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Abstract

We consider black box optimization of an unknown function in the nonparametric
Gaussian process setting when the noise in the observed function values can be
heavy tailed. This is in contrast to existing literature that typically assumes sub-
Gaussian noise distributions for queries. Under the assumption that the unknown
function belongs to the Reproducing Kernel Hilbert Space (RKHS) induced by
a kernel, we first show that an adaptation of the well-known GP-UCB algorithm
with reward truncation enjoys sublinear Õ

(
T

2+α
2(1+α)

)
regret even with only the

(1 + α)-th moments, α ∈ (0, 1], of the reward distribution being bounded (Õ
hides logarithmic factors). However, for the common squared exponential (SE)
and Matérn kernels, this is seen to be significantly larger than a fundamental
Ω(T

1
1+α ) lower bound on regret. We resolve this gap by developing novel Bayesian

optimization algorithms, based on kernel approximation techniques, with regret
bounds matching the lower bound in order for the SE kernel. We numerically
benchmark the algorithms on environments based on both synthetic models and
real-world data sets.

1 Introduction

Black-box optimization of an unknown function f : Rd → R with expensive, noisy queries is a
generic problem arising in domains such as hyper-parameter tuning for complex machine learning
models [3], sensor selection [14], synthetic gene design [15], experimental design etc. The popular
Bayesian optimization (BO) approach, towards solving this problem, starts with a prior distribution,
typically a nonparametric Gaussian process (GP), over a function class, uses function evaluations
to compute the posterior distribution over functions, and chooses the next function evaluation
adaptively – using a sampling strategy – towards reaching the optimum. Popular sampling strategies
include expected improvement [25], probability of improvement [40], upper confidence bounds [35],
Thompson sampling [11], predictive-entropy search [17], etc.

The design and analysis of adaptive sampling strategies for BO typically involves the assumption of
bounded, or at worst sub-Gaussian, distributions for rewards (or losses) observed by the learner, which
is quite light-tailed. Yet, many real-world environments are known to exhibit heavy-tailed behavior,
e.g., the distribution of delays in data networks is inherently heavy-tailed especially with highly
variable or bursty traffic flow distributions that are well-modeled with heavy tails [20], heavy-tailed
price fluctuations are common in finance and insurance data [29], properties of complex networks
often exhibit heavy tails such as degree distribution [37], etc. This motivates studying methods for
Bayesian optimization when observations are significantly heavy tailed compared to Gaussian.

A simple version of black box optimization – in the form of online learning in finite multi-armed
bandits (MABs) – with heavy-tailed payoffs, was first studied rigorously by Bubeck et al. [8], where
the payoffs are assumed to have bounded (1 + α)-th moment for α ∈ (0, 1]. They showed that for
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MABs with only finite variances (i.e., α = 1), by using statistical estimators that are more robust than
the empirical mean, one can still recover the optimal regret rate for MAB under the sub-Gaussian
assumption. Moving further, Medina and Yang [24] consider these estimators for the problem of
linear (parametric) stochastic bandits under heavy-tailed rewards and Shao et al. [34] show that almost
optimal algorithms can be designed by using an optimistic, data-adaptive truncation of rewards. Some
other important works include pure exploration under heavy-tailed noise [43], payoffs with bounded
kurtosis [23], extreme bandits [10], heavy tailed payoffs with α ∈ (0,∞) [38].

Against this backdrop, we consider regret minimization with heavy-tailed reward distributions in
bandits with a potentially continuous arm set, and whose (unknown) expected reward function is
nonparametric and assumed to have smoothness compatible with a kernel on the arm set. Here, it
is unclear if existing BO techniques relying on statistical confidence sets based on sub-Gaussian
observations can be made to work to attain nontrivial regret, since it is unlikely that these confidence
sets will at all be correct. It is worth mentioning that in the finite dimensional setting, Shao et al. [34]
solve the problem almost optimally, but their results do not carry over to the general nonparametric
kernelized setup since their algorithms and regret bounds depend crucially on the finite feature
dimension. We answer this affirmatively in this work, and formalize and solve BO under heavy tailed
noise almost optimally. Specifically, this paper makes the following contributions.

• We adapt the GP-UCB algorithm to heavy-tailed payoffs by a truncation step, and show
that it enjoys a regret bound of Õ(γTT

2+α
2(1+α) ) where γT depends on the kernel associated

with the RKHS and is generally sub-linear in T . This regret rate, however, is potentially
sub-optimal due to a Ω(T

1
1+α ) fundamental lower bound on regret that we show for two

specific kernels, namely the squared exponential (SE) kernel and the Matérn kernel.
• We develop a new Bayesian optimization algorithm by truncating rewards in each direction

of an approximate, finite-dimensional feature space. We show that the feature approximation
can be carried out by two popular kernel approximation techniques: Quadrature Fourier
features [26] and Nyström approximation [9]. The new algorithm under either approximation
scheme gets regret Õ(γTT

1
1+α ), which is optimal upto log factors for the SE kernel.

• Finally, we report numerical results based on experiments on synthetic as well as real-world
based datasets, for which the algorithms we develop are seen to perform favorably in the
harsher heavy-tailed environments.

Related work. An alternative line of work uses approaches for black box optimization based on
Lipschitz-type smoothness structure [22, 7, 2, 33], which is qualitatively different from RKHS
smoothness type assumptions. Recently, Bogunovic et al. [5] consider GP optimization under an
adversarial perturbation of the query points. But, the observation noise is assumed to be Gaussian
unlike our heavy-tailed environments. Kernel approximation schemes in the context of BO usually
focuses on reducing the cubic cost of gram matrix inversion [39, 41, 26, 9]. However, we crucially
use these approximations to achieve optimal regret for BO under heavy tailed noise, which, we
believe, might not be possible without resorting to the kernel approximations.

2 Problem formulation

Let f : X → R be a fixed but unknown function over a domain X ⊂ Rd for some d ∈ N. At every
round, a learner queries f at a single point xt ∈ X , and observes a noisy payoff yt = f(xt) + ηt.
Here the noise sequence ηt, t ≥ 1 are assumed to be zero mean i.i.d. random variables such that
the payoffs satisfy E

[
|yt|1+α |Ft−1

]
≤ v for some α ∈ (0, 1] and v ∈ (0,∞), where Ft−1 =

σ({xτ , yτ )}t−1
τ=1, xt) denotes the σ-algebra generated by the events so far1. Observe that this bound

on the (1 + α)-th moment at best yields bounded variance for yt, and does not necessarily mean
that yt (or ηt) is sub-Gaussian as is assumed typically. The query point xt at round t is chosen
causally depending upon the history {(xs, ys)}t−1

s=1 of query and payoff sequences available up to
round t− 1. The learner’s goal is to maximize its (expected) cumulative reward

∑T
t=1 f(xt) over a

time horizon T or equivalently minimize its cumulative regret RT =
∑T
t=1 (f(x?)− f(xt)), where

1If instead the moment bound holds for each ηt then this can be translated to a moment bound for each yt
using, say, a bound on f(x).
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x? ∈ argmaxx∈X f(x) is a maximum point of f (assuming the maximum is attained; not necessarily
unique). A sublinear growth of RT with T implies the time-average regret RT /T → 0 as T →∞.

Regularity assumptions: Attaining sub-linear regret is impossible in general for arbitrary reward
functions f , and thus some regularity assumptions are needed. In this paper, we assume smoothness
for f induced by the structure of a kernel on X . Specifically, we make the standard assumption of a
p.s.d. kernel k : X × X → R such that k(x, x) ≤ 1 for all x ∈ X , and f being an element of the
reproducing kernel Hilbert space (RKHS)Hk(X ) of smooth real valued functions on X . Moreover,
the RKHS norm of f is assumed to be bounded, i.e., ‖f‖H ≤ B for some B < ∞. Boundedness
of k along the diagonal holds for any stationary kernel, i.e., where k(x, x′) = k(x − x′), e.g., the
Squared Exponential kernel kSE and the Matérn kernel kMatérn:

kSE(x, x′) = exp

(
− r2

2l2

)
and kMatérn(x, x′) =

21−ν

Γ(ν)

(
r
√

2ν

l

)ν
Bν

(
r
√

2ν

l

)
,

where l > 0 and ν > 0 are hyperparameters of the kernels, r = ‖x− x′‖2 is the distance between x
and x′, and Bν is the modified Bessel function.

3 Warm-up: the first algorithm

Towards designing a BO algorithm for heavy tailed observations, we briefly recall the stan-
dard GP-UCB algorithm for the sub-Gaussian setting. GP-UCB at time t chooses the point
xt = argmaxx∈X µt−1(x) + βtσt−1(x) where µt(x) = kt(x)T (Kt + λIt)

−1Yt and σ2
t (x) =

k(x, x) − kt(x)T (Kt + λIt)
−1kt(x) are the posterior mean and variance functions after t obser-

vations from a function drawn from the GP prior GPX (0, k), with additive i.i.d. Gaussian noise
N (0, λ). Here Yt = [y1, . . . , yt]

T is the vector formed by observations, Kt = [k(u, v)]u,v∈Xt is
the kernel matrix computed at the set Xt = {x1, . . . , xt}, kt(x) = [k(x1, x), . . . , k(xt, x)]T and
It is the identity matrix of order t. If the noise ηt is assumed conditionally R-sub-Gaussian, i.e.,
E
[
eγηt

∣∣ Ft−1

]
≤ exp

(
γ2R2

2

)
for all γ ∈ R, then using βt+1 = O

(
R
√

ln |It + λ−1Kt|
)

ensures

Õ(
√
T ) regret [11], as the posterior GP concentrates rapidly on the true function f . However, when

the sub-Gaussian assumption does not hold, we cannot expect the posterior GP to have such nice
concentration property. In fact, it is known that the ridge regression estimator µt ∈ Hk(X ) of f is not
robust when the noise exhibits heavy fluctuations [19]. So, in order to tackle heavy tailed noise, one
needs more robust estimates µ̂t of f along with suitable confidence sets. A natural idea to curb the
effects of heavy fluctuations is to truncate high rewards [8]. Our first algorithm Truncated GP-UCB
(Algorithm 1) is based on this idea.

Truncated GP-UCB (TGP-UCB) algorithm:
At each time t, we truncate the reward yt to zero if
it is larger than a suitably chosen truncation level bt,
i.e., we set the truncated reward ŷt = yt1|yt|≤bt .
Then, we construct the truncated version of the
posterior mean as µ̂t(x) = kt(x)T (Kt+λIt)

−1Ŷt
where Ŷt = [ŷ1, . . . , ŷt]

T and simply run GP-UCB
with µ̂t instead of µt. The truncation level bt can
be adapted with time t. We choose an increasing
sequence of bt’s, i.e., as time progresses and confi-
dence interval shrinks, we truncate less and less

Algorithm 1 Truncated GP-UCB (TGP-UCB)
Input: Parameters λ > 0, {bt}t≥1, {βt}t≥1

Set µ̂0(x) = 0 and σ2
0(x) = k(x, x)∀x ∈ X

for t = 1, 2, 3 . . . do
Play xt = argmaxx∈X µ̂t−1(x) + βtσt−1(x)
and observe payoff yt
Set ŷt = yt1|yt|≤bt and Ŷt = [ŷ1, . . . , ŷt]

T

Compute µ̂t(x) = kt(x)T (Kt + λIt)
−1Ŷt

and σ2
t (x) = kt(x)T (Kt + λIt)

−1kt(x)
end for

aggressively. Finally, in order to account for the bias introduced by truncation, we blow up the
confidence width βt of GP-UCB by a multiplicative factor of bt so that f(x) is contained in the
interval µ̂t−1(x)± βtσt−1(x) with high probability. This helps us to obtain a sub-linear regret bound
for TGP-UCB given in the Theorem 1, with a full proof deferred to appendix B.

Theorem 1 (Regret bound for TGP-UCB) Let f ∈ Hk(X ), ‖f‖H ≤ B and k(x, x) ≤ 1 for all

x ∈ X . Let E
[
|yt|1+α |Ft−1

]
≤ v < ∞ for some α ∈ (0, 1] and for all t ≥ 1. Then, for any

δ ∈ (0, 1], TGP-UCB, with bt = v
1

1+α t
1

2(1+α) and βt+1 = B+ 3√
λ
bt
√

ln |It + λ−1Kt|+ 2 ln(1/δ),
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enjoys, with probability at least 1− δ, the regret bound

RT = O
(
B
√
TγT + v

1
1+α

√
γT (γT + ln(1/δ))T

2+α
2(1+α)

)
,

where γT ≡ γT (k,X ) = maxA⊂X :|A|=T
1
2 ln

∣∣It + λ−1KA

∣∣.
Here, γT denotes the maximum information gain about any f ∼ GPX (0, k) after T noisy observations
obtained by passing f through an i.i.d. Gaussian channel N (0, λ), and measures the reduction in the
uncertainty of f after T noisy observations. It is a property of the kernel k and domain X , e.g., if X
is compact and convex, then γT = O

(
(lnT )d+1

)
for kSE and O

(
T

d(d+1)
2ν+d(d+1) lnT

)
for kMatérn [35].

Remark 1. An R-sub-Gaussian environment satisfies the moment condition with α = 1 and v = R2,
so the result implies a sub-linear Õ(T 3/4) regret bound for TGP-UCB in sub-Gaussian environments.

4 Regret lower bound

Establishing lower bounds under general kernel smoothness structure is an open problem even when
the payoffs are Gaussian. Similar to Scarlett et al. [31], we only focus on the SE and Matérn kernels.

Theorem 2 (Lower bound on cumulative regret) Let X = [0, 1]d for some d ∈ N. Fix a kernel
k ∈ {kSE, kMatérn}, B > 0, T ∈ N, α ∈ (0, 1] and v > 0. Given any algorithm, there exists a function

f ∈ Hk(X ) with ‖f‖H ≤ B, and a reward distribution satisfying E
[
|yt|1+α |Ft−1

]
≤ v for all

t ∈ [T ] := {1, 2, . . . , T}, such that when the algorithm is run with this f and reward distribution, its
regret satisfies

1. E[RT ] = Ω

(
v

1
1+α

(
ln
(
v−

1
αB

1+α
α T

)) dα
2(1+α)

T
1

1+α

)
if k = kSE,

2. E[RT ] = Ω
(
v

ν
ν(1+α)+dα B

dα
ν(1+α)+dα T

ν+dα
ν(1+α)+dα

)
if k = kMatérn.

The proof argument is inspired by that of Scarlett et al. [31], which provides the lower bound of
BO under i.i.d. Gaussian noise, but with nontrivial changes to account for heavy tailed observations.
The proof is based on constructing a finite subset of “difficult” functions in Hk(X ). Specifically,
we choose f as a uniformly sampled function from a finite set {f1, . . . , fM}, where each fj is
obtained by shifting a common function g ∈ Hk(Rd) by a different amount such that each of these
has a unique maximum, and then cropping to X = [0, 1]d. g takes values in [−2∆, 2∆] with the
maximum attained at x = 0. The function g is constructed properly, and the parameters ∆, M
are chosen appropriately based on the kernel k, fixed constants B, T, α, v such that any ∆-optimal
point for fj fails to be ∆-optimal point for any other fj′ and that ‖fj‖H ≤ B for all j ∈ [M ]. The

reward function takes values in {sgn (f(x))
(
v

2∆

) 1
α , 0}, with the former occurring with probability(

2∆
v

) 1
α |f(x)|, such that, for every x ∈ X , the expected reward is f(x) and (1 + α)-th raw moment

is upper bounded by v. Now, if we can lower bound the regret averaged over j ∈ [M ], then there
must exist some fj for which the bound holds. The formal proof is deferred to Appendix C.

Remark 2. Theorem 2 suggests that (a) TGP-UCB may be suboptimal, and (b) for the SE kernel, it
may be possible to design algorithms recovering Õ(

√
T ) regret bound under finite variances (α = 1).

5 An optimal algorithm under heavy tailed rewards

In view of the gap between the regret bound for TGP-UCB and the fundamental lower bound, it
is possible that TGP-UCB (Algorithm 1) does not completely mitigate the effect of heavy-tailed
fluctuations, and perhaps that truncation in a different domain may work better. In fact, for parametric
linear bandits (i.e., BO with finite dimensional linear kernels), it has been shown that appropriate
truncation in feature space improves regret performance as opposed to truncating raw observations
[34], and in this case the feature dimension explicitly appears in the regret bound. However, the main
challenge in the more general nonparametric setting is that the feature space is infinite dimensional,
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which would yield a trivial regret upper bound. If we can find an approximate feature map ϕ̃ : X →
Rm in a low-dimensional Euclidean inner product space Rm such that k(x, y) ≈ ϕ̃(x)T ϕ̃(y), then
we can perform the above feature adaptive truncation effectively as well as keep the error introduced
due to approximation in control. Such a kernel approximation can be done efficiently either in a
data independent way (Fourier features approximation [28]) or in a data dependent way (Nyström
approximation [12]) and has been used in the context of BO to reduce the time complexity of GP-UCB
[26, 9]. But in this work, the approximations are crucial to obtain optimal theoretical guarantees. We
now describe our algorithm Adaptively Truncated Approximate GP-UCB (Algorithm 2).

5.1 Adaptively Truncated Approximate GP-UCB (ATA-GP-UCB) algorithm

At each round t, we select an arm xt which maximizes the approximate (under kernel approximation)
GP-UCB score µ̃t−1(x) + βtσ̃t−1(x), where µ̃t−1(x) and σ̃2

t−1(x) denote approximate posterior
mean and variance from the previous round, respectively and βt is an appropriately chosen confidence
width. Then, we update µ̃t(x) and σ̃2

t (x) as follows. First, we find a feature embedding ϕ̃t ∈ Rmt ,
of some appropriate dimension mt, which approximates the kernel efficiently. Then, we find the rows
uT1 , . . . , u

T
mt of the matrix Ṽ −1/2

t Φ̃Tt , where Φ̃t = [ϕ̃t(x1), . . . , ϕ̃t(xt)]
T and Ṽt = Φ̃Tt Φ̃t + λImt ,

and use those as the weight vectors for truncating the rewards in each of mt directions by setting
r̂i =

∑t
τ=1 ui,τyτ1|ui,τyτ |≤bt for all i ∈ [mt], where bt specifies the truncation level. Then, we

find our estimate of f as θ̃t = Ṽ
−1/2
t [r̂1, . . . , r̂mt ]

T . Finally, we approximate the posterior mean
as µ̃t(x) = ϕ̃t(x)T θ̃t and the posterior variance as (i) σ̃2

t (x) = λϕ̃t(x)T Ṽ −1
t ϕ̃t(x) for the Fourier

features approximation, or as (ii) σ̃2
t (x) = k(x, x) − ϕ̃t(x)T ϕ̃t(x) + λϕ̃t(x)T Ṽ −1

t ϕ̃t(x) for the
Nyström approximation. Now it only remains to describe how to find the feature embeddings ϕ̃t.

(a) Quadrature Fourier features (QFF) approximation: If k is a bounded, continuous, positive
definite, stationary kernel satisfying k(x, x) = 1, then by Bochner’s theorem [4], k is the Fourier
transform of a probability measure p, i.e., k(x, y) =

∫
Rd p(ω) cos(ωT (x − y))dω. For the SE

kernel, this measure has density p(ω) =
(

l√
2π

)d
e−

l2‖ω‖22
2 (abusing notation for measure and density).

Mutny and Krause [26] show that for any stationary kernel k on Rd whose inverse Fourier transform
decomposes product wise, i.e., p(ω) =

∏d
j=1 pj(ωj), we can use Gauss-Hermite quadrature [18]

to approximate it. If X = [0, 1]d, the SE kernel is approximated as follows. Choose m̄ ∈ N and
m = m̄d, and construct the 2m-dimensional feature map

ϕ̃(x)i =


√
ν(ωi) cos

(√
2
l ω

T
i x
)

if 1 ≤ i ≤ m,√
ν(ωi−m) sin

(√
2
l ω

T
i−mx

)
if m+ 1 ≤ i ≤ 2m.

(1)

Here the set {ω1, . . . , ωm} =

d times︷ ︸︸ ︷
Am̄ × · · · ×Am̄, where Am̄ is the set of m̄ (real) roots of the m̄-th

Hermite polynomial Hm̄, and ν(z) =
∏d
j=1

2m̄−1m̄!
m̄2Hm̄−1(zj)2 for all z ∈ Rd. For our purposes, we will

have ATA-GP-UCB work with the embedding ϕ̃t(x) = ϕ̃(x) of dimension mt = 2m for all t ≥ 1.

Remark 3. The seminal work of Rahimi and Recht [28] that develops random Fourier fea-
ture (RFF) approximation of any stationary kernel is based on the feature map ϕ̃(x) =

1√
m

[cos(ωT1 x), . . . , cos(ωTmx), sin(ωT1 x), . . . , sin(ωTmx)]T , where each ωi is sampled independently
from p(ω). However, RFF embeddings do not appear to be useful for our purpose of achieving
sublinear regret (see discussion after Lemma 1), so we work with the QFF embedding.

(b) Nyström approximation: Unlike the QFF approximation where the basis functions (cosine
and sine) do not depend on the data, the basis functions used by the Nyström method are data
dependent. For a set of points Xt = {x1, . . . , xt}, the Nyström method [42] approximates the
kernel matrix Kt as follows: First sample a random number mt of points from Xt to construct
a dictionary Dt = {xi1 , . . . , ximt}; ij ∈ [t], according to the following distribution. For each
i ∈ [t], include xi in Dt independently with probability pt,i = min{qσ̃2

t−1(xi), 1} for a suitably
chosen parameter q (which trades off between the quality and the size of the embedding). Then,

compute the (approximate) finite-dimensional feature embedding ϕ̃t(x) =
(
K

1/2
Dt

)†
kDt(x), where
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KDt = [k(u, v)]u,v∈Dt , kDt(x) = [k(xi1 , x), . . . , k(ximt , x)]T and A† denotes the pseudo inverse
of any matrix A. We call the entire procedure NyströmEmbedding (pseudocode in appendix).

Algorithm 2 Adaptively Truncated Approximate GP-UCB (ATA-GP-UCB)
Input: Parameters λ > 0, {bt}t≥1, {βt}t≥1, q, a kernel approximation (QFF or Nyström)
Set: µ̃0(x) = 0 and σ̃2

0(x) = k(x, x) for all x ∈ X
for t = 1, 2, 3 . . . do

Play xt = argmaxx∈X µ̃t−1(x) + βtσ̃t−1(x) and observe payoff yt

Set ϕ̃t(x) =

{
ϕ̃(x) if QFF approximation
NyströmEmbedding

(
{(xi, σ̃t−1(xi))}ti=1, q

)
if Nyström approximation

Set Φ̃Tt = [ϕ̃t(x1), . . . , ϕ̃t(xt)] and Ṽt = Φ̃Tt Φ̃t + λImt , where mt is the dimension of ϕ̃t
Find the rows uT1 , . . . , u

T
mt of Ṽ −1/2

t Φ̃Tt and set r̂i =
∑t
τ=1 ui,τyτ1|ui,τyτ |≤bt for all i ∈ [mt]

Set θ̃t = Ṽ
−1/2
t [r̂1, . . . , r̂mt ]

T and compute µ̃t(x) = ϕ̃t(x)T θ̃t

Set σ̃2
t (x) =

{
(i) λϕ̃t(x)T Ṽ −1

t ϕ̃t(x) if QFF approximation
(ii) k(x, x)− ϕ̃t(x)T ϕ̃t(x) + λϕ̃t(x)T Ṽ −1

t ϕ̃t(x) if Nyström approximation
end for

Remark 4. It is well known (λ-ridge leverage score sampling [1]) that, by sampling points proportional
to their posterior variances σ2

t (x), one can obtain an accurate embedding ϕ̃t(x), which in turn gives
an accurate approximation σ̃2

t (x). But, computation of σ2
t (x) in turn requires inverting Kt, which

takes at most O(t3) time. So, we make use of the already computed approximations σ̃2
t−1(x) to

sample points at round t, without significantly compromising on the accuracy of the embeddings [9].

Remark 5. The choice (i) of σ̃2
t (x) in Algorithm 2 ensures accurate estimation of the variance of

x under the QFF approximation [26]. But, the same choice leads to severe underestimation of the
variance under the Nyström approximation, specially when x is far away from Dt. The choice (ii) of
σ̃2
t (x) in Algorithm 2 is known as deterministic training conditional in the GP literature [27] and

provably prevents the phenomenon of variance starvation under Nyström approximation [9].

5.2 Cumulative regret of ATA-GP-UCB with QFF embeddings

The following lemma shows that the data adaptive truncation of all the historical rewards and a good
approximation of the kernel help us obtain a tighter confidence interval than TGP-UCB.

Lemma 1 (Tighter confidence sets with QFF truncation) For any δ ∈ (0, 1], ATA-GP-UCB
with QFF approximation and parameters bt = (v/ ln(2mT/δ))

1
1+α t

1−α
2(1+α) and βt+1 = B +

4
√
m/λ v

1
1+α (ln(2mT/δ))

α
1+α t

1−α
2(1+α) , ensures that with probability at least 1 − δ, uniformly

over all t ∈ [T ] and x ∈ X ,

|f(x)− µ̃t−1(x)| ≤ βtσ̃t−1(x) +O(Bε1/2
m t2), (2)

where the QFF dimension m is such that supx,y∈X
∣∣k(x, y)− ϕ̃(x)T ϕ̃(y)

∣∣ =: εm < 1.

Here, the scaling t
1−α

2(1+α) of the confidence width βt is much less than the scaling t
1

2(1+α) of TGP-UCB,
which eventually leads to a tighter confidence interval. However, in order to achive sublinear cumula-
tive regret, we need to ensure that the approximation error εm decays at least as fast as O(1/T 6) and
feature dimension m grows no faster than polylog(T ). This will ensure that the regret accumulated
due to the second term in the RHS of 2 is O(1), as well as the contribution from the first term is
Õ(T

1
1+α ), since sum of the approximate posterior standard deviations grows only as Õ(

√
mT ). Now,

the QFF embedding (1) of kSE can be shown to achieve εm ≤ d2d−1 1√
2m̄m̄

(
e

4l2

)m̄
= O

(
d2d−1

(m̄l2)m̄

)
[26]. The decay is exponential when m̄ > 1/l2 and d = O(1)2. Now, setting m̄ = Θ

(
log4/e

(
T 6
))

,

we can ensure that ε1/2
m T 3 = O(1) and m = O

(
(lnT )d

)
, and thus, in turn, a sublinear regret bound

3. The following theorem states this formally, with a full proof deferred to Appendix D.2.
2For most BO applications, the effective dimensionality of the problem is low, e.g., additive models [21, 30].
3 Under RFF approximation εm = Õ(

√
1/m) [36]. Hence, ATA-GP-UCB does not achieve sublinear regret.
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Theorem 3 (Regret bound for ATA-GP-UCB with QFF embedding) Fix any δ ∈ (0, 1]. Then,
under the same hypothesis of Theorem 1, for X = [0, 1]d and k = kSE, ATA-GP-UCB under QFF
approximation, with parameters bt and βt set as in Lemma 1, and with the embedding ϕ̃ from 1 such
that m̄ > 1/l2 and m̄ = Θ

(
log4/e

(
T 6
))

, enjoys, with probability at least 1− δ, the regret bound

RT = O

(
B
√
T (lnT )d+1 + v

1
1+α

(
ln

(
T (lnT )d

δ

)) α
1+α √

lnT (lnT )
d
T

1
1+α

)
.

Remark 6. When the variance of the rewards is finite (i.e., α = 1), the cumulative regret for ATA-
GP-UCB under QFF approximation of the SE kernel is O((lnT )d+1

√
T ), which now recovers the

state-of-the-art regret bound of GP-UCB under sub-Gaussian rewards [26, Corollary 2] unlike the
earlier TGP-UCB. It is worth pointing out that the bound in Theorem 3 is only for the SE kernel
defined on X = [0, 1]d, and designing a no-regret BO strategy under the QFF approximation of any
other stationary kernel still remains a open question even when the rewards are sub-Gaussian [26].

5.3 Cumulative regret of ATA-GP-UCB with Nyström embeddings

Now, we will show that ATA-GP-UCB under Nyström approximation achives optimal regret for
any stationary kernel defined on X ⊂ Rd without any restriction on d. Similar to Lemma 1, ATA-
GP-UCB under Nyström approximation also maintains tighter confidence sets than TGP-UCB. As
before, the confidence sets are useful only if the dimension of the embeddings mt grows no faster
than polylog(t). Not only that, we also need to ensure that the approximate posterior variances
are only a constant factor away from the exact ones. Then, since sum of the posterior standard
deviations grows only as O(

√
TγT ), we can achieve the optimal Õ(T

1
1+α ) regret scaling. Now for

any ε ∈ (0, 1), setting q = 6 1+ε
1−ε ln(2T/δ)/ε2, the Nyström embeddings ϕ̃t can be shown to achieve

mt ≤ 6 1+ε
1−ε

(
1 + 1

λ

)
qγt and 1−ε

1+εσ
2
t (x) ≤ σ̃2

t (x) ≤ 1+ε
1−εσ

2
t (x) with probability at least 1 − δ [9],

which helps us to achieve an optimal regret bound. The following theorem states this formally, with a
full proof deferred to Appendix D.3.

Theorem 4 (Regret bound for ATA-GP-UCB with Nyström embedding) Fix any δ ∈ (0, 1], ε ∈
(0, 1) and set ρ = 1+ε

1−ε . Then, under the same hypothesis of Theorem 1, ATA-GP-UCB under Nyström

approximation, and with parameters q = 6ρ ln(4T/δ)/ε2, bt = (v/ ln(4mtT/δ))
1

1+α t
1−α

2(1+α) and
βt+1 = B(1 + 1√

1−ε ) + 4
√
mt/λ v

1
1+α (ln(4mtT/δ))

α
1+α t

1−α
2(1+α) , enjoys, with probability at least

1− δ, the regret bound

RT = O

(
ρB

(
1 +

1√
1− ε

)√
TγT +

ρ2

ε
v

1
1+α

(
ln

(
γT ln(T/δ)T

δ

)) α
1+α √

ln(T/δ)γTT
1

1+α

)
.

Remark 7. Theorems 3 and 4 imply that ATA-GP-UCB achieves Õ
(
v

1
1+α (lnT )dT

1
1+α
)

regret bound
for kSE, which matches the lower bound (Theorem 2) upto a factor of α

1+α in the exponent of lnT ,
as well as a few extra lnT factors hidden in the notation Õ. For the Matérn kernel, the bound is
Õ
(
T

1
1+α

2ν+(2+α)d(d+1)
2ν+d(d+1)

)
, which is sublinear only when d(d+1)

2ν < α4, and the gap from the lower
bound is more significant in this case. It is worth mentioning that a similar gap is present even for
the (easier) setting of sub-Gaussian rewards [31] and there might exist better algorithms which can
bridge this gap. When the variance of the rewards is finite (i.e., α = 1), the cumulative regret for
ATA-GP-UCB under Nyström approximation is Õ(γT

√
T ), which recovers the state-of-the-art regret

bound under sub-Gaussian rewards [9, Thm. 2]. For the linear bandit setting, i.e. when the feature
map ϕ̃t(x) = x itself, substituting γT = O(d lnT ), we find that the regret upper bound in Theorem
4 recovers the (optimal) regret bound of [34, Thm. 3] up to a logarithmic factor.

5.4 Computational complexity of ATA-GP-UCB

(a) Time complexity: Under the (data-dependent) Nyström approximation, constructing the dictio-
nary Dt takes O(t) time at each step t. Then, we compute the embeddings ϕ̃t(x) for all arms in

4This holds, for example, Matérn kernel on R2 with ν = 3.5 when variance of the rewards is finite (α = 1).
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(a) kSE, f ∈ RKHS, Student’s-t
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(b) kSE, f ∈ RKHS, Pareto
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(c) kMatérn, f ∈ RKHS, Student’s-t
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(d) Stock market data
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(e) Light sensor data
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Figure 1: (a)-(e) Time-average regret (RT /T ) for TGP-UCB, ATA-GP-UCB with QFF approximation (ATA-
GP-UCB-QFF) and Nyström approximation (ATA-GP-UCB-Nyström) on heavy-tailed data. (f) Confidence sets
(µt ± σt) formed by GP-UCB with and without truncation under heavy fluctuations.

O(m3
t + m2

t |X |) time, where |X | is the cardinality of X . Now, construction of Ṽt takes O(m2
t t)

time, since we need to rebuild it from the scratch. Then, Ṽ −1/2
t is computed in O(m3

t ) time. We can
now compute µ̃t(x) and σ̃2

t (x) for all arms in O(m2
t t+mt |X |) and O(m2

t |X |) time, respectively,
using already computed ϕ̃t(x) and Ṽ −1/2

t . Thus per-step time complexity is O
(
m2
t (t+ |X |)

)
, since

mt ≤ t. For continuous X , one can approximately maximize the GP-UCB score by grid search /
Branch and Bound methods such as DIRECT [6]. In fact it can be maximized within O(ε) accu-
racy by making O(ε−d) calls to it, yielding a per-step time complexity of O(m2

t (t+ ε−d)). Since
mt = Õ(γt) and γt is poly-logarithmic in t for SE kernel, per step time complexity is Õ(t+ ε−d).
For Matérn kernel, the complexity is Õ(tp(t+ ε−d)), 1 < p < 2. Similarly, under (data-independent)
QFF approximation, the per-step time complexity is O(m3 + m2(t + ε−d)) = Õ(t + ε−d) since
m = O((lnT )d) for the SE kernel.

(b) Space complexity: Note that under Nyström approximation, at each round t we need to store
all previously chosen arms, the matrix Ṽ −1/2

t and the vectors ϕ̃t(x). Hence, the per-step space
complexity of ATA-GP-UCB is O(t + mt(mt + ε−d)) = O(mt(mt + ε−d)) for small enough ε.
Under QFF approximation, the complexity is O(m(m+ ε−d)).

6 Experiments

We numerically compare the performance of TGP-UCB (Algorithm 1), ATA-GP-UCB with QFF
(ATA-GP-UCB-QFF) and Nyström (ATA-GP-UCB-Nyström) approximations (Algorithm 2) on both
synthetic and real-world heavy-tailed environments. (Our codes are available here.) The confidence
width βt and truncation level bt of our algorithms, and the trade-off parameter q used in Nyström
approximation are set order-wise similar to those recommended by theory (Theorems 1, 3 and 4).
We use λ = 1 in all algorithms and ε = 0.1 in ATA-GP-UCB-Nyström. We plot the mean and
standard deviation (under independent trials) of the time-average regret RT /T in Figure 1. We use
the following datasets.

1. Synthetic data: We generate the objective function f ∈ Hk(X ) with X set to be a discretization
of [0, 1] into 100 evenly spaced points. Each f =

∑p
i=1 aik(·, xi) was generated using an SE kernel

with l = 0.2 and by uniformly sampling ai ∈ [−1, 1] and support points xi ∈ X with p = 100. We
set B = maxx∈X |f(x)|. To generate the rewards, first we consider y(x) = f(x) + η, where the
noise η are samples from the Student’s t-distribution with 3 degrees of freedom (Figure 1 a). Here, the
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variance is bounded (α = 1) and hence v = B2 + 3. Next, we generate the rewards as samples from
the Pareto distribution with shape parameter 2 and scale parameter f(x)/2. f is generated similarly,
except that here we sample ai’s uniformly from [0, 1]. Then, we set B as before leading to the bound
of (1 + α)-th raw moments v = B1+α

2α(1−α) . We plot the results for α = 0.9 (Figure 1 b). We use
m = 32 features (in consistence with Theorem 3) for ATA-GP-UCB-QFF in these experiments. Next,
we generate f using the Matérn kernel with l = 0.2 and ν = 2.5, and consider the same Student’s-t
distribution as earlier to generate rewards. As we do not have the theory of ATA-GP-UCB-QFF for
the Matérn kernel yet, we exclude evaluating it here (Figure 1 c). We perform 20 trials for 2× 104

rounds and for each trial we evaluate on a different f (which explains the high error bars).

2. Stock market data: We consider a representative application of identifying the most profitable
stock in a given pool of stocks. This is motivated by the practical scenario that an investor would
like to invest a fixed budget of money in a stock and get as much return as possible. We took
the adjusted closing price of 29 stocks from January 4th, 2016 to April 10th, 2019. We conduct
Kolmogrov-Smirnov (KS) test to find out that the null hypothesis of stock prices following a Gaussian
distribution is rejected against the favor of a heavy-tailed distribution. We take the empirical mean of
stock prices as our objective function f and empirical covariance of the normalized stock prices as
our kernel function k (since stock behaviors are mostly correlated with one another). We consider
α = 1 and set v as the empirical average of the squared prices. Since the kernel is data dependent,
we cannot run ATA-GP-UCB-QFF here. We average over 10 independent trials of the algorithms
(Figure 1 d).

3. Light sensor data: We take light sensor data collected in the CMU Intelligent Workplace in Nov
2005 containing locations of 41 sensors, 601 train samples and 192 test samples in the context of
learning the maximum average reading of the sensors. For each sensor, we find that the KS test
on its readings rejects the Gaussian against the favor of a heavy-tailed distribution. We take the
empirical average of the test samples as our objective f and empirical covariance of the normalized
train samples as our kernel k. We consider α = 1, set v as the empirical mean of the squared readings
and B as the maximum of the average readings. For ATA-GP-UCB-QFF, we fit a SE kernel with
l2 = 0.1 on the given sensor locations and approximate it with m = 162 = 256 features (Figure 1 e).

Observations: We find that ATA-GP-UCB outperforms TGP-UCB uniformly over all experiments,
which is consistent with our theoretical results. We also see that the performance of ATA-GP-UCB
under the Nyström approximation is no worse than that under the QFF approximation. Not only that,
the scope of the latter is limited due to its dependence on the analytical form of the kernel, whereas
the former is data-adaptive and hence, well suited for practical purposes.

Effect of truncation: For heavy-tailed rewards, the sub-Gaussian constant R = ∞. Hence, we
exclude evaluating GP-UCB in the above experiments. Now, we demonstrate the effect of truncation
on GP-UCB in the following experiment. First, we generate a function f ∈ Hk(X ) and normalize it
between [0, 1]. Then, we simulate rewards as y(x) = f(x) + η, where η takes values in {−10, 10},
uniformly, for any single random point in X , and is zero everywhere else. We run GP-UCB with
βt = ln t and see that the posterior mean after T = 104 rounds is not a good estimate of f . However,
by truncating reward samples which exceeds t1/4 (truncation threshold in TGP-UCB when α = 1) at
round t, we get an (almost) accurate estimator of f . Not only that, the confidence interval around
this estimator contains f at every point in X , which in turn ensures good performance. We plot the
respective confidence sets averaged over 50 such randomizations of noise (Figure 1 f).

7 Conclusion

To the best of our knowledge, this is the first work to formulate and solve BO under heavy-tailed
observations. We have demonstrated the failure of existing BO methods and developed (almost)
optimal algorithms using kernel approximation techniques, which are easy to implement and perform
well in practice, with rigorous theoretical guarantees. It is worth noting that using a Bernstein type
concentration bound in each direction of the approximate feature space, we are able to obtain the near
optimal regret scaling for ATA-GP-UCB (Algorithm 2). Instead, if one can derive a Bernstein type
bound for self-normalized processes which depends on the (1 + α)-th moments of rewards, then one
may not have to resort to feature approximation to get optimal regret. Further, instead of truncating
the payoffs, one can also consider building and studying a median of means-style estimator [8] in the
(approximate) feature space and hope to develop an optimal algorithm.
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Appendix
A Preliminaries

First, we review some useful matrix identities.

Lemma 2 [16, Lemma 12] Let A � B � 0 be positive definite matrices. Then A−1 • (A− B) =

ln |A||B| , where X • Y :=
∑n
i=1

∑n
j=1Xi,jYi,j for any two matrices X,Y ∈ Rn×n.

Lemma 3 For any linear operator A : Hk(X ) → Rt and its adjoint AT : Rt → Hk(X ), and for
any λ > 0,

(ATA+ λIH)−1AT = AT (AAT + λIt)
−1, (3)

and
IH −AT (AAT + λIt)A = λ(ATA+ λIH)−1. (4)

Proof The proofs follow from the fact that (ATA+ λIH)AT = AT (AAT + λIt) for any λ > 0.

Next, we review some relevant definitions and results, which will be useful in the analysis of our
algorithms. We first begin with the definition of Maximum Information Gain, first appeared in [35],
which basically measures the reduction in uncertainty about the unknown function after some noisy
observations (rewards).

For a function f : X → R and any subset A ⊂ X of its domain, we use fA := [f(x)]x∈A to denote
its restriction to A, i.e., a vector containing f ’s evaluations at each point in A (under an implicitly
understood bijection from coordinates of the vector to points in A). In case f is a random function,
fA will be understood to be a random vector. For jointly distributed random variables X and Y ,
I(X;Y ) denotes the Shannon mutual information between them.

Definition 1 (Maximum Information Gain (MIG)) Let f : X → R be a (possibly random) real-
valued function defined on a domain X , and t a positive integer. For each subset X ⊂ D, let YA
denote a noisy version of fA obtained by passing fA through a channel P [YA|fA]. The Maximum
Information Gain (MIG) about f after t noisy observations is defined as

γt := max
A⊂X :|A|=t

I(fA;YA).

(We omit mentioning explicitly the dependence on the channels for ease of notation.)

Let k : X ×X → R be a symmetric positive semi-definite kernel and for any A ⊂ X , let KA denotes
the induced kernel matrix.

Lemma 4 (MIG under GP prior and additive Gaussian noise [35]) Let f ∼ GPX (0, k) be a
sample from a Gaussian process over X and YA denote a noisy version of fA obtained by passing
fA through a channel that adds iid N (0, λ) noise to each element of fA. Then,

γt ≡ γt(k,X ) = max
A⊂X :|A|=t

1

2
ln
∣∣I + λ−1KA

∣∣ .
Srinivas et al. [35] proved upper bounds over γt for commonly used kernels. The bounds are given in
Lemma 5.

Lemma 5 (MIG for common kernels [35]) Let X be a compact and convex subset of Rd and the
kernel k satisfies k(x, x′) ≤ 1 for all x, x′ ∈ X . Then for

• Linear kernel: γt = O(d ln t).

• Squared Exponential kernel: γt = O
(
(ln t)d+1

)
.

• Matérn kernel: γt = O
(
t

d(d+1)
2ν+d(d+1) ln t

)
.

13



Note that, MIG depends only sublinearly on the number of observations t for all these kernels and it
will serve as a key instrument to obtain our regret bounds by virtue of Lemma 4 and 6.

Now, observe that any kernel function k : X × X → R,X ⊂ Rd is associated with a non-linear
feature map ϕ : X → Hk(X ) such that k(x, y) = 〈ϕ(x), ϕ(y)〉H, where 〈·, ·〉H denotes the inner
product in the RKHS Hk(X ) and ‖·‖H denotes the corresponding norm. Observe that for any
h ∈ Hk(X ), h(x) = 〈h, ϕ(x)〉H by the reproducing property. For a set {x1, . . . , xt} ⊂ X define the
operator Φt : Hk(X )→ Rt such that for any h ∈ Hk(X ), Φth = [〈ϕ(x1), h〉H, . . . , 〈ϕ(xt), h〉H]T ,
and denote its adjoint by ΦTt : Rt → Hk(X ). By reproducing property ϕth = [h(x1), . . . , h(xt)]

T .
For any λ > 0, define Vt = ΦTt Φt + λIH, where IH : Hk(X ) → Hk(X ) denotes the identity
operator. For a positive definite operator V : Hk(X )→ Hk(X ), define the inner product 〈·, ·〉V :=
〈·, V ·〉H with corresponding norm ‖·‖V . Observe that, under this definition, the posterior variance
σ2
t (x) = λ ‖ϕ(x)‖2V −1

t
.

Lemma 6 (Sum of predictive variances and MIG) If k(x, x) ≤ 1 for all x ∈ X , then

t∑
s=1

σ2
s−1(xs) ≤ 2 (1 + λ) γt.

Proof Observe that Vt = Vt−1 + ϕ(xt)ϕ(xt)
T . Therefore, by Sherman–Morrison-Woodbury matrix

identity, we have V −1
t = V −1

t−1 −
V −1
t−1ϕ(xt)ϕ(xt)

TV −1
t−1

1+ϕ(xt)TV
−1
t−1ϕ(xt)

. This, in turn, implies that

‖ϕ(x)‖2V −1
t

= ‖ϕ(x)‖2V −1
t−1
−
〈ϕ(x), ϕ(xt)〉2V −1

t−1

1 + ‖ϕ(xt)‖2V −1
t−1

(a)

≥ ‖ϕ(x)‖2V −1
t−1

1−
‖ϕ(xt)‖2V −1

t−1

1 + ‖ϕ(xt)‖2V −1
t−1

 =
‖ϕ(x)‖2V −1

t−1

1 + ‖ϕ(xt)‖2V −1
t−1

where (a) follows from Cauchy-Schwartz inequality. Since Vt−1 � λIH, we have ‖ϕ(xt)‖2V −1
t−1
≤

1
λ ‖ϕ(xt)‖2H = 1

λk(xt, xt) ≤ 1
λ . This implies that ‖ϕ(x)‖2V −1

t−1
≤ (1 + 1

λ ) ‖ϕ(x)‖2V −1
t

and therefore

σ2
t−1(x) ≤

(
1 +

1

λ

)
σ2
t (x) for all x ∈ X . (5)

Observe that ϕ(xt)
TV −1

t ϕ(xt) = V −1
t • ϕ(xt)ϕ(xt)

T = V −1
t • (Vt − Vt−1) since for any a ∈ Rn

and B ∈ Rn×n, aTBa = B • aaT . Then from Lemma 2, we have 1
λσ

2
t (xt) = ln |Vt|

|Vt−1| and thus, in
turn,

1

λ

t∑
s=1

σ2
s(xs) ≤ ln

|Vt|
|V0|

= ln
∣∣λ−1ΦTt Φt + IH

∣∣ = ln
∣∣λ−1ΦtΦ

T
t + It

∣∣ = ln
∣∣λ−1Kt + It

∣∣ . (6)

Combining 5 and 6, we get

t∑
s=1

σ2
s−1(xs) ≤

(
1 +

1

λ

) t∑
s=1

σ2
s(xs) ≤ (1 + λ) ln

∣∣λ−1Kt + It
∣∣ .

Now the result follows from Lemma 4.

B Analysis of TGP-UCB

The following lemma states a self-normalized concentration inequality for RKHS-valued martingales.

Lemma 7 (RKHS-valued martingale control [13]) Let {zt}t≥1 be an Rd-valued discrete time
stochastic processes such that zt is predictable with respect to a filtration {Gt}t≥0, i.e., zt is Gt−1-
measurable for all t ≥ 1. Let {wt}t≥1 be a real-valued stochastic process such that for all t ≥ 1, wt
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is (a) Gt-measurable, and (b) R-sub-Gaussian conditionally on Gt−1 for some R > 0. Then, for any
δ ∈ (0, 1], with probability at least 1− δ, uniformly over all t ≥ 1,∥∥∥∥∥

t∑
τ=1

wτϕ(zτ )

∥∥∥∥∥
Z−1
t

≤ R

√
2

(
1

2
ln
|Zt|
|Z|

+ ln(1/δ)

)
.

where Zt = Z +
∑t
τ=1 ϕ(zτ )ϕ(zτ )T and Z : Hk(Rd)→ Hk(Rd) is a positive definite operator.

Observe that
∑t
τ=1 wτϕ(zτ ) is Gt-measurable and E

[∑t
τ=1 wτϕ(zτ )|Gt−1

]
=
∑t−1
τ=1 wτϕ(zτ ).

The process
(∑t

τ=1 wτϕ(zτ )
)
t≥1

is thus a martingale with respect to the filtration (Gt)t≥0 with

values in the RKHSHk(X ), whose deviation is measured by the norm weighted by Z−1
t , which is

derived from the process itself. Hence, the name self-normalized concentration inequality. Now, we
will show that f lies in the confidence sets constructed by TGP-UCB with high probability.

Lemma 8 (Confidence sets of TGP-UCB contains f ) Let f ∈ Hk(X ), ‖f‖H ≤ B and k(x, x) ≤
1 for all x ∈ X . Let E

[
|yt|1+α |Ft−1

]
≤ v < ∞ for some α ∈ (0, 1] and for all

t ≥ 1. Then, for any δ ∈ (0, 1], TGP-UCB, with bt = v
1

1+α t
1

2(1+α) and βt+1 = B +
3√
λ
v

1
1+α t

1
2(1+α)

√
ln |It + λ−1Kt|+ 2 ln(1/δ), ensures, with probability at least 1− δ, uniformly

over all x ∈ X and t ≥ 1, that

|f(x)− µ̂t−1(x)| ≤ βtσt−1(x).

Proof First, we define αt(x) = kt(x)T (Kt + λIt)
−1ft, where ft = [f(x1), . . . , f(xt)]

T is a vector
containing f ’s evaluations up to round t. By reproducing property, αt(x) = 〈ϕ(x),ΦTt (ΦtΦ

T
t +

λIt)
−1Φtf〉H. Then, we have

f(x)−αt(x) = 〈ϕ(x),
(
IH − ΦTt (ΦtΦ

T
t + λIt)

−1Φt
)
f〉H

(a)
= λ〈ϕ(x), f〉V −1

t
= λ〈V −1/2

t ϕ(x), V
−1/2
t f〉H,

where (a) follows from 4. By Cauchy-Schwartz inequality, we have for any x ∈ X

|f(x)− αt(x)| ≤ λ
∥∥∥V −1/2

t ϕ(x)
∥∥∥
H

∥∥∥V −1/2
t f

∥∥∥
H

(a)

≤ λ1/2 ‖ϕ(x)‖V −1
t
‖f‖H

(b)

≤ B σt(x). (7)

Here in (a) we have used the fact that V −1
t � λ−1IH, and hence,

∥∥∥V −1/2
t f

∥∥∥
H
≤ λ−1/2 ‖f‖H.

(b) follows from ‖f‖H ≤ B. Now, let η̂t = ŷt − f(xt), t = 1, 2, . . . denotes the truncated
noise and N̂t = [η̂1, . . . , η̂t]

T denotes the vector formed by the first t of those. This implies
µ̂t(x) = αt(x) + kt(x)T (Kt + λIt)

−1N̂t. Thus

kt(x)T (Kt + λIt)
−1N̂t = 〈ϕ(x),ΦTt (ΦtΦ

T
t + λIt)

−1N̂t〉H
(a)
= 〈ϕ(x),ΦTt N̂t〉V −1

t
,

where (a) uses equation 3. By Cauchy-Schwartz inequality, we have for any x ∈ X∣∣∣kt(x)T (Kt + λIt)
−1N̂t

∣∣∣ ≤ ‖ϕ(x)‖V −1
t

∥∥∥ΦTt N̂t

∥∥∥
V −1
t

= λ−1/2
∥∥∥ΦTt N̂t

∥∥∥
V −1
t

σt(x). (8)

Now, by triangle inequality, we have

|f(x)− µ̂t(x)| ≤ |f(x)− αt(x)|+
∣∣∣kt(x)T (Kt + λIt)

−1N̂t

∣∣∣ .
Hence from equation 7 and 8, we get

|f(x)− µ̂t(x)| ≤
(
B + λ−1/2

∥∥∥ΦTt N̂t

∥∥∥
V −1
t

)
σt(x). (9)
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Now, we define ξt = η̂t − E [η̂t|Ft−1]. Then, we have

ΦTt N̂t =

t∑
τ=1

η̂τϕ(xτ ) =

t∑
τ=1

ξτϕ(xτ ) +

t∑
τ=1

E [η̂τ |Fτ−1]ϕ(xτ ). (10)

Observe that ξt = ŷt − E [ŷt|Ft−1], and hence |ξt| ≤ 2bt. This implies that ξt is zero-mean 2bt-sub-
Gaussian random variable conditioned on Ft−1. Further, observe that ξt is Ft- measurable and xt is
Ft−1- measurable. Hence, Lemma 7 implies that for any δ ∈ (0, 1], with probability at least 1− δ,
for all t ∈ N: ∥∥∥∥∥

t∑
τ=1

ξτϕ(xτ )

∥∥∥∥∥
V −1
t

≤ 2bt

√
2

(
1

2
ln
∣∣IH + λ−1ΦTt Φt

∣∣+ ln(1/δ)

)

= 2bt

√
2

(
1

2
ln |It + λ−1Kt|+ ln(1/δ)

)
(11)

Now for any a ∈ Rt,∥∥∥∥∥
t∑

τ=1

aτϕ(xτ )

∥∥∥∥∥
2

V −1
t

=
∥∥ΦTt a

∥∥2

V −1
t

= aTΦt(Φ
T
t Φt+λIH)−1ΦTt a

(a)
= aTΦtΦ

T
t (ΦtΦ

T
t +λIt)

−1a
(b)

≤ ‖a‖22 ,

where (a) follows from 3 and (b) follows from the fact that ΦtΦ
T
t (ΦtΦ

T
t + λIt)

−1 � It. There-

fore
∥∥∥∑t

τ=1 E [η̂τ |Fτ−1]ϕ(xτ )
∥∥∥2

V −1
t

≤
∑t
τ=1 E [η̂τ |Fτ−1]

2. Further, observe that E [η̂t|Ft−1] =

E
[
yt1|yt|≤bt |Ft−1

]
− f(xt) = −E

[
yt1|yt|>bt |Ft−1

]
. This implies∥∥∥∥∥

t∑
τ=1

E [η̂τ |Fτ−1]ϕ(xτ )

∥∥∥∥∥
2

V −1
t

≤
t∑

τ=1

E
[
yτ1|yτ |>bτ |Fτ−1

]2 ≤ t∑
τ=1

1

b2ατ
E
[
|yτ |1+α |Fτ−1

]2
≤ v2

t∑
τ=1

1

b2ατ
.

Now setting bt = v
1

1+α t
1

2(1+α) , we get∥∥∥∥∥
t∑

τ=1

E [η̂τ |Fτ−1]ϕ(xτ )

∥∥∥∥∥
V −1
t

≤ v
1

1+α

√√√√ t∑
τ=1

τ−
α

1+α ≤ v
1

1+α

√∫ t

0

τ−
α

1+α dτ ≤
√

2v
1

1+α t
1

2(1+α) .

(12)
Combining 9,10, 11 and 12, we have that for any δ ∈ (0, 1], with probability at least 1− δ, uniformly
over all t ≥ 1 and x ∈ X :

|f(x)− µ̂t(x)| ≤

(
B +

√
2/λ v

1
1+α t

1
2(1+α)

(
1 + 2

√
1

2
ln |It + λ−1Kt|+ ln(1/δ)

)
σt(x)

≤

(
B + 3

√
2/λ v

1
1+α t

1
2(1+α)

√
1

2
ln |It + λ−1Kt|+ ln(1/δ)

)
σt(x). (13)

Further observe that |f(x)− µ̂0(x)| = |f(x)| = |〈f, k(x, ·)〉H| ≤ ‖f‖H k1/2(x, x) ≤ Bσ0(x).
Now the result follows by setting βt+1 = B + 3√

λ
v

1
1+α t

1
2(1+α)

√
ln |It + λ−1Kt|+ 2 ln(1/δ), for

all t ≥ 0.

Now, we will prove Theorem 1. For for any δ ∈ (0, 1], we have, with probability at least 1 − δ,
uniformly over all t ≥ 1, the instantaneous regret of TGP-UCB (Algorithm 1) is

rt = f(x?)− f(xt)

(a)

≤ µ̂t−1(x?) + βtσt−1(x?)− f(xt)

(b)

≤ µ̂t−1(xt) + βtσt−1(xt)− f(xt)

(c)

≤ 2βtσt−1(xt).
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Here (a) and (c) follow from 13, and (b) is due to the choice of TGP-UCB(Algorithm 1). Since
from Lemma 4, ln

∣∣It + λ−1Kt

∣∣ ≤ γt, we have βt ≤ B + 3
√

2/λ v
1

1+α t
1

2(1+α)
√
γt + ln(1/δ),

which is an increasing sequence t. Further, see that
∑T
t=1 σt−1(xt)

(a)

≤
√
T
∑T
t=1 σ

2
t−1(xt)

(b)

≤√
2(1 + λ)γTT , where (a) is due to Cauchy-Schwartz inequality and (b) is due to Lemma 6. Hence,

for any δ ∈ (0, 1], with probability at least 1− δ, the cumulative regret of TGP-UCB after T rounds is

RT = O
(
B
√
TγT + v

1
1+α

√
γT (γT + ln(1/δ))T

2+α
2(1+α)

)
.

C Regret lower bound: proof of Theorem 2

Our analysis builds heavily on that of the optimization setting with f ∈ Hk(X ) and with Gaussian
noise studied in [31], but with important differences. Roughly speaking, we use the same construction
of f as in [31], but we construct the rewards differently to capture the heavy-tailed scenario. We now
proceed with the formal proof.

C.1 Construction of the ground-truth function

• Let g(x) be a function on Rd with the following properties:

1. The RKHS norm of g is bounded: ‖g‖H ≤ B.
2. |g(x)| ≤ 2∆ with a maximum value of 2∆ at x = 0 and g(x) < ∆ when ‖x‖∞ > w

for some w > 0 and ∆ > 0, to be chosen later.

• Letting g(x) be such a function, we construct M functions f1, . . . , fM first by shifting g
such that each fj has its maximum at a unique point in a uniform grid, and then by restricting
them to the domain X = [0, 1]d. Using a step size w in each dimension, one can construct a
grid of size M = b

(
1
w

)dc of the domain X , and hence M such functions fj . In this process
we ensure that any ∆-optimal point for fj fails to be ∆-optimal point for any other fj′ .

• Finally, we choose f as a uniformly sampled function from the set {f1, . . . , fM}.

It remains to choose g, w, and ∆ so that the above properties are satisfied.

• For some absolute constant ζ > 0 we choose g(x) = 2∆
h(0)h(xζw ), where h is the inverse

Fourier transform of the multi-dimensional bump function: H(ω) = e
− 1

1−‖ω‖22 1{‖ω‖22≤1}.
Note that since H is real and symmetric, the maximum of h is attained at x = 0, and hence
the maximum of g is g(0) = 2∆, as desired. Further, since H has finite energy, h(x)→ 0
as ‖x‖2 → ∞. Hence, there exists an absolute constant ζ such that h(x) < 1

2h(0) when
‖x‖∞ > ζ, and thus g(x) < ∆ for ‖x‖∞ > w, as desired.

• It now remains to choose w and ∆ to ensure that ‖g‖H ≤ B, for a given B. Note that, while
a smaller ∆ ensures a low RKHS norm, a smaller w increases it. Hence, as long as ∆ is very
small, we can afford to take w << 1, so that there is no risk of having M = 0. For ∆

B << 1,
it is shown in [31] that the condition ‖g‖H ≤ B can be achieved withw = ζπl√

ln
B(2πl2)d/4h(0)

2∆

for the SE kernel, and with w = ζ
(

2∆(8π2)(ν+d/2)/2

Bc−1/2h(0)

)1/ν

for the Matérn kernel for some

c > 0. We consider ∆ as arbitrary for now, but later this will be chosen to ensure that ∆
B is

sufficiently small.

• From the choice of w, we see that M = Θ
((

ln B
∆

) d
2

)
for the SE kernel, and M =

Θ
((

B
∆

) d
ν

)
for the Matérn kernel. Note that the assumption of sufficiently small ∆

B in
ensures that M >> 1, i.e. there are enough number of functions to sample from.
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C.2 Construction of the reward distribution

For any given α ∈ (0, 1], v > 0 and x ∈ [0, 1]d, we define the reward distribution as

y(x) =

{
sgn (f(x))

(
v

2∆

) 1
α with probability

(
2∆
v

) 1
α |f(x)| ,

0 otherwise.
(14)

Note that 14 is a valid probability distribution as long as ∆ ≤ 1
2v

1
1+α . Then, E [y(x)] =

|f(x)| sgn((f(x)) = f(x) and E
[
|y(x)|1+α

]
=
(
v

2∆

) 1+α
α
(

2∆
v

) 1
α |f(x)| = v|f(x)|

2∆ ≤ v for any
α ∈ (0, 1]. Thus, we ensure that the (1 + α)-th absolute moment of the rewards are upper bounded
by v.

C.3 Preliminary notations and lemmas

Now, we introduce the following notations, also used in [31]:

• ym denote the reward function when the underlying ground truth is fm for m = 1, . . . ,M .
f0 denotes the function which is zero everywhere, and y0 the corresponding reward function.
Pm(YT ) (resp. P0(YT )) denotes the probability density function of the reward sequence
YT = {y1, . . . , yT } when the underlying function is fm (resp. f0). Pm(y|x) (resp. P0(y|x))
denotes the conditional density of the reward y given the selected point x when the underly-
ing function is fm (resp. f0).

• Em (resp. E0) and Pm (resp. P0) denote expectations and probabilities (with respect to the
noisy rewards) when the underlying function is fm (resp. f0). E[·] = 1

M

∑M
m=1 Em[·] (resp.

Pm[·]) denote the expectation (resp. probability) with respect to the noisy rewards and f
drawn uniformly from {f1, . . . , fM}.
• {Rm}Mm=1 denote a partition of X into M regions such that each fm,m = 1, . . . ,M has

its maximum at the center ofRm. vjm = maxx∈Rj |fm(x)| denotes the maximum absolute
value of fm in the region Rj and Dj

m = maxx∈Rj DKL (P0(·|x)||Pm(·|x)) denotes the
maximum KL divergence between P0(·|x) and Pm(·|x) withinRj . Nj =

∑T
t=1 1{xt∈Rj}

denotes the number of points withinRj that are selected up to time T .

Next, we present some useful lemmas from [31].

Lemma 9 [31, Lemma 3] Under the preceding definitions, we have Em[Nj ] ≤ E0[Nj ] +

T
√
DKL(P0||Pm) for all m = 1, . . . ,M and j = 1, . . . ,M .

Lemma 10 [31, Lemma 4] Under the preceding definitions, we have DKL(P0||Pm) ≤∑M
j=1 E0[Nj ]D

j
m for all m = 1, . . . ,M .

Lemma 11 [31, Lemma 5] The functions fm constructed in Section C.1 are such that the quantities
vjm satisfy:
(a)
∑M
m=1 v

j
m = O(∆) for all j = 1, . . . ,M and (b)

∑M
j=1 v

j
m = O(∆) for all m = 1, . . . ,M .

C.4 Analysis of expected cumulative regret

Observe that Em[f(xt)] ≤
∑M
j=1 Pm[xt ∈ Rj ]vjm. This implies

Em

[
T∑
t=1

f(xt)

]
≤

M∑
j=1

vjmEm[Nj ] ≤
M∑
j=1

vjm

E0[Nj ] + T

√√√√ M∑
j′=1

E0[Nj′ ]D
j′
m

 ,

where the last inequality follows from Lemma 9. Now averaging over m = 1, . . . ,M we obtain the
following:

E

[
T∑
t=1

f(xt)

]
≤ 1

M

M∑
m=1

M∑
j=1

vjm

E0[Nj ] + T

√√√√ m∑
j′=1

E0[Nj′ ]D
j′
m

 . (15)
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We can bound the first term as follows:
1

M

M∑
m=1

M∑
j=1

vjmE0[Nj ] =
1

M

M∑
j=1

M∑
m=1

vjmE0[Nj ]
(a)
= O

(
∆

M

) M∑
j=1

E0[Nj ]
(b)
= O

(
T∆

M

)
, (16)

where (a) follows from part (a) of Lemma 11, and (b) follows from
∑M
j=1Nj = T . In order to

bound the second term, first we note that y0(x) = 0 for all x ∈ X . Therefore, we have

DKL (P0(·|x)||Pm(·|x)) = ln
1

1−
(

2∆
v

) 1
α |fm(x)|

(a)

≤
(

2∆
v

) 1
α |fm(x)|

1−
(

2∆
v

) 1
α |fm(x)|

(b)

≤
(

2∆
v

) 1
α |fm(x)|

1− (2∆)
1+α
α v−

1
α

(c)

≤ 2

(
2∆

v

) 1
α

|fm(x)| .

Here (a) holds because ln(x) ≤ x − 1 for all x ≥ 1, (b) holds as |f(x)| ≤ 2∆ and (c) holds for
∆ ≤ 1

2

(
1
2

) α
1+α v

1
1+α . Observe that this choice of ∆ is compatible with 14. This implies that for all

j = 1, . . . ,M ,

Dj
m ≤ 2

1+α
α

(
∆

v

) 1
α

vjm if ∆ ≤ 1

2

(
1

2

) α
1+α

v
1

1+α . (17)

Now, we can bound the second term as follows:

1

M

M∑
m=1

M∑
j=1

vjm

√√√√ m∑
j′=1

E0[Nj′ ]D
j′
m

(a)
= O(∆)

1

M

M∑
m=1

√√√√ M∑
j′=1

E0[Nj′ ]D
j′
m

(b)

≤ O(∆)

√√√√ 1

M

M∑
m=1

M∑
j′=1

E0[Nj′ ]D
j′
m

(c)

≤ O(∆)2
1+α
2α

(
∆

v

) 1
2α

√√√√ 1

M

M∑
m=1

M∑
j′=1

E0[Nj′ ]v
j′
m

(d)
= O(∆)2

1+α
2α

(
∆

v

) 1
2α

√√√√O

(
∆

M

) M∑
j′=1

E0[Nj′ ]

(e)
= O

(
∆

(2∆)
1+α
2α

v
1

2α

√
T

M

)
. (18)

Here (a) follows from part (b) of Lemma 11, (b) follows from Jensen’s inequality, (c) follows
from 17 if ∆ ≤ 1

2

(
1
2

) α
1+α v

1
1+α , (d) follows from part (a) of Lemma 11, and (e) follows from∑M

j=1Nj = T . Substituting 16 and 18 in 15 gives

E

[
T∑
t=1

f(xt)

]
≤ CT∆

(
1

M
+

(2∆)
1+α
2α

v
1

2α

√
T

M

)
for ∆ ≤ 1

2

(
1

2

) α
1+α

v
1

1+α . (19)

Since f(x?) = 2∆, the expected cumulative regret

E [RT ] = Tf(x?)−E

[
T∑
t=1

f(xt)

]
≥ T∆

(
2− C

M
− C (2∆)

1+α
2α

v
1

2α

√
T

M

)
for ∆ ≤ 1

2

(
1

2

) α
1+α

v
1

1+α .

Since M →∞ as ∆
B → 0, we have C

M ≤
1
2 for sufficiently small ∆

B . Hence, we have

E [RT ] ≥ T∆

(
3

2
− C (2∆)

1+α
2α

v
1

2α

√
T

M

)

≥ T∆ for ∆ ≤ 1

2

(
min

{1

2
,
M

4C2T

}) α
1+α

v
1

1+α . (20)
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Now, if M ≤ 2C2T , then

E [RT ] = Ω
(
v

1
1+αM

α
1+αT

1
1+α

)
for

1

4

(
M

4C2T

) α
1+α

v
1

1+α ≤ ∆ ≤ 1

2

(
M

4C2T

) α
1+α

v
1

1+α . (21)

C.4.1 Application to the squared exponential kernel

For the SE kernel, we have from the choice M = Θ
((

ln B
∆

) d
2

)
, along with the upper and lower

bounds on ∆ in 21, that ∆ = Θ

((
1
T

(
ln B

∆

) d
2

) α
1+α

v
1

1+α

)
. This, in turn, implies that ln B

∆ =

ln BT
α

1+α

v
1

1+α
− ln

(
Θ(1)

(
ln B

∆

) dα
2(1+α)

)
. Since d = O(1) and α

1+α ∈ (0, 1
2 ], the second term behaves as

Θ(ln ln B
∆ ), which is Θ

(
1
2 ln B

∆

)
for sufficiently small ∆

B . This, implies that ln B
∆ = Θ

(
ln BT

α
1+α

v
1

1+α

)
,

and thus, in turn, M = Θ

((
ln BT

α
1+α

v
1

1+α

) d
2

)
and ∆ = Θ

(
v

1
1+α

(
ln BT

α
1+α

v
1

1+α

) dα
2(1+α)

T−
α

1+α

)
.

Note that the choice of M ensures that M ≤ 2C2T and the choice of ∆ ensures that ∆
B is in-

deed sufficiently small as long as v
1

1+α ≤ C ′BT
α

1+α for some sufficiently small constant C ′

5. Now, substituting M in 21, we obtain E [RT ] = Ω

(
v

1
1+α

(
ln BT

α
1+α

v
1

1+α

) dα
2(1+α)

T
1

1+α

)
=

Ω

(
v

1
1+α

(
ln B

1+α
α T

v
1
α

) dα
2(1+α)

T
1

1+α

)
, since, generally, d = O(1) and α

1+α ∈ (0, 1
2 ].

C.4.2 Application to the Matérn kernel

For the Matérn kernel, we have from the choice M = Θ
((

B
∆

) d
ν

)
, along with the upper and

lower bounds on ∆ in 21, that ∆ = Θ

((
1
T

(
B
∆

) d
ν

) α
1+α

v
1

1+α

)
. This, in turn, implies that ∆ =

Θ
(
v

ν/(1+α)
ν+dα/(1+α)B

dα/(1+α)
ν+dα/(1+α)T−

να/(1+α)
ν+dα/(1+α)

)
and M = Θ

(
v−

d/(1+α)
ν+dα/(1+α)B

d
ν+dα/(1+α)T

dα/(1+α)
ν+dα/(1+α)

)
.

Once again, we see that the choice of M ensures that M ≤ 2C2T and the choice of ∆ ensures that
∆
B is indeed sufficiently small as long as v

1
1+α ≤ C ′BT

α
1+α for some sufficiently small constant C ′.

Now, substituting M in 21, we obtain E [RT ] = Ω
(
v

ν/(1+α)
ν+dα/(1+α)B

dα/(1+α)
ν+dα/(1+α)T

1
1+α

ν+dα
ν+dα/(1+α)

)
=

Ω
(
v

ν
ν(1+α)+dαB

dα
ν(1+α)+dαT

ν+dα
ν(1+α)+dα

)
.

D Analysis of ATA-GP-UCB

D.1 Construction of tighter confidence set using data adaptive truncation

The following lemma helps us to show that (1+α)-th norm of ui ∈ Rt is t
1−α

2(1+α) , where uTi , i ∈ [mt]

are the rows of Ṽ −1/2
t Φ̃Tt .

Lemma 12 Let A ∈ Rp×q. Let ci ∈ Rp, i = 1, . . . , q be the i-th column of A(ATA + λIq)
−1/2.

Then for any β ∈ [1,∞), we have ‖ci‖β ≤ p
2−β
2β for all i ∈ [q].

Proof Let the singular value decomposition of A be UΣV T , where U and V are unitary matrices.
This implies A(ATA+ λIq)

−1/2 = UΣ(ΣTΣ + λIq)
−1/2V T . Now, the i-th column of A(ATA+

5In our setting, B and v are constants that do not scale with T and the condition is trivially satisfied.
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λIq)
−1/2 is given by ci = UΣ(ΣTΣ + λI)−1/2V T ei. Therefore,

‖ci‖2 =
∥∥∥UΣ(ΣTΣ + λI)−1/2V T ei

∥∥∥
2

=
∥∥∥Σ(ΣTΣ + λI)−1/2V T ei

∥∥∥
2

≤
∥∥∥Σ(ΣTΣ + λI)−1/2

∥∥∥
2

∥∥V T ei∥∥2
≤ 1.

Now the result follows from the fact that for any a ∈ Rp, ‖a‖2 ≤ 1 the maximum value of ‖a‖β for

any β ∈ [1,∞) is p
2−β
2β with the maximum attained at [ 1√

p , . . . ,
1√
p ]T .

Now, we will show that the data adaptive truncation of ATA-GP-UCB helps us to achieve tighter
confidence sets than TGP-UCB.

Lemma 13 (Effect of data adaptive truncation) For any δ ∈ (0, 1], ATA-GP-UCB with bt =

(v/ ln(2mtT/δ))
1

1+α t
1−α

2(1+α) , ensures, with probability at least 1− δ, that uniformly over all t ∈ [T ],∥∥∥Ṽ −1
t Φ̃Tt ft − θ̃t

∥∥∥
Ṽt
≤ 4
√
mt v

1
1+α (ln(2mtT/δ))

α
1+α t

1−α
2(1+α) ,

where ft = [f(x1), . . . , f(xt)]
T is a vector containing f ’s evaluations up to round t.

Proof The proof is inspired from Shao et al. [34], with some changes. Fix any t ∈ N. Let
uTi ∈ R1×t, i = 1, . . . ,mt denotes the i-th row of Ṽ −1/2

t Φ̃Tt where Ṽt = Φ̃Tt Φ̃t + λImt . Let
ri = uTi Yt =

∑t
τ=1 ui,τyτ denotes the sum of weighted historical rewards in the i-th dimension

of the feature space with the weight vector ui and r̂i =
∑t
τ=1 ui,τyτ1|ui,τyτ |≤bt denotes the

corresponding truncation. Let F ′t,τ = σ({x1, . . . , xt} ∪ {y1, . . . , yτ}), τ = 0, 1, 2, . . . , t denotes the
σ-algebra generated by the arms played up to time t and rewards obtained up to time τ . Observe that
F ′t,0 ⊆ F ′t,1 ⊆ F ′t,2 ⊆ . . . and define F ′t = F ′t,0. Then, E [Yt|F ′t] = ft and ui, i = 1, . . . ,mt are F ′t-
measurable. Therefore, we have E [ri|F ′t] = uTi ft =

∑t
τ=1 ui,τf(xτ ) =

∑t
τ=1 E

[
ui,τyτ |F ′t,τ−1

]
for all i ∈ [mt]. This implies

|r̂i − E [ri|F ′t]|

=

∣∣∣∣∣
t∑

τ=1

ui,τyτ1|ui,τyτ |≤bt −
t∑

τ=1

E
[
ui,τyτ |F ′t,τ−1

]∣∣∣∣∣
=

∣∣∣∣∣
t∑

τ=1

ui,τyτ1|ui,τyτ |≤bt −
t∑

τ=1

E
[
ui,τyτ

(
1|ui,τyτ |≤bt + 1|ui,τyτ |>bt

)
|F ′t,τ−1

]∣∣∣∣∣
≤

∣∣∣∣∣
t∑

τ=1

(
ui,τyτ1|ui,τyτ |≤bt − E

[
ui,τyτ1|ui,τyτ |≤bt |F

′
t,τ−1

])∣∣∣∣∣+

t∑
τ=1

E
[
|ui,τyτ |1|ui,τyτ |>bt |F

′
t,τ−1

]
.

Now, we will bound the second term first. Observe that E
[
|ui,τyτ |1|ui,τyτ |>bt |F ′t,τ−1

]
≤

b−αt E
[
|ui,τyτ |1+α

1|ui,τyτ |>bt |F ′t,τ−1

]
≤ b−αt |ui,τ |

1+α E
[
|yτ |1+α |F ′t,τ−1

]
. Now since the noise

variables are sampled independent of the arms played, it holds that E
[
|yτ |1+α |F ′t,τ−1

]
=

E
[
|yτ |1+α |Fτ−1

]
and therefore

t∑
τ=1

E
[
|ui,τyτ |1|ui,τyτ |>bt |F

′
t,τ−1

]
≤ vb−αt

t∑
τ=1

|ui,τ |1+α
.

Now, we will bound the first term. For that, we define Mt,τ := ui,τyτ1|ui,τyτ |≤bt −
E
[
ui,τyτ1|ui,τyτ |≤bt

∣∣ F ′t,τ−1

]
, τ = 1, 2, . . . , t. It is easy to see that (Mt,τ )τ≥1 is a martingale

difference sequence with respect to the filtration (F ′t,τ )τ≥0 and |Mt,τ | ≤ 2bt almost surely. Fur-
ther, V[Mτ

∣∣ F ′t,τ−1] = V[ui,τyτ1|ui,τyτ |≤bt
∣∣ F ′t,τ−1] ≤ E

[
u2
i,τy

2
τ1|ui,τyτ |≤bt

∣∣ F ′t,τ−1

]
≤

b1−αt |ui,τ |1+α E
[
|yτ |1+α ∣∣ F ′t,τ−1

]
≤ vb1−αt |ui,τ |1+α. Then by Bernstein’s inequality [32], we

have that for any γ ∈ [0, 1/2bt] and δ ∈ (0, 1], with probability at least 1− δ,∣∣∣∣∣
t∑

τ=1

(
ui,τyτ1|ui,τyτ |≤bt − E

[
ui,τyτ1|ui,τyτ |≤bt

])∣∣∣∣∣ ≤ 1

γ
ln(2/δ) + γ(e− 2)

t∑
τ=1

vb1−αt |ui,τ |1+α
.
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Now setting γ = 1/2bt, we obtain that for any i ∈ [mt] and δ ∈ (0, 1], with probability at least 1− δ,

|r̂i − E [ri|F ′t]| ≤ 2bt ln(2/δ) + 2vb−αt

t∑
τ=1

|ui,τ |1+α

= 2bt ln(2/δ) + 2vb−αt ‖ui‖
1+α
1+α

(a)

≤ 2bt ln(2/δ) + 2vb−αt t
1−α

2

(b)

≤ 4v
1

1+α (ln(2/δ))
α

1+α t
1−α

2(1+α) . (22)

Here (a) follows from Lemma 12 and (b) holds for bt = (v/ ln(2/δ))
1

1+α t
1−α

2(1+α) . Now observe that
Ṽ

1/2
t θ̃t = [r̂1, . . . , r̂mt ]

T and Ṽ −1/2
t Φ̃Tt ft = [uT1 ft, . . . , u

T
mtft]

T = [E [r1|F ′t] , . . . ,E [rmt |F ′t]]
T .

This implies∥∥∥Ṽ −1
t Φ̃Tt ft − θ̃t

∥∥∥
Ṽt

=
∥∥∥Ṽ −1/2

t Φ̃Tt ft − Ṽ
1/2
t θ̃t

∥∥∥
2

=

√√√√mt∑
i=1

(
r̂i − E

[
ri|F ′t−1

])2
.

Therefore, by taking an union bound over all i ∈ [mt] and setting δ = δ/mt in 22, we obtain that for
any t ∈ N and δ ∈ (0, 1], with probability at least 1− δ,∥∥∥Ṽ −1

t Φ̃Tt ft − θ̃t
∥∥∥
Ṽt
≤ 4
√
mt v

1
1+α (ln(2mt/δ))

α
1+α t

1−α
2(1+α) .

Now the result follows by taking another union bound over all t ∈ [T ] and setting δ = δ/T .

D.2 Analysis of ATA-GP-UCB under quadrature Fourier features (QFF) approximation

D.2.1 Error due to Fourier feature approximation

Definition 2 (Uniform Approximation [26]) Let k : X × X → R,X ⊂ Rd be a kernel, then a
feature map ϕ̃ : X → Rm uniformly approximates k within an accuracy εm if and only if,

sup
x,y∈X

∣∣k(x, y)− ϕ̃(x)T ϕ̃(y)
∣∣ ≤ εm. (23)

Lemma 14 (QFF error) [26, Theorem 1] Let X = [0, 1]d, k = kSE and ϕ̃ be as in 1. Then,

εm ≤ d2d−1 1√
2m̄m̄

( e

4l2

)m̄
.

Lemma 14 implies that QFF embedding (1) of kSE satisfies εm = O
(
d2d−1

(m̄l2)m̄

)
where m = m̄d. We

can achieve exponential decay only when m̄ > 1/l2, and in that case O
(
(d+ ln(d/εm))d

)
features

are required to obtain an εm-accurate approximation of the SE kernel. In contrast, Sriperumbudur
and Szabó [36] show that for any compact X ⊂ Rd, the uniform approximation error using RFF
is εm = Op(

√
d ln |X | /m), i.e. at least O(d ln |X | /ε2

m) features are required to obtain an εm-
accurate approximation of k. In most of the BO applications either d = O(1), or there are enough
structure (e.g. generalized additive models) such that effective dimensionality of the problem is low.
In that case O(1/ε2

m) and O((ln(1/εm)d) features are needed to obtain εm-accuracy with RFF and
QFF approximations, respectively.

Now, recall that the posterior mean and variance of a GP prior GPX (0, k) with iid Gaussian
noise N (0, λ) are given by µt(x) = kt(x)T (Kt + λIt)

−1Yt and σ2
t (x) = k(x, x) − kt(x)T (Kt +

λIt)
−1kt(x), respectively. Let αt(x) = kt(x)T (Kt + λIt)

−1ft denotes the expected posterior mean
and α̃t(x) = k̃t(x)T (K̃t + λIt)

−1ft denotes the approximation of αt(x), where k̃t(x) = Φ̃tϕ̃(x)

and K̃t = Φ̃tΦ̃
T
t . Define k̃(x, y) = ϕ̃(x)T ϕ̃(y). Then, the approximate posterior variance under

QFF approximation is σ̃2
t (x) = λϕ̃t(x)T Ṽ −1

t ϕ̃t(x) = k̃(x, x)− k̃t(x)T (K̃t + λIt)
−1k̃t(x). Now,

we will show that the error introduced by uniform approximation reflects in the approximation of the
posterior variance and the expected posterior mean.
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Lemma 15 (Error in posterior mean and variance approximations) Let f ∈ Hk(X ), ‖f‖H ≤
B and k(x, x) ≤ 1 for all x ∈ X . Let ϕ̃ : X → Rm be a feature map such that 23 holds for some
εm < 1, and ϕ̃(x)T ϕ̃(y) ≤ 1 for all x, y ∈ X . Then for all x ∈ X and t ≥ 1, we have

(i) |αt(x)− α̃t(x)| = O(Bεmt
2/λ) and (ii) |σt(x)− σ̃t(x)| = O(ε1/2

m t/λ).

Proof This proof is inspired from [26], with some notable changes. First, observe that∣∣∣kt(x)T (Kt + λIt)
−1ft − k̃t(x)T (K̃t + λIt)

−1ft

∣∣∣
(a)

≤
∣∣∣∣(kt(x)− k̃t(x)

)T
(Kt + λIt)

−1ft

∣∣∣∣+
∣∣∣k̃t(x)T

(
(Kt + λIt)

−1 − (K̃t + λIt)
−1
)
ft

∣∣∣
(b)

≤
∥∥∥kt(x)− k̃t(x)

∥∥∥
2

∥∥(Kt + λIt)
−1ft

∥∥
2

+
∥∥∥k̃t(x)

∥∥∥
2

∥∥∥((Kt + λIt)
−1 − (K̃t + λIt)

−1
)
ft

∥∥∥
2

(c)

≤
∥∥∥kt(x)− k̃t(x)

∥∥∥
2

∥∥(Kt + λIt)
−1
∥∥

2
‖ft‖2 +

∥∥∥k̃t(x)
∥∥∥

2

∥∥∥(Kt + λIt)
−1 − (K̃t + λIt)

−1
∥∥∥

2
‖ft‖2 ,

where (a) uses triangle inequality, (b) uses Cauchy-Schwartz inequality and (c) uses the definition
of operator norm. By our hypothesis, ‖ft‖2 ≤ Bt1/2,

∥∥∥k̃t(x)
∥∥∥

2
≤ t1/2 and

∥∥∥kt(x)− k̃t(x)
∥∥∥

2
≤

εmt
1/2. Now∥∥∥(Kt + λIt)

−1 − (K̃t + λIt)
−1
∥∥∥

2
=

∥∥∥(Kt + λIt)
−1
(

(K̃t + λIt)− (Kt + λIt)
)

(K̃t + λIt)
−1
∥∥∥

2

=
∥∥∥(Kt + λIt)

−1(K̃t −Kt)(K̃t + λIt)
−1
∥∥∥

2

(a)

≤
∥∥(Kt + λIt)

−1
∥∥

2

∥∥∥K̃t −Kt

∥∥∥
2

∥∥∥(K̃t + λIt)
−1
∥∥∥

2

(b)

≤ εmt/λ
2,

where (a) follows from the sub-multiplicative property of operator norm and (b) follows from the

facts that
∥∥∥Kt − K̃t

∥∥∥
2
≤
√∑

1≤i,j≤t(k(xi, xj)− k̃(xi, xj))2 ≤ εmt, and that for any p.s.d. matrix

A ∈ Rt×t,
∥∥(A+ λIt)

−1
∥∥

2
= λmax{(A+ λIt)

−1} = 1/λmin{A+ λIt} ≤ 1/λ. Therefore, for all
x ∈ X and t ≥ 1, we have

|αt(x)− α̃t(x)| ≤
(
εmt

1/2/λ+ εmt
3/2/λ2

)
Bt1/2 = O(Bεmt

2/λ).

Now, since
∣∣∣k(x, y)− k̃(x, y)

∣∣∣ ≤ εm for all x, y ∈ X , we have k̃t(x) = kt(x) + at(x) where
‖at(x)‖∞ ≤ εm. This implies∣∣σ2

t (x)− σ̃2
t (x)

∣∣
=

∣∣∣k(x, y)− k̃(x, y)
∣∣∣+
∣∣∣k̃t(x)T (K̃t + λIt)

−1k̃t(x)− kt(x)T (Kt + λIt)
−1kt(x)

∣∣∣
≤ εm +

∣∣∣kt(x)T
(

(K̃t + λIt)
−1 − (Kt + λIt)

−1
)
kt(x)

∣∣∣+ 2
∣∣∣at(x)T (K̃t + λIt)

−1kt(x)
∣∣∣

+
∣∣∣at(x)T (K̃t + λIt)

−1at(x)
∣∣∣

(a)

≤ εm +
∥∥∥(K̃t + λIt)

−1 − (Kt + λIt)
−1
∥∥∥

2
‖kt(x)‖22 + 2 ‖at(x)‖2

∥∥∥(K̃t + λIt)
−1
∥∥∥

2
‖kt(x)‖2

+
∥∥∥(K̃t + λIt)

−1
∥∥∥

2
‖at(x)‖22

(b)

≤ εm + εmt
2/λ2 + 2εmt/λ+ ε2

mt/λ = O(εmt
2/λ2) for εm < 1.

Here (a) is due to Cauchy-Schwartz inequality and definition of operator norm. (b) uses ‖kt(x)‖2 ≤
t1/2, ‖at(x)‖2 ≤ εmt

1/2,
∥∥∥(K̃t + λIt)

−1 − (Kt + λIt)
−1
∥∥∥

2
≤ εmt/λ

2 and
∥∥∥(K̃t + λIt)

−1
∥∥∥

2
≤

1/λ. Now, the result follows from the fact that for any a, b ≥ 0, (a+ b)1/2 ≤ a1/2 + b1/2.

Now, we are ready to prove Lemma 1.
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D.2.2 Proof of Lemma 1

Under the QFF approximation, we have ϕ̃t = ϕ̃ and mt = m for all t ≥ 1. Hence, we have
µ̃t(x) = ϕ̃(x)T θ̃t and α̃t(x) = ϕ̃(x)T Φ̃Tt (Φ̃tΦ̃

T
t + λIt)

−1ft = ϕ̃(x)T Ṽ −1
t Φ̃Tt ft, where the last

equality follows from 3. Now, by Cauchy-Schwartz inequality,

|α̃t(x)− µ̃t(x)| ≤
∥∥∥Ṽ −1

t Φ̃T ft − θ̃t
∥∥∥
Ṽt
‖ϕ̃(x)‖Ṽ −1

t
= λ−1/2

∥∥∥Ṽ −1
t Φ̃Tt ft − θ̃t

∥∥∥
Ṽt
σ̃t(x).

Hence, from Lemma 13, we have, for any δ ∈ (0, 1], with probability at least 1− δ, uniformly over
all x ∈ X and t ∈ [T ], that

|α̃t(x)− µ̃t(x)| ≤ 4
√
m/λ v

1
1+α (ln(2mT/δ))

α
1+α t

1−α
2(1+α) σ̃t(x). (24)

By triangle inequality,
|f(x)− µ̃t(x)| ≤ |f(x)− αt(x)|+ |αt(x)− α̃t(x)|+ |α̃t(x)− µ̃t(x)| .

Now, from 7, |f(x)− αt(x)| ≤ Bσt(x) and thus, in turn, from Lemma 15, |f(x)− αt(x)| =

Bσ̃t(x) +O(Bε
1/2
m t/λ). Also, from Lemma 15, |αt(x)− α̃t(x)| = O(Bεmt

2/λ). Now combining
these with 24, we obtain, for any δ ∈ (0, 1], with probability at least 1− δ, uniformly over all x ∈ X
and t ∈ [T ], that

|f(x)− µ̃t(x)| ≤
(
B + 4

√
m/λ v

1
1+α (ln(2mT/δ))

α
1+α t

1−α
2(1+α)

)
σ̃t(x) +O(Bε1/2

m t/λ) +O(Bεmt
2/λ)

=
(
B + 4

√
m/λ v

1
1+α (ln(2mT/δ))

α
1+α t

1−α
2(1+α)

)
σ̃t(x) +O(Bε1/2

m t2/λ)

for εm < 1. Further observe that |f(x)− µ̃0(x)| = |f(x)| ≤ Bk1/2(x, x) = Bσ0(x) ≤ Bσ̃0(x) +

Bε
1/2
m . Now the result follows by setting βt+1 = B + 4

√
m/λ v

1
1+α (ln(2mT/δ))

α
1+α t

1−α
2(1+α) for

all t ≥ 0.

D.2.3 Proof of Theorem 3

For any δ ∈ (0, 1], we have, with probability at least 1 − δ, uniformly over all t ∈ [T ], the
instantaneous regret

rt = f(x?)− f(xt)

(a)

≤ µ̃t−1(x?) + βtσ̃t−1(x?) +O(Bε1/2
m t2/λ)− f(xt)

(b)

≤ µ̃t−1(xt) + βtσ̃t−1(xt)− f(xt) +O(Bε1/2
m t2/λ)

(c)

≤ 2βtσ̃t−1(xt) +O(Bε1/2
m t2/λ)).

Here (a) and (c) follow from Lemma 1 and (b) is due to the choice of ATA-GP-UCB (Algorithm 2).
Now Observe that (βt)t≥1 is an increasing sequence in t. Further,

T∑
t=1

σ̃t−1(xt)
(a)

≤

√√√√T
T∑
t=1

σ̃2
t−1(xt)

(b)

≤
√

2(1 + λ)T γ̃T = O(
√
mT lnT ).

Here (a) follows from Cauchy-Schwartz inequality, (b) from Lemma 6, and (c) from Lemma 5
noting that k̃ is a linear kernel defined on R2m. Hence for any δ ∈ (0, 1], with probability at least
1− δ, the cumulative regret of ATA-GP-UCB after T rounds is

RT = O
(
βT
√
Tm lnT

)
+

T∑
t=1

O(Bε1/2
m t2/λ)

= O
(
B
√
Tm lnT +mv

1
1+α (ln(mT/δ))

α
1+α (lnT )1/2T

1
1+α +Bε1/2

m T 3
)
.

From Lemma 14 if m̄ ≥ 1/l2 and d = O(1), we have εm = O((e/4)m̄). Further if m̄ ≥ log4/e(T
6),

then ε1/2
m T 3 = O(1). Now choosing m̄ = Θ

(
log4/e(T

6)
)

, we can ensure that m = O((lnT )d) 6.

6For the RFF approximation, we have εm = Op(1/
√
m) if d = O(1). Now in order to make the last term

ε
1/2
m T 3 behave as O(1), we have to take m = O(T 12) features which will eventually blow up the first two

terms by the same order. Hence, we will never achieve sub-linear regret bound using RFF approximation.
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Therefore for any δ ∈ (0, 1], with probability at least 1− δ, the cumulative regret of ATA-GP-UCB
under QFF approximation after T rounds is

RT = O

(
B
√
T (lnT )d+1 + v

1
1+α

(
ln
(
T (lnT )d/δ

)) α
1+α
√

lnT (lnT )dT
1

1+α

)
.

D.3 Analysis of ATA-GP-UCB under Nyström approximation

D.3.1 Construction of dictionary and its properties

Given the kernel matrix Kt, we define an accurate dictionary as follows.

Definition 3 (ε-accurate dictionary [9]) For any ε ∈ (0, 1), a dictionary Dt ⊆ {x1, . . . , xt} is
said to be ε-accurate with respect to the kernel matrix Kt if∥∥∥(Kt + λI)−1/2K

1/2
t (It − S2

t )K
1/2
t (Kt + λI)−1/2

∥∥∥
2
≤ ε,

where St is the selection matrix associated with the dictionary Dt such that [St]i,i = 1/
√
pt,i if

xi ∈ Dt, and 0, elsewhere.

The following lemma states two more equivalent condition for a dictionary to be accurate.

Lemma 16 Let VDt = ΦTt S
2
t Φt + λIH. Then, the following are equivalent:

1.
∥∥∥(Kt + λI)−1/2K

1/2
t (It − S2

t )K
1/2
t (Kt + λI)−1/2

∥∥∥
2
≤ ε,

2.
∥∥(ΦTt Φt + λIH)−1/2ΦTt (It − S2

t )Φt(Φ
T
t Φt + λIH)−1/2

∥∥
H ≤ ε,

3. (1− ε)Vt � VDt � (1 + ε)Vt.

Proof Let Φt = UΣV T be the singular value decomposition of Φt. Then Φt(Φ
T
t Φt + λIH)−1/2 =

UΣ(ΣTΣ+λIH)−1V T , (ΦTt Φt+λIH)−1/2ΦTt = V (ΣTΣ+λIH)−1ΣTUT and Kt = UΣΣTUT .
Therefore ∥∥∥(ΦTt Φt + λIH)−1/2ΦTt (It − S2

t )Φt(Φ
T
t Φt + λIH)−1/2

∥∥∥
H

=
∥∥∥V (ΣTΣ + λIH)−1/2ΣTUT (It − S2

t )UΣ(ΣTΣ + λIH)−1/2V T
∥∥∥
H

=
∥∥∥(ΣTΣ + λIH)−1/2ΣTUT (It − S2

t )UΣ(ΣTΣ + λIH)−1/2
∥∥∥
H

=
∥∥∥(ΣΣT + λIt)

−1/2(ΣΣT )1/2UT (It − S2
t )U(ΣΣT )1/2(ΣΣT + λIt)

−1/2
∥∥∥

2

=
∥∥∥U(ΣΣT + λIt)

−1/2(ΣΣT )1/2UT (It − S2
t )U(ΣΣT )1/2(ΣΣT + λIt)

−1/2UT
∥∥∥

2

=
∥∥∥(Kt + λI)−1/2K

1/2
t (It − S2

t )K
1/2
t (Kt + λI)−1/2

∥∥∥
2
,

which proves that 1⇐⇒ 2. Now, Observe that∥∥∥(ΦTt Φt + λIH)−1/2ΦTt (It − S2
t )Φt(Φ

T
t Φt + λIH)−1/2

∥∥∥
H
≤ ε

⇐⇒ −εIH � (ΦTt Φt + λIH)−1/2(ΦTt Φt − ΦTt S
2
t Φt)(Φ

T
t Φt + λIH)−1/2 � εIH

⇐⇒ −εIH � V −1/2
t (Vt − VDt)V

−1/2
t � εIH

⇐⇒ −εVt � Vt − VDt � εVt
⇐⇒ (1− ε)Vt � VDt � (1 + ε)Vt,

which proves 2⇐⇒ 3.

An ε-accurate dictionary can be obtained by including points proportional to their λ-ridge leverage
scores defined as follows.
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Definition 4 (Ridge leverage score [1]) For a set of points {x1, . . . , xt} and a constant λ > 0, the
λ- ridge leverage score of the point xi, i ∈ [t] is defined as

lt,i = eTi Kt(Kt + λIt)
−1ei,

where ei ∈ Rt is the i-th standard basis vector.

Ridge leverage score (RLS) can be interpreted in many ways and it is well studied in the literature.
Here we observe that

eTi Kt(Kt+λIt)
−1ei = eTi ΦtΦ

T
t (ΦtΦ

T
t +λIt)

−1ei = eTi Φt(Φ
T
t Φt+λIH)−1ΦTt ei = ‖ϕ(xi)‖2V −1

t
.

Therefore lt,i = 1
λσ

2
t (xi), i.e., the RLS of xi is proportional its posterior variance σ2

t (xi) under the GP
priorGPX (0, k). However, the exact computation of λ-ridge leverage scores in turn requires inverting
the kernel matrix Kt which requires O(t3) time. This motivates the need for a fast approximation of
RLS such that it can be used to construct an ε-accurate dictionary. Calandriello et al. [9] show that,
instead of using the exact ridge leverage scores (or, equivalently, posterior variances) if we use the
approximate variances from the previous round to sample points in the current round, then we will
be able to obtain an accurate dictionary. Not only that, the dictionary size will grow no faster than
the maximum information gain of the underlying kernel. Now, we present the NyströmEmbedding
procedure which is used in Algorithm 2.

Algorithm 3 NyströmEmbedding
Input: {(xi, σ̃t−1(xi))}ti=1, q
Set: Dt = ∅
for i = 1, 2, 3 . . . , t do

Sample zt,i ∼ B
(
min{qσ̃2

t−1(xi), 1}
)

If zt,i = 1, set Dt = Dt ∪ {xi}
end for
Return ϕ̃t(x) =

(
K

1/2
Dt

)+

kDt(x)

The following lemma states the properties of the dictionaries Dt constructed using Algorithm 3.

Lemma 17 (Properties of the dictionary) For any ε ∈ (0, 1) and δ ∈ (0, 1], set ρ = 1+ε
1−ε and

q = 6ρ ln(2T/δ)
ε2 . Then, with probability at least 1− δ, uniformly over all t ∈ [T ],

(1− ε)Vt � VDt � (1 + ε)Vt and mt ≤ 6ρ

(
1 +

1

λ

)
qγt.

Lemma 17 is a restatement of [9, Theorem 1] and it is presented in this form for the sake of brevity
and completeness. Now, we will show that using the Nyström embeddings ϕ̃t(x), we can prevent the
variance starvation which generally arises due to approximation.

D.3.2 Preventing variance starvation with Nyström embeddings

Recall that the posterior mean and variance of a GP prior GPX (0, k) with iid Gaussian noiseN (0, λ)
are given by µt(x) = kt(x)T (Kt + λIt)

−1Yt and σ2
t (x) = k(x, x) − kt(x)T (Kt + λIt)

−1kt(x),
respectively. Let αt(x) = kt(x)T (Kt + λIt)

−1ft denotes the expected posterior mean and α̃t(x) =

k̃t(x)T (K̃t+λIt)
−1ft denotes the approximation of αt(x), where k̃t(x) = Φ̃tϕ̃(x) and K̃t = Φ̃tΦ̃

T
t .

Then, we have αt(x) = 〈ϕ(x), V −1
t ΦTt ft〉H and α̃t(x) = ϕ̃t(x)T Ṽ −1

t Φ̃Tt ft. Now, we can rewrite
the posterior variance as σ2

t (x) = λ ‖ϕ(x)‖2V −1
t

, whereas the approximate posterior variance under

Nyström approximation is given by σ̃2
t (x) = k(x, x) − ϕ̃t(x)T ϕ̃t(x) + λϕ̃t(x)T Ṽ −1

t ϕ̃t(x). This
choice of σ̃2

t (x) helps us to negate the variance starvation which arises due to feature approximation.
Now, we will justify this choice of σ̃2

t (x) by showing that it can be derived by projecting ϕ(x) to a
smaller RKHS. The idea is inspired from Calandriello et al. [9].

Projection to a smaller RKHS: For any dictionary Dt = {xi1 , . . . , ximt}, ij ∈ [t], de-
fine the operator ΦDt : Hk(X ) → Rmt such that for any h ∈ Hk(X ), ΦDth =
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[
〈ϕ(xi1), h〉H, . . . , 〈ϕ(ximt ), h〉H

]T
and denote its adjoint by ΦTDt : Rmt → Hk(X ). Let

ϕ̂t(x) = Ptϕ(x) be the projection of ϕ(x) to the subspace spanned by the columns of the operator
ΦTDt , where the projection operator Pt : Hk(X )→ Col(ΦTDt) is given by Pt = ΦTDt(ΦDtΦ

T
Dt)

+ΦDt .
It is easy to see that PTt = Pt and P 2

t = Pt. Now, for any set {x1, . . . , xt} ⊂ X define the operator
Φ̂t : Hk(X ) → Rt such that for any h ∈ Hk(X ), Φ̂th = [〈ϕ̂t(x1), h〉H, . . . , 〈ϕ̂t(xt), h〉H]T , and
denote its adjoint by Φ̂Tt : Rt → Hk(X ).

Lemma 18 (Approximate posterior variance and mean under projection) Let V̂t = Φ̂Tt Φ̂t +
λIH for any λ > 0. Then, we have

σ̃2
t (x) = λ ‖ϕ(x)‖2V̂ −1

t
and α̃t(x) = 〈ϕ(x), V̂ −1

t Φ̂Tt ft〉H.

Proof Since KDt = ΦDtΦ
T
Dt , we have the projection Pt = ΦTDt(KDt)

+ΦDt .

Now, observe that 〈ϕ(x), ϕ(y)〉Pt =
(

(K
1/2
Dt )†ΦDtϕ(x)

)T (
(K

1/2
Dt )†ΦDtϕ(y)

)
=(

(K
1/2
Dt )†kDt(x)

)T (
(K

1/2
Dt )†kDt(y)

)
= ϕ̃t(x)T ϕ̃t(y). Also, note that Φ̂Tt = PtΦ

T
t .

This implies Φ̂tϕ(x) = ΦtPtϕ(x) = [〈ϕ(x1), ϕ(x)〉Pt , . . . , 〈ϕ(xt), ϕ(x)〉Pt ]T =

[ϕ̃t(x1)T ϕ̃t(x), . . . , ϕ̃t(xt)
T ϕ̃t(x)]T = Φ̃tϕ̃t(x). Further, the (i, j)-th entry of Φ̂tΦ̂

T
t is

given by [Φ̂tΦ̂
T
t ]i,j = 〈Ptϕ(xi), Ptϕ(xj)〉H = 〈ϕ(xi), ϕ(xj)〉Pt = ϕ̃t(xi)

T ϕ̃t(xj) and hence,
Φ̂tΦ̂

T
t = Φ̃tΦ̃

T
t . Then, we have

λ ‖ϕ(x)‖2V̂ −1
t

= λ〈ϕ(x), (Φ̂Tt Φ̂t + λIH)−1ϕ(x)〉H
(a)
= 〈ϕ(x),

(
IH − Φ̂Tt (Φ̂tΦ̂

T
t + λIt)

−1Φ̂t

)
ϕ(x)〉H

(b)
= k(x, x)− ϕ̃t(x)T Φ̃Tt (Φ̃tΦ̃

T
t + λIt)

−1Φ̃tϕ̃t(x)

(c)
= k(x, x)− ϕ̃t(x)T Φ̃Tt Φ̃t(Φ̃

T
t Φ̃t + λImt)

−1ϕ̃t(x)

= k(x, x)− ϕ̃t(x)T ϕ̃t(x) + λϕ̃t(x)T Ṽ −1
t ϕ̃t(x) = σ̃2

t (x).

Here (a) follows from 4, (b) is due to Φ̂tϕ(x) = Φ̃tϕ̃t(x) and Φ̂tΦ̂
T
t = Φ̃tΦ̃

T
t , and (c) follows from

3. Now observe that

〈ϕ(x), V̂ −1
t Φ̂Tt ft〉H = 〈ϕ(x), (Φ̂Tt Φ̂t + λIH)−1Φ̂Tt ft〉H

(a)
= 〈ϕ(x), Φ̂Tt (Φ̂tΦ̂

T
t + λIt)

−1ft〉H
(b)
= ϕ̃t(x)T Φ̃Tt (Φ̃tΦ̃

T
t + λIt)

−1ft
(c)
= ϕ̃t(x)T (Φ̃Tt Φ̃t + λImt)

−1Φ̃Tt ft

= ϕ̃t(x)T Ṽ −1
t Φ̃Tt ft = α̃t(x).

Here (a) and (c) follow from 3, and (b) is due to Φ̂tϕ(x) = Φ̃tϕ̃t(x) and Φ̂tΦ̂
T
t = Φ̃tΦ̃

T
t .

Lemma 19 (Accuracy of approximate posterior variance) For an ε-accurate dictionary (Defini-
tion 3), we have

1− ε
1 + ε

σ2
t (x) ≤ σ̃2

t (x) ≤ 1 + ε

1− ε
σ2
t (x).

Proof From Lemma 18, we have σ̃2
t (x) = λ〈ϕ(x), V̂ −1

t ϕ(x)〉H. Now, observe that V̂t =
PtΦ

T
t ΦtPt+λIH = PtVtPt+λ(IH−Pt). From Lemma 16, we have (1−ε)Vt � VDt � (1+ε)Vt
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for any ε-accurate dictionary Dt. This implies that

V̂t � 1

1− ε
PtVDtPt + λ(IH − Pt)

=
1

1− ε
PtΦ

T
t S

2
t ΦtPt +

λε

1− ε
Pt + λIH

(a)

� 1

1− ε
(ΦTt S

2
t Φt + λIH)

� 1 + ε

1− ε
Vt,

where (a) follows from PtΦ
T
t St = ΦTt St and Pt � IH. Therefore, we have

σ̃2
t (x) ≥ 1− ε

1 + ε
λ〈ϕ(x), V −1

t ϕ(x)〉H =
1− ε
1 + ε

σ2
t (x).

Similarly, we can show that V̂t � 1−ε
1+εVt and thus, in turn, σ̃2

t (x) ≤ 1+ε
1−εσ

2
t (x).

Now, we will show that the confidence sets formed by ATA-GP-UCB (Algorithm 2) under Nyström
approximation is tighter compared to that of TGP-UCB.

D.3.3 Confidence sets of ATA-GP-UCB under Nyström approximation

First, we define the following two events. Fix any ε ∈ (0, 1) and δ ∈ (0, 1]. Let E1,t denotes the
event that the dictionary Dt is ε-accurate, i.e,

(1− ε)Vt � VDt � (1 + ε)Vt,

and E2,t denotes the event that the size of the dictionary Dt is at most 6ρ(1 + 1
λ )qγt, i.e.,

mt ≤ 6ρ

(
1 +

1

λ

)
qγt,

where ρ = 1+ε
1−ε and q = 6ρ ln(2T/δ)

ε2 . Then from Lemma 17, we have P
[
∩Tt=1(E1,t ∩ E2,t)

]
≥ 1− δ.

Let Gt = σ
(
{xi, (zi,j)ij=1}ti=1

)
, t ≥ 1 denotes the σ-algebra generated by the arms played and the

outcomes of the NyströmEmbedding procedure(Algorithm 3) up to time t. See that (Gt)t≥1 defines a
filtration, and both E1,t and E2,t are Gt measurable.

Lemma 20 (Tighter confidence sets with Nyström embedding) Fix any δ ∈ (0, 1], ε ∈ (0, 1)
and set ρ = 1+ε

1−ε . Then, ATA-GP-UCB under Nyström approximation, and with parame-

ters q = 6ρ ln(4T/δ)/ε2, bt = (v/ ln(4mtT/δ))
1

1+α t
1−α

2(1+α) and βt+1 = B(1 + 1√
1−ε ) +

4
√
mt/λ v

1
1+α (ln(4mtT/δ))

α
1+α t

1−α
2(1+α) , ensures, with probability at least 1 − δ, uniformly over

all t ∈ [T ] and x ∈ X , that
|f(x)− µ̃t−1(x)| ≤ βtσ̃t−1(x),

where mt is the dimension of the Nyström embedding ϕ̃t constructed at round t.

Proof From Lemma 18, we have α̃t(x) = 〈ϕ(x), V̂ −1
t Φ̂Tt ft〉H. Therefore,

|f(x)− α̃t(x)| =
∣∣∣〈ϕ(x), f − V̂ −1

t Φ̂Tt ft〉H
∣∣∣

(a)

≤ ‖ϕ(x)‖V̂ −1
t

∥∥∥f − V̂ −1
t Φ̂Tt ft

∥∥∥
V̂t

= λ−1/2
∥∥∥(Φ̂Tt Φ̂t + λIH)f − Φ̂Tt Φtf

∥∥∥
V̂ −1
t

σ̃t(x)

(b)
= λ−1/2

∥∥∥λf − Φ̂Tt Φt(IH − Pt)f
∥∥∥
V̂ −1
t

σ̃t(x)

(c)

≤
(
λ1/2

∥∥∥V̂ −1/2
t f

∥∥∥
H

+ λ−1/2
∥∥∥V̂ −1/2

t Φ̂Tt Φt(IH − Pt)f
∥∥∥
H

)
σ̃t(x)

(d)

≤
(
‖f‖H + λ−1/2

∥∥∥V̂ −1/2
t Φ̂Tt

∥∥∥
H
‖Φt(IH − Pt)‖H ‖f‖H

)
σ̃t(x)

(e)

≤ B
(

1 + λ−1/2 ‖Φt(IH − Pt)‖H
)
σ̃t(x).

28



Here (a) is by Cauchy-Schwartz inequality, (b) uses the fact that Φ̂t = ΦtPt, (c) is by trian-
gle inequality, (d) follows from

∥∥∥V̂ −1/2
t f

∥∥∥
H
≤ λ−1/2 ‖f‖H, and (e) follows from the fact that∥∥∥V̂ −1/2

t Φ̂Tt

∥∥∥2

H
= λmax

(
Φ̂t(Φ̂

T
t Φ̂t + λIH)−1Φ̂Tt

)
= λmax

(
Φ̂tΦ̂

T
t (Φ̂tΦ̂

T
t + λIt)

−1
)
≤ 1, and

that ‖f‖H ≤ B. Now see that Col(ΦTDt) = Col(ΦTt St), and hence Pt = ΦTt St(StΦtΦ
T
t St)

+StΦt.
Therefore

IH − Pt � IH − ΦTt St(StΦtΦ
T
t St + λIH)−1StΦt

(a)
= λ(ΦTt S

2
t Φt + λIH)−1 = λV −1

Dt ,

where (a) follows from 4. Now given a filtration Gt such thatE1,t is true, we have IH−Pt � λ
1−εV

−1
t ,

and hence ‖Φt(IH − Pt)‖2H = λmax

(
Φt(IH − Pt)ΦTt

)
≤ λ

1−ελmax

(
Φt(Φ

T
t Φt + λIH)−1ΦTt

)
=

λ
1−ελmax

(
ΦtΦ

T
t (ΦtΦ

T
t + λIt)

−1
)
≤ λ

1−ε . Therefore, given a filtration Gt such that E1,t is true,

|f(x)− α̃t(x)| ≤ B
(

1 +
1√

1− ε

)
σ̃t(x). (25)

Now, we have µ̃t(x) = ϕ̃t(x)T θ̃t and α̃t(x) = ϕ̃t(x)T Ṽ −1
t Φ̃Tt ft. Also observe that

λ ‖ϕ̃t(x)‖2Ṽ −1
t

= σ̃2
t (x) + ϕ̃t(x)T ϕ̃t(x) − k(x, x) = σ̃2

t (x) − 〈ϕ(x), (IH − Pt)ϕ(x)〉H ≤ σ̃2
t (x),

since by definition Pt � IH. Then, by Cauchy-Schwartz inequality

|α̃t(x)− µ̃t(x)| ≤
∥∥∥Ṽ −1

t Φ̃Tt ft − θ̃t
∥∥∥
Ṽt
‖ϕ̃(x)‖Ṽ −1

t
≤ λ−1/2

∥∥∥Ṽ −1
t Φ̃Tt ft − θ̃t

∥∥∥
Ṽt
σ̃t(x).

Now, Lemma 13 implies that for any δ ∈ (0, 1], with probability at least 1− δ, uniformly over all
t ∈ [T ] and x ∈ X ,

|α̃t(x)− µ̃t(x)| ≤ 4
√
mt/λ v

1
1+α (ln(2mtT/δ))

α
1+α t

1−α
2(1+α) σ̃t(x). (26)

By triangle inequality,

|f(x)− µ̃t(x)| ≤ |f(x)− α̃t(x)|+ |α̃t(x)− µ̃t(x)| .
Now, combining 25 and 26, for any δ ∈ (0, 1] and given a filtration (Gt)t≥1 such that E1,t is true for
all t ∈ [T ], we have, with probability at least 1− δ, uniformly over all t ∈ [T ] and x ∈ X ,

|f(x)− µ̃t(x)| ≤
(
B

(
1 +

1√
1− ε

)
+ 4
√
mt/λ v

1
1+α (ln(2mtT/δ))

α
1+α t

1−α
2(1+α)

)
σ̃t(x).

From Lemma 17, the event E1,t is true for all t ∈ [T ] with probability at least 1 − δ. Now taking
an union bound, we obtain that for any δ ∈ (0, 1], with probability at least 1− δ, uniformly over all
t ∈ [T ] and x ∈ X ,

|f(x)− µ̃t(x)| ≤
(
B

(
1 +

1√
1− ε

)
+ 4
√
mt/λ v

1
1+α (ln(4mtT/δ))

α
1+α t

1−α
2(1+α)

)
σ̃t(x).

Further observe that |f(x)− µ̃0(x)| = |f(x)| ≤ Bk1/2(x, x) ≤ B(1 + 1/
√

1− ε)σ̃0(x). Now, the
result follows by setting βt+1 = B

(
1 + 1√

1−ε

)
+ 4
√
mt/λ v

1
1+α (ln(4mtT/δ))

α
1+α t

1−α
2(1+α) for all

t ≥ 0.

Now we are ready to prove the regret bound of ATA-GP-UCB under Nyström approximation.

D.3.4 Proof of Theorem 4

For any δ ∈ (0, 1], we have, with probability at least 1 − δ, uniformly over all t ∈ [T ], the
instantaneous regret

rt = f(x?)− f(xt)

(a)

≤ µ̃t−1(x?) + βtσ̃t−1(x?)− f(xt)

(b)

≤ µ̃t−1(xt) + βtσ̃t−1(xt)− f(xt)

(c)

≤ 2βtσ̃t−1(xt)
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Here (a) and (c) follow from Lemma 20, and (b) is due to the choice of ATA-GP-UCB (Algorithm
2). From Lemma 17, given a filtration (Gt)t≥1 such that the event E2,t is true for all t ∈ [T ], we have

mt = O
(
ρ2

ε2 γt ln(T/δ)
)

. This, in turn, implies that

βt = O

(
B

(
1 +

1√
1− ε

)
+
ρ

ε

√
γt ln(T/δ) v

1
1+α

(
ln

(
γt ln(T/δ)T

δ

)) α
1+α

t
1−α

2(1+α)

)
.

Further, given a filtration (Gt)t≥1 such that the event E1,t is true for all t ∈ [T ], we have

T∑
t=1

σ̃t−1(xt)
(a)

≤ ρ

T∑
t=1

σt−1(xt)
(b)

≤ ρ

√√√√T

T∑
t=1

σ2
t−1(xt)

(c)

≤ ρ
√

2(1 + λ)TγT = O
(
ρ
√
TγT

)
.

Here (a) follows from Lemma 16, (b) follows from Cauchy-Schwartz inequality, and (c) follows
from Lemma 6. Now from Lemma 17, with probability at least 1− δ, both E1,t and E2,t are true for
all t ∈ [T ]. Hence, by virtue of an union bound, we obtain that for any δ ∈ (0, 1], with probability at
least 1− δ, the cumulative regret of ATA-GP-UCB under Nyström appproximation after T rounds is

RT = O

(
ρB

(
1 +

1√
1− ε

)√
TγT +

ρ2

ε
v

1
1+α

(
ln

(
γT ln(T/δ)T

δ

)) α
1+α √

ln(T/δ)γTT
1

1+α

)
.

E Addendum to experiments

Compared to this paper’s setting, Bubeck et al. [8] makes weaker assumptions (i.e., no regularity
structure on arms’ rewards) and shows a more general but weaker regret bound (especially if the
number of arms is very large) which is not surprising – more structure allows for lower regret.
Our results show how smoothness in the arms’ rewards (which is common in practice) can be
exploited to achieve better regret. Numerical comparisons of the Robust-UCB algorithm (with
truncated mean estimator) of Bubeck et al. [8] with our algorithms on the lightsensor data indicate
that ATA-GP-UCB-Nyström performs much better than Robust-UCB, suggesting that it is indeed able
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0.6 to capture the smoothness structure present in the data. The-
oretically if there are only K arms, the cumulative regret
of ATA-GP-UCB will be better than that of Robust-UCB as
long as γT ≤ K

α
1+α . This holds if K

α
1+α ≥ (lnT )d for SE

kernel and if K
α

1+α ≥ T
1

1+ν for Matérn kernel (on R). This
is typically true if K is large and in fact, for a continuous set
of arms the analysis of Robust-UCB yields a trivial regret up-
per bound of infinity. This introduces additional challenges
that require a different set of ideas and is quite representative
of real world problems, e.g., hyperparameter tuning in ML.
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