
A Concentration Inequalities

Hoeffding’s inequality [23]:

Let X1,⋯,Xn be independent with ui = E[Xi], Xi ∈ [0,1] , for all 1 ≤ i ≤ n. Then,

Pr(∑(Xi − ui)
n

≥ t) ≤ exp[−2n ⋅ t2], (3)

and

Pr(∑(Xi − ui)
n

≤ −t) ≤ exp[−2n ⋅ t2], (4)

Markov’s inequality: If X is a non-negative random variable and a > 0, then the probability that X
is at least a is at most the expectation of X divided by a:

Pr(X ≥ a) ≤ E[X]
a

. (5)

B Proofs of Lemmas in Section 2

Proof of lemma 1:

Proof. First, we prove that at any iteration r, Pr[θ̂i∗ ≥ θi∗ − ǫ/8] ≥ 1 − δ
2k

. In the first iteration (i.e.,
r = 1), Sr is exactly the same as the input arm set S (i.e., S1 = S), and Algorithm 1 samples at least
32
ǫ2

log k
δ1

times for every arm in S1. Therefore, every arm i∗ is initialized for θ̂i∗ . Based on Hoeffding

bound, we have θ̂i∗ ≥ θ∗i − ǫ/8 with probability at least 1 − δ1
k

, for the case of r = 1.

Assume that in iteration r − 1, θ̂i∗ ≥ θi∗ − ǫ/8 holds. Then, at iteration r, if θ̂i∗ is not updated,

θ̂i∗ ≥ θi∗ − ǫ/8 still holds. Otherwise, by Hoeffding’s inequality, in iteration r,

Pr[θ̂i∗ ≥ θi∗ − ǫ/8] ≥ 1 − exp[−(32/ǫ2) log(k/δr) ⋅ 2(ǫ/8)2] ≥ 1 − δr/k. (6)

By the union bound, for all iterations,

Pr[θ̂i∗ ≥ θi∗ − ǫ/8] ≥ 1 −∑
r=1

δr/k ≥ 1 −∑
r=1

δ

2k ⋅ 2r
≥ 1 − δ

2k
. (7)

Applying the union bound again, we have that with probability 1 − δ/2, for all i ∈ [1, k],
θ̂i∗ ≥ θi∗ − ǫ/8. (8)

Let jr be an arm inserted into S′ in iteration r. Since we have re-sample Qr times for jr, the
estimation in Line 8 of Algorithm 1 is unbiased. By Hoeffding’s inequality,

Pr[θ̂jr ≤ θjr + ǫ/8] ≥ 1 − δr/k. (9)

Since we insert at most k values to S′, by the union bound, we have that for every arm jr inserted
into S′,

Pr[θ̂jr ≤ θjr + ǫ/8] ≥ 1 − δr. (10)

Applying the union bound again, we have that for each iteration r,

Pr[θ̂jr ≤ θjr + ǫ/8] ≥ 1 −∑
r=1

δr ≥ 1 − δ/2. (11)

Let io be the arm with the ith largest value in S′. Assume that both Eq. (8) and Eq. (11) hold. By
Eq. (8), there are at least i arms whose empirical values are greater than θi − ǫ/8. From Line 10 of
Algorithm 1, we have

θio + ǫ/8 ≥ θ̂io ≥min{θ̂1,⋯, θ̂i∗} − 3/4ǫ ≥ θ̂i∗ − 3/4ǫ ≥ θi∗ − 3/4ǫ − 1/8ǫ. (12)

From above equation, we have that with probability 1 − δ, for all i ∈ [1, k], θio ≥ θi∗ − ǫ.
Similarly, we can prove the second part of Lemma 1, by replacing ǫ/8 ← (ǫ − ǫ1)/2, 32/(ǫ2) ←
2/(ǫ − ǫ1)2 and 3/4ǫ← ǫ1.
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Proof of Lemma 2

Proof. For Sr, let θ1,⋯, θ∣Sr ∣ be the decreasing order of arm’s average reward. In Line 6 of Algo-

rithm 1, if k′ = ∣Sr ∣, then Sr+1 = ∅ and the lemma easily follows. Hence, we focus on proving the

hard case, i.e., when k′ = k in Line 6 of Algorithm 1. Let ⌈( δr
k
)βr ⋅ ∣Sr ∣⌉+ k − 1 =m and θm = u. We

divide [0, θ1] into three parts: [0, u− 3ǫ/8), [u− 3ǫ/8, u) and [u, θ1]. And denote A1,A2,A3 be the
sets of arms in Sr whose average means are in [0, u − 3ǫ/8), [u − 3ǫ/8, u) and [u, θ1], respectively.
Let XAi

be the number of arms in Ai whose empirical values updated at iteration r are greater than
u − 3ǫ/16, where i = 1,2,3. Furthermore, let br be the arm with the smallest mean that is inserted
into S′ in iteration r. We prove that with high probability, both following conditions hold.

1: br ∉ A1;

2: S′(k) + 3ǫ/4 ≥ u + 3ǫ/16.

We first prove Condition 1. By Hoeffding’s inequality, for i ∈ A1,

Pr[θ̂i ≤ θi + 3ǫ/16] ≥ 1 − exp(−2ǫ2/(16
3
)2 ⋅ (57/ε2) ⋅ βr log( k

δr
)) ≥ 1 − (δr

k
)4βr . (13)

From Eq. (13), for i ∈ A1, with probability 1 − ( δr
k
)4βr , θ̂i ≤ θi + 3ǫ/16 ≤ u − 3ǫ/16. This implies

E[XA1
] ≤ ( δr

k
)4βr ⋅ ∣Sr ∣. From Markov’s inequality:

Pr[XA1
≥ (δr

k
)2βr/4∣Sr ∣] ≤ E[XA1

]
( δr

k
)2βr/4∣Sr ∣ ≤

( δr
k
)4βr ⋅ ∣Sr ∣

( δr
k
)2βr/4∣Sr ∣ ≤ 4(

δr

k
)2βr . (14)

Let ξ1 be the event XA1
≤ ( δr

k
)2βr/4∣Sr ∣, then Pr[ξ1] ≥ 1 − 4( δrk )2βr .

On the other hand, by Hoeffding’s inequality, for i ∈ A3,

Pr[θ̂i ≥ θi − 3ǫ/16] ≥ 1 − exp(−ǫ2 ⋅ 9

256
⋅ (57/ε2) ⋅ βr log(1/δr

k
)) ≥ 1 − (δr

k
)4βr . (15)

By the above equation, for i ∈ A3, Pr[θ̂i ≤ u − 3ǫ/16] ≤ ( δrk )4βr . We divide A3 into two parts B1

and B2, where ∣B1∣ = k − 1 and ∣B2∣ = ⌈( δrk )βr ∣Sr ∣⌉. Then

Pr[XB1
= k − 1] ≥ 1 − (δr

k
)4βr
⋅ (k − 1) ≥ 1 − (δr

k
)3βr , (16)

and

Pr[XB2
< ⌈(δr

k
)βr ∣Sr ∣/2⌉] ≤ ( ⌈( δr

k
)βr ∣Sr ∣⌉

⌈( δr
k
)βr ∣Sr ∣⌉ − ⌈( δrk )βr ∣Sr ∣/2⌉ + 1) ⋅ ((

δr

k
)4βr)⌈( δrk )βr ∣Sr ∣⌉−⌈(

δr
k
)βr ∣Sr ∣/2⌉+1

≤ 2⌈( δrk )βr ∣Sr ∣⌉
⋅ ((δr

k
)4βr)⌈( δrk )βr ∣Sr ∣/2⌉

≤ 2⌈( δrk )βr ∣Sr ∣⌉
⋅ ((δr

k
)2βr)⌈( δrk )βr ∣Sr ∣/2⌉

⋅ ((δr
k
)2βr)⌈( δrk )βr ∣Sr ∣/2⌉

≤ 2⌈( δrk )βr ∣Sr ∣⌉
⋅ (1/16)⌈( δrk )βr ∣Sr ∣⌉

⋅ ((δr
k
)2βr)⌈( δrk )βr ∣Sr ∣/2⌉

≤ (δr
k
)2βr .

(17)

Let ξ2 be the event that XA3
≥ ⌈( δr

k
)βr ∣Sr ∣/2⌉ + k − 1, then Pr[ξ2] ≥ 1 − ( δrk )2βr − ( δr

k
)3βr .

If both ξ1 and ξ2 hold, then there are more than ⌈( δr
k
)βr ∣Sr ∣/2⌉ + k − 1 arms with empirical value

greater than u − 3ǫ/16. By the union bound, Pr[ξ1 ∩ ξ2] ≥ 1 − 4( δr
k
)2βr − ( δr

k
)2βr − ( δr

k
)3βr =

1 − 5( δr
k
)2βr − ( δr

k
)3βr .
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Assume that both ξ1 and ξ2 hold, then in iteration r

Pr(br ∈ A1) ≤ ( δr
k
)2βr/4∣Sr ∣

⌈( δr
k
)βr ∣Sr ∣/2⌉ + k − 1 + (1 −

( δr
k
)2βr/4∣Sr ∣

⌈( δr
k
)βr ∣Sr ∣/2⌉ + k − 1)

( δr
k
)2βr/4∣Sr ∣

⌈( δr
k
)βr ∣Sr ∣/2⌉ + k − 2 +⋯

≤ ( δr
k
)2βr/4∣Sr ∣

⌈( δr
k
)βr ∣Sr ∣/2⌉ + k − 1 +

( δr
k
)2βr/4∣Sr ∣

⌈( δr
k
)βr ∣Sr ∣/2⌉ + k − 2 +⋯

≤ k∑
i=1

( δr
k
)2βr/4∣Sr ∣

⌈( δr
k
)βr ∣Sr ∣/2⌉ + i − 1

≤ k ⋅ (δr
k
)βr/2.

(18)

Therefore, Condition 1 holds.

Next, we assume that Condition 1 holds and focus on proving Condition 2. In Algorithm 1, since we
re-sample Qr times for each arm jr ∈ Sr

k′ ,

Pr(θ̂jr ≥ θjr − 3ǫ/16) ≥ 1 − (δrk )4βr . (19)

Let θ̂min be the smallest value inserted into S′ in iteration r. By the union bound and Eq. (19), with

probability 1 − k ⋅ ( δr
k
)4βr ,

θ̂min ≥ θbr − 3ǫ/16 ≥ u − 9ǫ/16. (20)

If θ̂min ≥ u − 9ǫ/16 holds, then S′(k) + 3ǫ/4 ≥ θ̂min + 3ǫ/4 ≥ u + 3ǫ/16. Therefore, Condition 2
holds.

Similar to Eq. (13) and (14), we can prove that with probability 1 − 4( δr
k
)2βr , there are less than

( δr
k
)2βr/4∣Sr ∣ arms in A1 and A2 whose empirical values are larger than u + 3ǫ/16. This means that

under Conditions 1 and 2, with probability 1− 4( δr
k
)2βr , ∣Sr+1∣ ≤ ( δrk )2βr/4∣Sr ∣+ ⌈( δrk )βr ∣Sr ∣⌉+ k −

1−k. Note that the −k term is due to the factor that Sr
k′ is selected from top-[⌈( δr

k
)βr ∣Sr ∣/2⌉+k

′
−1]

arms but is eliminated in Line 10 of Algorithm 1.

Applying the union bound, we have

Pr[∣Sr+1∣ ≤ (δr
k
)2βr/4∣Sr ∣+⌈(

δr

k
)βr ∣Sr ∣⌉−1] ≥ 1−5(δr

k
)2βr
−(

δr

k
)3βr
−k(

δr

k
)βr/2−k(

δr

k
)4βr
−4(

δr

k
)2βr

(21)
Note that βr ≥ 1, δr ≤ δ/4 ≤ 1/16, we have

Pr[∣Sr+1∣ ≤ ⌈2(δr
k
)βr ∣Sr ∣⌉ − 1] ≥ 1 − 2δr

k
≥ 1 − 2δr. (22)

Proof of Lemma 3

Proof. Proof of Part 1: Assume that Algorithm 1 terminates at iteration r′. Note that in Algorithm 1,
each iteration has two rounds, and hence, R′ = 2r′. We prove r′ ≤ log∗k

δ
(n).

For r ≤ r′, by Lemma 2, with probability 1 − 2δr, ∣Sr+1∣ ≤ ⌈2 ⋅ (δr/k)βr ∣Sr ∣⌉ − 1 ≤ 2 ⋅ (δr/k)βr ∣Sr ∣.
This implies that with probability 1 − 2δr,

βr+1 ≥ ∣Sr ∣

2∣Sr+1∣
⋅ βr ≥ ∣Sr ∣

4 ⋅ (δr/k)βr ∣Sr ∣
⋅ βr = βr

4 ⋅ (δr/k)βr
≥ 1

(δ/k)βr
. (23)

Thus, with probability 1 − 2(δ1 +⋯+ δr),

βr+1 ≥ (k
δ
)βr ≥ (k

δ
)
( k
δ
)βr−1

≥ ⋯ ≥ k

δ

k
δ

⋰
k
δ

´¹¹¹¹¹¹¸¹¹¹¹¹¶
r

(24)
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For integer m ≥ log∗k
δ
(n), we have n ≤ k

δ

k
δ

⋰
k
δ

´¹¹¹¹¹¸¹¹¹¹¶
m

. If m ≤ r′, by Eq. (24), we have that with probability

1 − 2(δ1 +⋯ + δm−1)
βm ≥ k

δ

k
δ

⋰
k
δ

´¹¹¹¹¹¹¸¹¹¹¹¹¶
m−1

. (25)

Assume that Eq. (25) holds. Then, by Lemma 2, with probability 1−2δm, ∣Sm+1∣ ≤ 2⋅(δm/k)βm ∣Sm∣ ≤
∣Sm∣/(2 ⋅ kδ

k
δ

⋰
k
δ

´¹¹¹¹¹¸¹¹¹¹¶
m

) ≤ ∣Sm∣/(2n) < 1. This implies Sr+1 = ∅. Applying the union bound, we have that

w.p.
1 −∑

i=1

2δi ≥ 1 − δ, (26)

R′ = 2r′ ≤ 2 log∗k
δ
(n).

Proof of Part 2: Let ρ = log∗k
δ
(n). Given positive integer l, we prove w.p. 1 − δ

2l−1
, r′ ≤ lρ. Similar to

Eq. (23) and (24), we have that with probability 1 − 2(δ(l−1)ρ+1 + δ(l−1)ρ+2 +⋯+ δlρ−1),

βlρ ≥ 1

(δ/k)βlρ−1
≥ ⋯ ≥ 1

(δ/k)β(l−1)ρ+1
k
δ

⋰
k
δ

≥ k

δ

k
δ

⋰
k
δ

´¹¹¹¹¹¹¸¹¹¹¹¹¶
ρ−1

(27)

If above equation holds, then with probability 1− δlρ, Slρ+1 ≤ 2 ⋅ (δlρ/k)βlρ ∣Slρ∣ ≤ ∣Slρ∣/(2 ⋅ kδ
k
δ

⋰
k
δ

´¹¹¹¹¹¸¹¹¹¹¶
ρ

) ≤
∣Slρ∣/(2n) < 1, which means that Slρ = ∅. By the union bound, with probability 1 − 2(δ(l−1)ρ+1 +
δ(l−1)ρ+2 +⋯+ δlρ) ≥ 1 − δ

2(l−1)ρ
, r′ ≤ lρ.

Now, we have

E[R′] ≤ 2(1 − δ) ⋅ ρ + 2(δ − δ

2ρ
) ⋅ (2ρ) + 2( δ

2ρ
−

δ

22ρ
) ⋅ (3ρ) +⋯

≤ 2ρ +∑
i=1

[ 2δρ

2(i−1)ρ
]

≤ 2(1 + 2δ)ρ = 2(1 + 2δ) log∗k
δ
(n)

(28)

Proof of Lemma 4

Proof. Proof of Part 1: Let ξ be the event that βr+1 = βr ⋅
∣Sr ∣

2∣Sr+1∣
holds for all r ≥ 1. By Lemma 2,

with probability 1 − 2δr, ∣Sr+1∣ ≤ ⌈2 ⋅ (δr/k)βr ∣Sr ∣⌉ − 1 ≤ 2 ⋅ (δr/k)βr ∣Sr ∣ ≤ 2δ
k
∣Sr ∣. Hence w.p.

1 − 2δr, βr+1 = βr ⋅
∣Sr ∣

2∣Sr+1∣
. Applying the union bound, the event ξ holds with probability 1 − δ.

Assume that ξ holds. In iteration r, the total number of arms pulled by Lines 5 and 7 of Algorithm 1

is (∣Sr ∣ + 1) ⋅ βr ⋅Q ⋅ log
k
δr

. Note that δ ∈ (0,1/4) and βr+1 = βr
∣Sr ∣

2∣Sr+1∣
, we have

N =∑
i=1

[(∣Si∣ + 1) ⋅ βi ⋅Q ⋅ log
k

δi
] ≤ 2∑

i=1

[∣Si∣ ⋅ βi ⋅Q ⋅ log
k

δi
]

≤ 2∑
i=1

[ n

2i−1
⋅Q ⋅ (log 4k

δ
+ i)]

≤ 6n ⋅Q + 4nQ ⋅ log 4k

δ

(29)
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Thus with probability 1 − δ, N ≤ 7n ⋅Q ⋅ log 4k
δ

.

Proof of Part 2: Let Ni be the number of samples in iteration r. By Lemma 2, with probability 1−2δr,∣Sr+1∣ ≤ ⌈2 ⋅ (δr/k)βr ∣Sr ∣⌉ − 1 ≤ 2 ⋅ (δr/k)βr ∣Sr ∣ ≤ 2δ
k
∣Sr ∣. Then, by Algorithm 1, with probability

1 − 2δr, βr+1 ⋅ ∣Sr+1∣ = βr ⋅ ∣Sr ∣/2. If ∣Sr+1∣ ≥ 16, given that δr ≤ 1
16

, we have

E[Nr+1] = (∣Sr+1∣ + 1) ⋅ βr+1 ⋅Q ⋅ log
k

δr+1
≤ 17

16
∣Sr+1∣ ⋅Q ⋅ βr+1 ⋅ log

k

δr+1

≤ 17

32
(1 − 2δr) ⋅ ∣Sr ∣ ⋅Q ⋅ βr ⋅ log

k

δr+1
+
17

16
⋅ 2δr ⋅ ∣Sr ∣ ⋅Q ⋅ βr ⋅ log

k

δr+1

≤ (1 − 2δr) ⋅ 17Nr

32
⋅
log(k/δr+1)
log(k/δr) +

17

8
δr ⋅Nr ⋅

log(k/δr+1)
log(k/δr)

≤ 3

4
Nr.

(30)

Then

E[N1 +⋯+Nr+1] ≤ E[N1] + 3/4E[N1] +⋯+ (3/4)rE[N1] ≤ 4E[N1]. (31)

If ∣Sr+1∣ ≤ 16, then

Nr+1 = (∣Sr+1∣ + 1) ⋅ βr+1 ⋅Q ⋅ log
k

δr+1
≤ 2∣Sr+1∣ ⋅ βr+1 ⋅Q ⋅ log

k

δr+1
≤ 5

2
Nr. (32)

By Lemma 2, with probability 1 − 2δr+1, ∣Sr+2∣ ≤ 2δr+1
k
∣Sr+1∣ − 1 < 1. Thus

E[Nr+2] ≤ 2δr+1 ⋅ 5
2
Nr+1 ≤ 5

32
Nr+1. (33)

Hence,

E[Nr+1 +Nr+2⋯] ≤ E[Nr+1] + 5

32
E[Nr+1] +⋯ ≤ 32

27
E[Nr+1] ≤ 80

27
Nr ≤ 80

27
N1. (34)

Therefore, E[N] = ∑i=1E[Ni] ≤ 4N1 +
80
27
N1 ≤ 7(n + 1) ⋅Q ⋅ log k

δ1
.

Proof of Lemma 5

Proof. We first focus on iteration r ≤ R − 1. For convenience, we follow the notation used in the
proof of Lemma 2. By Eq.(21) in the proof of Lemma 2 , we have that with probability at least

1−5( δr
k
)2βr −( δr

k
)3βr −k( δr

k
)βr/2−k( δr

k
)4βr −4( δr

k
)2βr ≥ 1− 3

2
δr, both of the following conditions

hold.

1: br ∉ A1;

2: All the arms’ empirical values in Sr/Sr+1 are smaller than u + 3/16ǫ.
By Hoeffding’s inequality, for arm j in iteration r, we have

Pr(θ̂j ≥ θj − 3ǫ/16) ≥ 1 − (δr
k
)4βr . (35)

For r = 1, then applying the union bound, for arm set {1∗,2∗⋯, i∗}, with probability 1 − k ⋅ ( δ1
k
)4β1 ,

all arm’s empirical value greater than θi∗ − 3ǫ/16. Applying the union bound for all iterations, we

have that w.p. at least 1 − δ3

32
, there are at least i arms in set {1∗,2∗,⋯, i∗} whose empirical values

are greater than θi∗ − 3ǫ/16. Let ξ be the above event. Then Pr[ξ] ≥ 1 − δ3

32
.

Without loss of generality, we assume that i∗ is the first eliminated arm in {1∗,2∗⋯, i∗}, and that it is
eliminated in iteration r. Let jr be an arm inserted into S′ in iteration r. Assume ξ holds. Combining
two conditions together, we have that with probability 1 − 3

2
δr,

θjr ≥ θbr ≥ u − 3/8ǫ = u + 3/16ǫ − 9/16ǫ ≥ θ̂i∗ − 9/16ǫ ≥ θi∗ − 3/4ǫ. (36)
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In addition, Without loss of generality, we assume that i∗ has been eliminated before iteration R and
all x∗ (x < i) are kept in SR(SR ≠ ∅). In iteration R of Algorithm 3,

βR ≥ (k
δ
)βR−1 ≥ (k

δ
)(

k
δ
)βR−2

≥ ⋯ ≥ k

δ

k
δ

⋰β1

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
R−1

(37)

By the definition of β1, we have ⌈(δR/k)βR ∣SR∣/2⌉ < 1. It follows that ( k
δR
)βR ≥ ∣SR∣/2. Thus, we

have pulled each arm in SR at least

Q ⋅ log( k
δR
)βR ≥max{Q ⋅ log SR

2
,Q ⋅ log

k

δR
} ≥ Q ⋅ log SR

2
+Q ⋅ log k

δR

2
≥ Q

2
log

k ⋅ SR

2δR
(38)

times. Applying Hoeffding’s inequality and the union bound, for every jR ∈ SR, we have that with
probability 1 − 2δR,

θjR − 1/7ǫ ≤ θ̂jR ≤ θjR + 1/7ǫ. (39)

In Algorithm 3, we pull each arm (in S′) Q log
4∣S′∣
δ

times. By Hoeffding’s inequality and the union

bound, we have that with probability 1 − δ
4

, for all s ∈ S′,
θs − 1/10ǫ ≤ θ̂s ≤ θs + 1/10ǫ. (40)

By Eq. (36) and union bound, with probability 1 − 3
2 ∑r=1 δr −Pr[ξ] ≥ 1 − δ/2, there are at least k

arms in S′ whose means are greater than θi∗ − 3/4ǫ. Combining Eq. (40) and the union bound, we
have that for any arm s whose empirical value is top-i in Line 4 of Algorithm 3, with probability

1 − 3δ
4

,

θs ≥ θ̂s − 1/10ǫ ≥ θ̂i∗ − 3/4ǫ − 1/10ǫ > θi∗ − ǫ. (41)

Assume that Eq. (41),(40) and (39) hold. Again, we assume i∗ has been eliminated before iteration R
and all x∗(x < i) are kept in SR(SR ≠ ∅). Let xo be the top-x returned arm. If xo ∈ S′, we consider
two cases as follows:

Case 1:x ≥ i. By Eq. (41), θxo ≥ θi∗ − ǫ.
Case 2:x < i. By Eq. (40) and (39), we have

θxo + 1/10ǫ ≥ θ̂xo ≥ θ̂x∗ ≥ θx∗ − 1/7ǫ. (42)

Thus θxo ≥ θx∗ − ǫ.
On the other hand, if the returned arm xo ∉ S′, then we have xo ∈ SR. We differentiate two cases as
follows.

Case 1: x < i. Note that x∗ ∈ SR. By Eq. (39), we have

θxo ≥ θ̂xo − 1/7ǫ ≥ θ̂x∗ − 1/7ǫ ≥ θx∗ − 2/7ǫ. (43)

Case 2: x ≥ i. We have

θxo ≥ θ̂xo − 1/7ǫ ≥ θi∗ − 3/4ǫ − 1/7ǫ − 1/10ǫ ≥ θi∗ − ǫ. (44)

Applying the union bound, Eq. (41), (40), and (39) hold with probability at least 1− δ, and hence, the
lemma is proved.

Proof of Lemma 6

Proof. Let Ni be the number of arms pulled in iteration r ≤ R − 1. For r ≤ R − 2, we have

Nr+1 = ∣Sr+1∣ ⋅ βr+1 ⋅Q ⋅ log
k

δr+1
≤ 1

2
∣Sr ∣ ⋅ βr ⋅Q ⋅ log

k

δr+1
≤ 3

4
Nr. (45)

Meanwhile, the Rth round consumes in two places: Line 2 and Line 4 in Algorithm 3. Let X
be the sample cost of Line 2. Similar to Equation 45, we have X ≤ 3/4NR−1. For Line 4, since

∣S′∣ ≤ log∗k
δ
(n) ⋅ k, it can be proved that the cost of Line 4 is bounded by O( n

ǫ2
(log k

δ
+ ilog

(R)
k
δ

(n))).
Therefore, N ≤ O(∑R−1

r=1 Nr) +O( nǫ2 (log k
δ
+ ilog

(R)
k
δ

(n))) = O( n
ǫ2
(ilog(R)k

δ

(n) + log k
δ
)).
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Elimination Arms

Work [13] can eliminate most arms below a given threshold by using the Elimination procedure
defined in [24] as a subroutine. To bound the round complexity of the elimination procedure in our

Theorem 3, we need the Elimination procedure in [24], Page 7, δr ← δ

10⋅ 1
δ

1

δ
⋰ 1

δ

´ ¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
r

. Then, Lemma 2.4

in [24] still holds and each elimination costs O(log∗1
δ
(n)) rounds.

Proof of Lemma 8

Proof. We consider the Exponential-Gap-Eliminating process and divide it into two part. The first
part is ǫr ∈ [1,∆k]. In this part, since ǫr+1 = ǫr/8, we need at most log∆−1k iterations. For each
iteration, we need to run algorithm 1 and use Ω(log∗1

δ
(n)) rounds. Thus, for the first part, we need

O(log∆−1k ⋅ log∗1
δ
(n)) rounds.

The second part is ǫr < ∆k. Once ǫr < ∆k/8, from [13]’s Observation 4.2, we can get with high
probability the algorithm will return. Thus, the round complexity of second part is O(log∗1

δ
(n)).
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