid. As a consequence,
all motor states are statistically associated with the same distribution of sensory states over the
whole environment. On the contrary, in the Arm in a room simulation, the environment is limited by
walls. As a consequence, each motor state only covers a sub-part of the environment when the latter
moves. For instance, a motor state corresponding to the arm being extended to the left means that the
sensor will never experience the sensory states on the far right of the room. Thus each motor state
is associated with a slightly different sensory distribution when the environment moves. It is thus
possible for the network to infer an approximation of the topology of p which helps to reduce the
MSE, even in the MEM case. This can be seen in Fig. 10 as the motor representation tends to capture
the topology of p in the MEM case. This effect is also visible in the sensory space as one can see
that, in this simulation, the network does not simply output the same average sensory state for all
motor states. Instead, each motor state is associated with the average sensory state over the slightly
different sensory distribution is its associated with.
The limited exploration thus impacts the measures Dtopo and Dmetric in the MEM case. They
are lower than what could be expected if we simply extrapolated from the results of the previous
simulation.

Ambiguous environments: The third difference is that the 3D room environments can present
some sensory ambiguities: very different sensor positions can be associated with very similar sensory
states. As a consequence, the sensory manifold associated with the manifold of positions can be
twisted in a non-trivial way in the sensory space. In case of perfect ambiguity between two (or more)
positions, the topology of the manifold even changes locally. This perturbs the learning of the motor
representation when the environment is static (MM case), and leads to Dtopo measures greater than
what could be expected if we simply extrapolated from the results of the previous simulation. Note
however that this sensory ambiguity is not a problem in the MEM case, as the movements of the
environment ensure that the different sensor positions which are ambiguous for a given environment
position are associated with different sensory distributions over the whole exploration.

Non-flat representations: The final difference is the one that leads to the standard deviation of
Dtopo being more important than expected in the MME case. As can be observed in Fig 11, it
sometimes happens in the MME case that the manifold of h appears slightly spread in the 3D
representational space instead of approximating a 2D flat manifold. Yet, the affine projection of h in
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Figure 12: Evolution of the loss and the dissimilarity measures Dtopo and Dmetric during training
for both setups, for the three types of exploration, and with Nh = 25 instead of 3. The displayed
means and standard deviations are computed over 50 independent runs. (Best seen in color)

the space of p properly aligns with the ground-truth positions. This phenomenon is due to the way a
neural network processes data. Indeed the representation h is fed to a fully connected layer where
each neuron performs a linear projection of h before passing it through its activation function. As a
consequence, the network has two equivalent options to respect the sensory invariants induced by the
MME exploration: i) flatten (to 2D) the manifold in the 3D representational space, or ii) tune the
weights to the next fully connected layer such that all neurons perform projections which take into
account only two dimensions in the representational space. In both cases, the input received by the
predictive module Netenc is equivalent. This also explains why even a non-flat manifold of h still
matches the ground-truth position, as the linear regression correspond to a projection of the same
nature as the one implemented by the connections to the next layer. The effect of such a phenomenon
can also be seen in Fig. 2, as it explains why Dtopo shows a significant standard deviation in the
MME case.

E Additional experiments

E.1 Representational space of higher dimension

The main results were obtained with a representational space RNh of dimension Nh = 3 to facilitate
visualization. The same exact experiments were also run with a representational space of dimension
Nh = 25. The results, presented in Fig. 12, are qualitatively equivalent to the ones described
previously2. This seems to indicate that the dimension of the representational space has no influence
on the way space-induced invariants are captured in h.

E.2 Forward mappings of higher complexity

The robustness of the results with respect to the complexity of the agent’s body has been evaluated by
designing more complex forward mappings. In the Discrete world setup, we designed a new agent
with Nm = 6 motors and the following forward mapping:

p =

[
x
y

]
= 4× (P ·A · f(m))− 2, with: f




m1

m2

m3

m4

m5

m6



 =


m2

1√
m2

3
√
m3

0.1×
(
1.1
0.1

)m4 − 0.1
log(m5 × (e1 − 1) + 1)

m6

 , (16)

where A is a 6 × 6 mixing matrix with random elements uniformly drawn in [−2, 2], and P is a
diagonal projection matrix whose first two elements are equal to 1 and the others to 0. The elements
of m are sampled from [0, 1] and mapped to [0, 1] by the non-linear transformation f . The random

2The higher dimension also implies an even bigger effect of the potential twist of the sensory manifold and
of the spread of the representation in more than 2 dimensions (see Sec D.2).
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matrix A is also carefully designed such that the mixed components of A · f(m) still belong to
[0, 1]. Finally, a simple linear transformation is applied after the projection P such that the sensor
coordinates x and y lie in [−2, 2]. Intuitively, the overall transformation consists in passing the 6
motor components through some non-linearities, mixing them via a random matrix A, and finally
projecting the result in 2D via the matrix P .
In the Arm in a room setup, we designed a four-segment arm agent with Nm = 6 motor:, four hinge
joints, and two translational joints on the central two segments. The arm still moves in the horizontal
plane, but the (maximum) length of its segments has been reduced to 0.375 so that the working
space’s radius is unchanged. The hinge joints are identical to the previous agent, and translational
joints are controlled in [-0.375, 0.375].
Due to the increased complexity of the forward mapping to estimate, we increased the size of
the Netenc module to (500, 400, 300, 200) (in both setups), and increased the number of collected
exploratory transitions to 300000 instead of 150000 (in the Arm in a room setup).

The results of the experiments with these more complex forward mappings are presented in Figs. 13,
14, and 15. They are qualitatively equivalent to the ones observed with the original forward models.
This seems to indicate that the complexity of the forward model (body of the agent) has no influence
on the way space-induced invariants are captured in h.
We can however note some quantitative difference in Fig. 13. Indeed, due to the increased dimension
of the motor space, the regular sampling performed during the network evaluation requires signifi-
cantly more motor samples (15625 instead of 125 and 216 in the original Discrete world and Arm in
a room setups respectively). The loss is thus computed over more samples. The higher number of
degrees of freedom also means a higher degree of redundancy. As a result, more motor states are
associated with the same egocentric position of the sensor. This has an indirect effect on the values
observed for Dtopo and Dmetric, as the arbitrary encoding induced by the MEM exploration results
in significantly higher dissimilarity measures. A log scale has then been used in Fig. 13 in order to
better visualize the results.

Figure 13: Evolution of the loss and the dissimilarity measures Dtopo and Dmetric during training
for both setups, for the three types of exploration, and with the more complex agents (6 degrees of
freedom). A log-scale is used on the y-axis due to the large values induced by the MEM exploration.
The displayed means and standard deviations are computed over 50 independent runs. (Best seen in
color)

E.3 Intrinsic stochasticity of the training

Due to the stochasticity of the training procedure (network initialization, mini-batches selection),
the learning curves display some intrinsic variability, even when trained on a fixed dataset. We
estimated this variability and display in Fig. 16 the average and standard deviation associated with 50
independent runs trained on the same dataset, for each simulation.
Compared to Fig. 2, one can see that the resulting standard deviations are very similar. This seems to
indicate that most of the variability observed in the results is due to the intrinsic variability of the
training procedure, rather than to the datasets on which the networks are trained.
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Figure 14: Visualization of the normalized regular motor sampling m (blue dots) in the 3 first
dimensions of the 6-D motor space, its representation h in the representational space (red dots),
and the corresponding ground truth position p (blue circles) for the three types of exploration in
the Discrete world simulation with the more complex agent. The affine projection h(p) of the
representations are also displayed in the space of positions. Lines have been added to visualize the
distances between each h(p) and its ground truth counterpart p. Finally, the predicted sensory states
s̃t+1 (magenta dots) outputted by the network are displayed in the 3 first dimensions of the sensory
space, alongside the ground-truth sensory states (green circles). (Best seen in color)
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Figure 15: Visualization of the normalized regular motor sampling m (blue dots) in the 3 first
dimensions of the 6-D motor space, its representation h in the representational space (red dots), and
the corresponding ground truth position p (blue circles) for the three types of exploration in the Arm
in a room simulation with the more complex agent. The affine projection h(p) of the representations
are also displayed in the space of positions. Lines have been added to visualize the distances between
each h(p) and its ground truth counterpart p. Finally, the predicted sensory states s̃t+1 (magenta dots)
outputted by the network are displayed in the 3 first dimensions of the sensory space, alongside the
ground-truth sensory states (green circles). (Best seen in color)
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Figure 16: Evolution of the loss and the dissimilarity measures Dtopo and Dmetric during training for
both setups, for the three types of exploration, and with Nh = 3. The displayed means and standard
deviations are computed over 50 independent runs trained on a single dataset for each simulation.
(Best seen in color)
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