
A Component family and practical aspects of optimization

In order to use Algorithm 1, we need to compute or estimate 〈h, φ〉 for any φ ∈ L2(µ) and 〈h, h′〉 for any
h, h′ ∈ H. For arbitrary φ, we use Monte Carlo estimates based on samples from h2 via

∀φ ∈ L2(µ), 〈h, φ〉 =

∫
h2(x)

φ(x)

h(x)
µ(dx) = Eh2

[
φ(X)

h(X)

]
≈ 1

S

S∑
s=1

φ(Xs)

h(Xs)
Xs

i.i.d.∼ h2,

and employ an exponential component familyH such that inner products 〈h, h′〉 between members ofH are
available in closed-form. In other words, for some base density k(x), sufficient statistic T (x), and log-partition
A(η), we let

H =
{
hη ∈ L2(µ) : h2

η(x) = k(x) exp
(
ηTT (x)−A(η)

)}
.

Denoting ηi to be the natural parameter for gi, then gi = hηi and

Zij = 〈gi, gj〉 =

∫
hηi(x)hηj (x)µ(dx) = exp

(
A
(ηi + ηj

2

)
− A(ηi) +A(ηj)

2

)
. (10)

In practice, we use a few techniques to improve the stability and performance of UBVI:

Component Initialization The performance of variational boosting methods is often sensitive to the choice
of initialization in each component optimization. The initialization used in this work is based on the intuition that
after the first component optimization, each subsequent optimization will typically do one of two things: either
it will find a new mode, or it will attempt to refine a previously found mode. If we wish to refine a previous
mode, it is useful to initialize the optimization near that mode with a similar covariance structure. If we wish to
discover a new mode, it is preferable to sample an initialization from the present distribution with significant
added noise. In the experimental section of this work, we take the middle ground. We first sample a component
from the current mixture approximation. Then, we generate an initialization for the Gaussian mean by sampling
from that component with its covariance increased by a factor of 16. Finally, we initialize the covariance by
using that component’s covariance multiplied by a standard log-normal random variable.

Objective Transformation We maximize log(J(x))1 [J(x) ≥ 0] − log(−J(x))1 [J(x) < 0], where
J(x) is the objective in Eq. (5), to avoid vanishing gradients and handle possible negativity; while this technically
makes the Monte Carlo-based stochastic gradient estimates biased, it significantly improves performance in
practice.

Parametrization The choice of parametrization can have a significant effect on the conditioning of the
optimization problem. Although we exploit the properties of the exponential family for Zij evaluation in
Eq. (10), we do not use the natural parametrization during optimization. In particular, we optimize over the
mean and log-transformed marginal variances log σ2

i in the diagonal covariance matrix Σ = diag(σ2
1 , . . . , σ

2
D).

Large-Scale Data If the target density p arises from a Bayesian posterior inference problem with a large
dataset, computing p and its gradients exactly in each component optimization iteration is expensive. Thus, one
can use a Monte Carlo minibatch approximation with uniformly subsampled data per [50].

Estimating 〈f, g〉 We use different numbers of samples for the component optimization stochastic gradient
estimates and the estimates of 〈f, gn〉 (Line 9, Algorithm 1) required to solve the UBVI weight optimization. In
particular, we use a relatively high number of samples (10,000 in our experiments) for estimating 〈f, gn〉, as
these each need to be estimated only once, and they have a high impact on the choice of weights and thus future
components; and for stochastic optimization, we use a lower number of samples (1,000 in our experiments) to
avoid overly expensive component optimizations.

B Proofs

B.1 Proof of gradient boosting BVI behaviour

Proof of Proposition 1. Let φ(x;σ2) be the normal density with mean 0 and variance σ2. Then Eq. (1) is

σ?2 = arg min
σ2

∫
φ(x;σ2) log

φ(x;σ2)r2φ(x; τ2)

φ(x; 1)
dx

= arg min
σ2

−r2 log σ − σ2

2τ2
+
σ2

2
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=

{
∞ τ2 ≤ 1
r2τ

2

τ2−1
τ2 > 1.

Therefore, if the initialization has variance τ2 ≤ 1 the component optimization is degenerate. Note that for any
two variances σ2

1 , σ2
2 , the weight optimization is

w? = arg min
w∈[0,1]

∫ (
wφ(x;σ2

1) + (1− w)φ(x;σ2
2)
)

log

(
wφ(x;σ2

1) + (1− w)φ(x;σ2
2)
)

φ(x; 1)
dx

= arg min
w∈[0,1]

w
σ2

1

2
− wσ

2
2

2
+

∫ (
wφ(x;σ2

1) + (1− w)φ(x;σ2
2)
)

log
(
wφ(x;σ2

1) + (1− w)φ(x;σ2
2)
)

dx,

and taking first and second derivatives,

d

dw
=
σ2

1 − σ2
2

2
+

∫ (
φ(x;σ2

1)− φ(x;σ2
2)
)

log
(
wφ(x;σ2

1) + (1− w)φ(x;σ2
2)
)

dx

d2

dw2
=

∫ (
φ(x;σ2

1)− φ(x;σ2
2)
)2

wφ(x;σ2
1) + (1− w)φ(x;σ2

2)
dx > 0

At w = 1,
∫ (
φ(x;σ2

1)− φ(x;σ2
2)
)

log
(
wφ(x;σ2

1) + (1− w)φ(x;σ2
2)
)

dx = (σ2
2 − σ2

1)/(2σ2
1). Therefore,

if σ2
2 > σ2

1 > 1,

d

dw
<
σ2

1 − σ2
2

2
+
σ2

2 − σ2
1

2σ2
1

< 0.

In other words, the derivative is always negative, so the optimization sets w = 1 and forgets the new component.
This situation occurs if σ2

1 = τ2 > 1, σ2
2 = r2

τ2

τ2−1
and r2 > τ2 − 1.

Proof of Proposition 2. Using the notation from the proof of Proposition 1, Eq. (1) is

σ?2 = arg min
σ2

∫
φ(x;σ2) log

φ(x;σ2)r1

Cauchy(x; 0, 1)
dx

= arg min
σ2

−1

2
r1 log σ2 + EN (0,1)

[
log(1 + σ2x2)

]
.

Taking the derivative with respect to σ2 followed by Jensen’s inequality yields

d

dσ2
= σ−2

(
−1

2
r1 + EN (0,1)

[
σ2x2

1 + σ2x2

])
≤ σ−2

(
−1

2
r1 +

σ2

1 + σ2

)
.

Therefore if r1 ≥ 2, the derivative with respect to σ2 is always negative, so σ2 increases without bound.

B.2 Proofs of Hellinger distance properties

Proof of Proposition 4. This follows from

D2
H (p, q) =

1

2

∫
(f(x)− g(x))2µ(dx) ≤ 1

2

∫
|f(x)− g(x)| (f(x) + g(x))µ(dx)

=
1

2

∫ ∣∣f2(x)− g2(x)
∣∣µ(dx) = DTV (p, q)

and

DTV (p, q) =
1

2

∫ ∣∣f2(x)− g2(x)
∣∣µ(dx)

=
1

2

∫
|f(x)− g(x)|(f(x) + g(x))µ(dx)

≤ 1

2

√∫
|f(x)− g(x)|2µ(dx)

∫
(f(x) + g(x))2µ(dx)

=
1√
2

DH (p, q)

√
2 + 2

∫
f(x)g(x)µ(dx)

= DH (p, q)
√

2−D2
H (p, q) .
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Proof of Proposition 5. Combining a bound on the `-Wasserstein distance [51, Theorem 6.15],

W `
` (p, q) ≤ 2`−1

∫
d(x0, x)` |p(x)− q(x)|µ(dx),

with |p(x)− q(x)| = |
√
p(x) −

√
q(x) |(

√
p(x) +

√
q(x) ), Cauchy-Schwarz, and Proposition 4 implies

W `
` (p, q) ≤ 2`−1/2DH (p, q)

√∫
d(x0, x)2`

(√
p(x) +

√
q(x)

)2

µ(dx) .

Finally, since (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R,

W `
` (p, q) ≤ 2`DH (p, q)

√∫
d(x0, x)2`(p(x) + q(x))µ(dx) .

Proof of Proposition 6. Rearranging the definition of Hellinger distance squared,

D2
H (p, q) =

1

2

∫ (√
p(x) −

√
q(x)

)2

µ(dx)

=
1

2

∫
p(x)

q(x)

p(x)

(√
p(x)

q(x)
− 1

)2

µ(dx).

For x > 1, x−1 (
√
x − 1)

2 ≥
(

log x
1+log x

)2

, and for x ≤ 1, x−1 (
√
x − 1)

2 ≥ (log x)2, so

D2
H (p, q) ≥ 1

2

∫
p>q

p(x)

(
log p(x)

q(x)

1 + log p(x)
q(x)

)2

µ(dx) +
1

2

∫
p≤q

p(x)

(
log

p(x)

q(x)

)2

µ(dx).

Now using the relation 2a2 + 2b2 ≥ (a+ b)2,

D2
H (p, q) ≥ 1

4

∫
p(x)

(
1 [p > q]

log p(x)
q(x)

1 + log p(x)
q(x)

+ 1 [p ≤ q] log
p(x)

q(x)

)2

µ(dx)

=
1

4

∫
p(x)

1 [p > q] log p(x)
q(x)

+ 1 [p ≤ q] log p(x)
q(x)

(
1 + log p(x)

q(x)

)
1 + log p(x)

q(x)

2

µ(dx)

=
1

4

∫
p(x)

(
log

p(x)

q(x)

)2
1 + 1

[
log p(x)

q(x)
≤ 0
]

log p(x)
q(x)

1 + log p(x)
q(x)

2

µ(dx).

This provides the first result. Using the reverse Hölder inequality ‖fg‖1 ≥ ‖f‖ 1
p
‖g‖ −1

p−1
for p = 2 ∈ (1,∞),

D2
H (p, q) ≥ 1

4

(∫
p(x) log

p(x)

q(x)
µ(dx)

)2
∫ p(x)

 1 + log p(x)
q(x)

1 + 1
[
log p(x)

q(x)
≤ 0
]

log p(x)
q(x)

2

µ(dx)

−1

=
1

4
D2

KL (p||q)

(
P
(

log
p(x)

q(x)
≤ 0

)
+

∫
p(x)1

[
log

p(x)

q(x)
> 0

](
1 + log

p(x)

q(x)

)2

µ(dx)

)−1

≥ 1

4
D2

KL (p||q)

(
1 +

∫
p(x)1

[
log

p(x)

q(x)
> 0

](
1 + log

p(x)

q(x)

)2

µ(dx)

)−1

.

Proof of Proposition 7. This proof uses a technique adapted from [54, Theorem 1.1]. Let Y ∼ p(y)µ(dy),
X ∼ q(x)µ(dx), and for a ≥ 0,

ρ(x) :=

∣∣∣∣∣1−
√
q(x)

p(x)

∣∣∣∣∣
2

h(x) := φ(x)1 [ρ(x) ≤ a] .
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Then by Cauchy-Schwarz,

E [|In(φ)− In(h)|] ≤ ‖φ‖L2(p)

√
P (ρ(Y ) > a) (11)

|I(φ)− I(h)| ≤ ‖φ‖L2(p)

√
P (ρ(Y ) > a) (12)

E [|In(h)− I(h)|] ≤
√
N −1

√
Var

p(X)

q(X)
φ(X)1 [ρ(X) ≤ a] . (13)

Now note that

Var

(
p(X)

q(X)
φ(X)1 [ρ(X) ≤ a]

)
≤ E

[
p2(X)

q2(X)
φ(X)2

1 [ρ(X) ≤ a]

]
= E

[
p(Y )

q(Y )
φ(Y )2

1 [ρ(Y ) ≤ a]

]
and for a ∈ [0, 1), ρ(x) ≤ a implies√

q(x)

p(x)
≥ 1−

√
a =⇒ p(x)

q(x)
≤ (1−

√
a )−2

So

Var

(
p(X)

q(X)
φ(X)1 [ρ(X) ≤ a]

)
≤ ‖φ‖2L2(p)

(
1

(1−
√
a )2

)
and hence

E [|In(h)− I(h)|] ≤ ‖φ‖L2(p)

√
N −1 1

1−
√
a

By Markov’s inequality,

P (ρ(Y ) > a) ≤ a−1E [ρ(Y )] = 2a−1D2
H (p, q) .

So substituting and combining the three bounds from Eqs. (11) to (13) using the triangle inequality,

E [|In(φ)− I(φ)|] ≤ ‖φ‖L2(p)

(
1√

N (1−
√
a )

+
√

8a−1 DH (p, q)

)
.

Optimizing over a yields

√
a =

81/4DH (p, q)1/2

81/4DH (p, q)1/2 +N−1/4
,

and substituting with 81/4 ≤ 2 yields

E [|In(φ)− I(φ)|] ≤ ‖φ‖L2(p)

(
N−

1/4 + 2
√

DH (p, q)

)2

.

Setting N = α−4DH (p, q)−2 yields the first result. For the second, note that |In(φ)− I(φ)| ≤ ‖φ‖L2(p)δ and
|In(1)− 1| ≤ η implies that

|Jn(φ)− I(φ)| = |In(φ)− In(1)I(φ)|
In(1)

≤ |In(φ)− I(φ)|+ I(φ) |In(1)− 1|
1− |In(1)− 1|

≤ ‖φ‖L2(p)

δ + η

1− η ,

so

P
(
|Jn(φ)− I(φ)| > ‖φ‖L2(p)

δ + η

1− η

)
≤ P

(
|In(φ)− I(φ)| > ‖φ‖L2(p)δ

)
+ P (|In(φ)− 1| > η) ,

which by Markov inequality and the previous bound,

P
(
|Jn(φ)− I(φ)| > ‖φ‖L2(p)

δ + η

1− η

)
≤
(
N−

1/4 + 2
√

DH (p, q)

)2 (
δ−1 + η−1)

Minimizing δ−1 + η−1 subject to the constraint that t = (δ + η)/(1− η) yields the result.
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Proof of Proposition 8. For the first bound, by Jensen’s inequality

E
[∣∣∣ ̂D2

H (p, q)−D2
H (p, q)

∣∣∣] ≤
√√√√Var

1

N

N∑
n=1

√
p(Xn)

q(Xn)

=

√√√√ 1

N
Var

√
p(Xn)

q(Xn)

=

√
1

N

√
1−

(∫ √
q(x)p(x) dx

)2

=

√
1

N

√
D2

H (p, q) (2−D2
H (p, q)) .

For the second bound, using the triangle inequality, and cancelling out normalization constants

E
[∣∣∣ ˜D2

H (p, q)−D2
H (p, q)

∣∣∣]

≤E

 1
N

∑N
n=1

√
p(Xn)
q(Xn)√

1
N

∑N
n=1

p(Xn)
q(Xn)

∣∣∣∣∣∣∣1−
√√√√√ 1

N

∑N
n=1

p(Xn)
q(Xn)

E
[
p(Xn)
q(Xn)

]
∣∣∣∣∣∣∣
+ E


∣∣∣∣∣∣∣∣

1
N

∑N
n=1

√
p(Xn)
q(Xn)

− E
[√

p(Xn)
q(Xn)

]
√

E
[
p(Xn)
q(Xn)

]
∣∣∣∣∣∣∣∣


By Jensen’s inequality on the left term and Cauchy-Schwarz on the right, and noting that E [p/q] = 1,

E
[∣∣∣ ˜D2

H (p, q)−D2
H (p, q)

∣∣∣] ≤E
∣∣∣∣∣∣1−

√√√√ 1

N

N∑
n=1

p(Xn)

q(Xn)

∣∣∣∣∣∣
+

√
2

N
DH (p, q)

The left term can be bounded via Cauchy-Schwarz and Jensen’s inequality:

E

∣∣∣∣∣∣1−
√√√√ 1

N

N∑
n=1

p(Xn)

q(Xn)

∣∣∣∣∣∣
 ≤

√√√√√2− 2E


√√√√ 1

N

N∑
n=1

p(Xn)

q(Xn)


≤

√√√√2− 2E

[
1

N

N∑
n=1

√
p(Xn)

q(Xn)

]
=
√

2 DH (p, q)

Combining these results yields the second inequality.

B.3 Theoretical tools for establishing convergence of Algorithm 1

Lemma 9. Define f̂ := arg minh∈cl spanH:‖h‖2=1 ‖f − h‖2. Then f̂ exists, is unique, and is nonnegative.

Proof of Lemma 9. Since cl spanH is a closed convex set, there exists a unique function f̂ ′ of minimum
distance to f . Note that f̂ ′ is nonnegative since f is nonnegative, so otherwise f̂ ′ could be replaced with
max{0, f̂ ′} without increasing the distance to f . Furthermore, the error ε := f − f̂ ′ is orthogonal to cl spanH.
Since f is not orthogonal to cl spanH, f̂ ′ 6= 0, so set f̂ = f̂ ′

‖f̂ ′‖2
. Suppose there is another unit-norm function

g ∈ cl spanH at least as close to f ; then

0 ≥

〈
f,

f̂ ′

‖f̂ ′‖2
− g

〉
=

〈
f̂ ′ + ε,

f̂ ′

‖f̂ ′‖2
− g

〉
=

〈
f̂ ′,

f̂ ′

‖f̂ ′‖2
− g

〉
= ‖f̂ ′‖2 −

〈
f̂ ′, g

〉
.

Dividing both sides by ‖f̂ ′‖2 yields the inequality
〈
f̂ , g
〉
≥ 1, implying that g = f̂ , and thus f̂ is unique.

Lemma 10. τ ≤ 〈f̂ ,g1〉
1−

√
1−〈f̂ ,g1〉2

<∞.
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Proof of Lemma 10. Set h1 =
〈
f̂ , g1

〉
g1 where g1 is chosen from Eq. (5), and ∀ i > 1, set hi = 0. Since f is

not orthogonal to cl spanH,
〈
f̂ , g1

〉
> 0, so τ <∞.

Lemma 11. Suppose at each iteration, the optimization in Eq. (5) is solved with multiplicative error (1− δ)
relative to the optimal objective. Then

Jn+1 ≤ Jn(1− Jn) where Jn :=

(
1− δ
τ

)2(
1−

〈
f̂ , ḡn

〉2
)
.

Proof of Lemma 11. Taking the derivative of the objective in Eq. (4) with respect to x and setting to zero, the
solution is

x? =

√√√√√√
〈
f, h−〈h,ḡn〉ḡn
‖h−〈h,ḡn〉ḡn‖2

〉2

〈
f, h−〈h,ḡn〉ḡn
‖h−〈h,ḡn〉ḡn‖2

〉2

+ 〈f, ḡn〉2
. (14)

Suppose at iteration n+ 1, instead of gn+1 we obtain a function h satisfying a (1− δ)-relative approximation
to Eq. (5). Then using the optimal value for x? from Eq. (14), noting that the quadratic weight optimization
provides at least as much error reduction as the geodesic update with x?, and noting that f = f̂ ′ + ε where
ε ⊥ cl spanH and f̂ ′ is from the proof of Lemma 9, we find the recursion

‖f̂ ′‖22 −
〈
f̂ ′, ḡn+1

〉2

=

(
‖f̂ ′‖22 −

〈
f̂ ′, ḡn

〉2
)1−

〈
f̂ ′ −

〈
f̂ ′, ḡn

〉
ḡn∥∥∥f̂ ′ − 〈f̂ ′, ḡn〉 ḡn∥∥∥ , h− 〈h, ḡn〉 ḡn

‖h− 〈h, ḡn〉 ḡn‖

〉2


≤
(
‖f̂ ′‖22 −

〈
f̂ ′, ḡn

〉2
)1− (1− δ)2

〈
f̂ ′ −

〈
f̂ ′, ḡn

〉
ḡn∥∥∥f̂ ′ − 〈f̂ ′, ḡn〉 ḡn∥∥∥ , gn+1 − 〈gn+1, ḡn〉 ḡn

‖gn+1 − 〈gn+1, ḡn〉 ḡn‖

〉2
 .

Now again using the fact that ε ⊥ cl spanH as well as the fact that gn+1 is the argmax of Eq. (5), we can
replace gn+1 with any convex combination of other elements ofH, so

‖f̂ ′‖22 −
〈
f̂ ′, ḡn+1

〉2

≤
(
‖f̂ ′‖22 −

〈
f̂ ′, ḡn

〉2
)1− (1− δ)2

〈
f − 〈f, ḡn〉 ḡn∥∥∥f̂ ′ − 〈f̂ ′, ḡn〉 ḡn∥∥∥ , gn+1 − 〈gn+1, ḡn〉 ḡn

‖gn+1 − 〈gn+1, ḡn〉 ḡn‖

〉2


≤
(
‖f̂ ′‖22 −

〈
f̂ ′, ḡn

〉2
)1− (1− δ)2 sup

hi∈coneH

〈
f − 〈f, ḡn〉 ḡn∥∥∥f̂ ′ − 〈f̂ ′, ḡn〉 ḡn∥∥∥ ,

∑
i hi −

〈∑
i hi, ḡn

〉
ḡn

D

〉2
 ,

whereD =
∑
i ‖hi‖ ‖hi − 〈hi, ḡn〉 ḡn‖. Define ν :=

∑
i hi− f̂ . Again using ε ⊥ cl spanH, and normalizing

the left vector by ‖f̂ ′‖ yields

=

(
‖f̂ ′‖22 −

〈
f̂ ′, ḡn

〉2
)1− (1− δ)2 sup

hi∈coneH

〈
f̂ −

〈
f̂ , ḡn

〉
ḡn∥∥∥f̂ − 〈f̂ , ḡn〉 ḡn∥∥∥ ,

f̂ −
〈
f̂ , ḡn

〉
ḡn + ν − 〈ν, ḡn〉 ḡn
D

〉2
 .

Now noting that the inner term is minimized when ν = −‖ν‖f̂ , we have that

≤
(
‖f̂ ′‖22 −

〈
f̂ ′, ḡn

〉2
)(

1− sup
hi∈coneH

(1− δ)2(1− ‖ν‖)2

D2
(1−

〈
f̂ , ḡn

〉2

)

)
.

Finally, dividing both sides by ‖f̂ ′‖22 and noting that D ≤
∑
i ‖hi‖,

1−
〈
f̂ , ḡn+1

〉2

≤
(

1−
〈
f̂ , ḡn

〉2
)(

1−
(

1− δ
τ

)2(
1−

〈
f̂ , ḡn

〉2
))

.

Denoting Jn =
(

1−δ
τ

)2(
1−

〈
f̂ , ḡn

〉2
)

, and multiplying both sides by
(

1−δ
τ

)2 yields the recursion

Jn+1 ≤ Jn (1− Jn) .
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Proof of Theorem 3. By [59, Lemma A.6], the recursion Lemma 11 satisfies Jn ≤ J0
1+J0n

. Substituting the

definition of Jn and noting that DH (p̂, qn)2 = 1−
〈
f̂ , ḡn

〉
≤ 1−

〈
f̂ , ḡn

〉2

yields the result.

19


