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A Hyperparameter Optimization Benchmarks

In Table[T] we list all OpenML datasets that we used to generate the Meta-SVM and Meta-FCNet
benchmarks and in Table 2]the UCI datasets that we used for the Meta-XGBoost benchmark. The
ranges of the hyperparameters for all benchmarks are given in Table |3} Figure|l|shows the empirical
cumulative distribution over the observed target values based on the Sobol grid for all tasks.

\ Name | OpenML Task ID | number of features | number of datapoints |
kr-vs-kp 3 37 3196
covertype 2118 55 110393
letter 236 17 20000
higgs 75101 29 98050
optdigits 258 65 5620
electricity 336 9 45312
magic telescope 75112 12 19020
nomao 146595 119 34465
gas-drift 146590 129 13910
mfeat-pixel 250 241 2000
car 251 7 1728
churn 167079 101 1212
dna 167202 181 3186
vehicle small 283 19 846
vehicle 75191 101 98528
MNIST 3573 785 50000

Table 1: OpenML dataset we used for the FC-Net and SVM classification benchmarks
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Figure 1: The empirical cumulative distribution plots of all observed target values for all tasks.
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\ Name | number of features | number of datapoints |

boston housing 13 506
concrete 9 1030
parkinsons telemonitoring 26 5875
combined cycle power plant 4 9568
energy 8 768
naval propulsion 16 11934
protein structure 9 45730
yacht-hydrodynamics 7 308
winequality-red 12 4898
slice localization 386 53500

Table 2: UCI regression dataset we used for the XGBoost benchmark. All dataset can be found at
[https://archive.ics.uci.edu/ml/datasets.html|

| Name Range log scale

SVM C [e710 0] v

g e, €] v

FC-Net | learning rate [1076,1071] v

batch size [8,128] v

units layer 1 [16,512] v

units layer 2 [16,512] v

drop. rate 11 [0.0,0.99] -

drop. rate 12 [0.0,0.99] -

XGBoost | learning rate [1076,1071] v

gamma [0,2] -

L1 regularization [107°,10%] v

L2 regularization [1075,10%] v

number of estimators [10, 500] -
subsampling [0.1,1]

max. depth [1,15] -
min. child weight [0, 20]

Table 3: Hyper-parameter configuration space of the support vector machine (SVM), fully connected
neural network (FC-Net) and the gradient tree boosting (XGBoost) benchmark.

B Comparison Random Search vs. Bayesian Optimization on XGBoost

For completeness we show in Figure[2]the comparison of random search (RS) and Bayesian optimiza-
tion with Gaussian processes (BO-GP) on several UCI regression datasets. Out of the 10 datasets,
GP-BO perform better than RS on 7, worse on one, and ties on 2 and hence performs overall better
than RS which is inline with the results obtained from out meta-model. However, if we would look
only on the first three datasets: Boston-Housing, PowerPlant and Concrete it would be much harder
to draw strong conclusions.

C Details about the Forrester benchmark

Figure [3]shows the original 9 tasks (left), their representation on the latent space of the model (middle)
and an example of 10 new generated task (right), that resemble the original ones.
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D Samples for the Meta-SVM benchmark

In Figure ] and Figure [ we show additional randomly sampled tasks with and without noise. One
can see that, while the general characteristics of the original objective function, i.e. bowl shaped
around the lower right corner, remains, the local structure changes across samples.

E Comparison of HPO Methods

We now described the specific details of each optimizer in turn.

Random search (RS) [[1] We defined a uniform distribution over the input space and, in each iteration,
randomly sampled a datapoint from this distribution.

Differential Evolution (DE) [9]] maintains a population of data points and generates new candidate
points by mutation random points from this population. We defined the probability for mutation and
crossover to be 0.5. The population size was 10 and we sampled new candidate points based on the
’rand/1/bin’ strategy.

Tree Parzen Estimator (TPE) [2] is a Bayesian optimization method that uses kernel density esti-
mators (KDE) to model the probability of *good’ points in the input space, i e. that achieve a function
value that is lower than a certain value and *bad’ points that achieve a function value smaller than a
certain value. TPE selects candidates by maximizing the ration between the likelihood of the two
KDEs which is equivalent to optimizing expected improvement. We used the default hyperparameters
provided by the hyperopt (https://github.com/hyperopt/hyperopt) package.

SMAC [6] is a Bayesian optimization method that uses random forests to model the objective function
and stochastic local search to optimize the acquisition function. We used the default hyperparameters
of SMAC, and set the number of trees for the random forest to 10.

CMA-ES [3] is an evolutionary strategy that models a population of points as a multivariate normal
distribution. We used the open source pycma package (https://github.com/CMA-ES/pycma).
We set the initial standard deviation of the normal distribution to 0.6.

Gaussian Process based Bayesian optimization (BO-GP) as described by Snoek et al. [7]. We used
expected improvement as acquisition function and an adapted random search strategy to optimize the
acquisition function, which given a maximum number of allowed points N = 500 samples first 70%
uniformly at random and the rest from a Gaussian with a fixed variance around the best observed
point. While other methods, such as gradient ascent techniques or continuous global optimization
methods could also be used, we found this to work faster and more robustly. We marginalized the
acquisition function over the Gaussian process hyperparameters [7] and used the emcee package
(http://dfm.io/emcee/current/) to sample hyperparameter configurations from the marginal
log-likelihood. We used a Matern 52 kernel for the Gaussian process.

BOHAMIANN (8] uses a Bayesian neural network inside Bayesian optimization where the weights
are sampled based on stochastic gradient Hamiltonian Monte-Carlo [3]]. We use a step length of 102
for the MCMC sampler and increased the number of burnin step by a factor of 100 times the number
of observed data points. In each iteration, we sampled 100 weight vectors over 10000 MCMC steps.
We used the same random search method to optimize the acquisition function as for BO-GP.

All methods started from a uniformly sampled point and we estimated the incumbent after each
function evaluation as the point with the lowest observed function value.

In Figure[6]and Table [ we show the aggregated results based on the runtime and the ranking for all
methods on all three benchmarks. We also show in Figure 6] the p-values of the Mann-Whitney U test
between all methods. For a detailed analysis of the results see Section 5.3 in the main paper.

F Details of the Meta-Model

The neural network architecture for our meta-model consisted of 3 fully connected layers with
500 units each and tanh activation functions. The step length for the MCMC sampler was set to
1072 and we used the first 50000 steps as burn-in. For the probabilistic encoder, we used Bayesian
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Benchmark RS DE TPE SMAC  BOHAMIANN CMAES BO-GP

Meta-SVM (noiseless) 52.19  74.37 79.64 73.77 90.33 73.69 98.88
Meta-SVM (noise) 56.64  77.29 76.44 78.56 89.80 76.27 88.70
Meta-FCNet (noiseless) 45.71 77.99 78.73 72.71 82.50 56.31 84.71
Meta-FCNet (noise) 33.66 49.88  46.84 43.09 57.28 37.41 56.04
Meta-XGBoost (noiseless) ~ 41.59  80.35 71.02 84.95 94.01 sy 94.69
Meta-XGBoost (noise) 41.71 80.05 71.05 85.34 94.23 77.15 94.87
Meta-SVM (noiseless) 5.89 4.47 4.50 4.64 2.75 4.52 1.22
Meta-SVM (noise) 5.72 4.13 4.42 4.11 2.62 4.17 2.84
Meta-FCNet (noiseless) 5.67 3.70 3.72 4.09 2.90 5.14 2.79
Meta-FCNet (noise) 4.92 3.74 3.95 4.26 3.21 4.66 3.27
Meta-XGBoost (noiseless) 6.15 4.11 4.95 3.78 2.40 4.57 2.03
Meta-XGBoost (noise) 6.15 4.12 4.96 3.76 2.39 4.58 2.02

Table 4: Top: Each element of the table shows the averaged runtime after 100 function evaluations
for each method-benchmark pair. Bottom: Same but for the ranking of the methods.

GP-LVMBlO] with a Matern52 kernel to learn a () = 5 dimensional latent space for the task
description.

G Pseudo Code for Profet

Algorithm|[I]shows pseudo code to evaluate an algorithm « with Profet by sampling new surrogate
tasks (see Algorithm[2)) sampled from our meta-model.

Algorithm 1 Evaluating the performance of HPO methods.
Inputs: Datasets D; = {(xy;, yn)}f\il fort =1,...,T tasks. HPO method ««. Number of tasks M.

Train the probabilistic encoder p(h; | y) and multi-task model p(6|D) as described in Section 3.2
on dataset D

Sample M tasks using Algorithm 2]

Solve ty,...,tp using o and compute 7(c, t,,)

Approximate S, () in Equation 1 using 37 Z%:l (o, tm).

Algorithm 2 Sampling new tasks.
Inputs: noiseless € {true, false}, encoder p(h; | y) and multi-task model p(0|D as described in
Section 3.

Sample latent task vector h;, ~ p(h; | y).
Sample a set of weights 6§ ~ p(6|D) from the posterior of the BNN.

if noiseless == true then

. (@) = fi(x, hy, |0)

else

fi. () = iz, hy, |0) + € o(x, hy, |0) where e ~ N(0,1)
end if

return f; (x)

'We used the implementation from GPy [4]
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Boston-Housing PowerPlant
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Figure 2: Comparison of Bayesian optimization with Gaussian processes (GP-BO) and random
search (RS) for optimizing the hyperparameters of XGBoost on 10 UCI regression datasets.
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Figure 3: Visualizing the concept of our meta-model on the one-dimensional Forrester function. Left:
9 different tasks (solid lines) coming from the same distribution. Middle: We use a probabilistic
encoder to learn a two-dimensional latent space for the task embedding. Right: Given our encoder
and the multi-task model we can generate new tasks (dashed lines) that, based on the collected data,
resemble the original tasks.
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Figure 4: Noisy samples from our meta-model for the SVM benchmark
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Figure 5: Noiseless samples from our meta-model for the SVM benchmark
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Figure 6: Comparison of various different methods on all three HPO problems. From above to
below 2-dimensional support vector machine, 6-dimensional feed-forward neural network and 8-
dimensional XGBoost. The first column shows the ECDF, the second column the ranking and last
column the p-values of the Mann-Whitney U test for the noisy and noiseless version of each HPO
problem.



	Hyperparameter Optimization Benchmarks
	Comparison Random Search vs. Bayesian Optimization on XGBoost
	Details about the Forrester benchmark
	Samples for the Meta-SVM benchmark
	Comparison of HPO Methods
	Details of the Meta-Model
	Pseudo Code for Profet

