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Abstract

We study the k-median clustering problem for high-dimensional polygonal curves
with finite but unbounded number of vertices. We tackle the computational issue
that arises from the high number of dimensions by defining a Johnson-Lindenstrauss
projection for polygonal curves. We analyze the resulting error in terms of the
Fréchet distance, which is a tractable and natural dissimilarity measure for curves.
Our clustering algorithms achieve sublinear dependency on the number of input
curves via subsampling. Also, we show that the Fréchet distance can not be
approximated within any factor of less than

√
2 by probabilistically reducing the

dependency on the number of vertices of the curves. As a consequence we provide
a fast, CUDA-parallelized version of the Alt and Godau algorithm for computing
the Fréchet distance and use it to evaluate our results empirically.

1 Introduction

Time-series are sequences of measurements taken at certain instants of time. They arise in numerous
applications, e.g., in the physical, geo-spatial, technical or financial domains (Zhang et al., 2007;
Chapados and Bengio, 2008; Zimmer et al., 2018). Often there are multiple measurements per time
instant, e.g., when there are numerous synchronized sensors. While the analysis of time-series is
a well-studied topic, cf. Hamilton (1994); Liao (2005); Aghabozorgi et al. (2015), there are only
few approaches that take high-dimensional multivariate time-series into account. In this work we
build upon Driemel et al. (2016), who developed the first (1 + ε)-approximation algorithms for
clustering univariate time-series under the Fréchet distance. Their idea is that –due to environmental
circumstances– time-series often have heterogeneous lengths and their measurements are taken with
different time-intervals in between. Thus, common approaches, where univariate time-series are
represented by a point in a high-dimensional space, each dimension corresponding to one instant
of time, become hard or even impossible to apply. Additionally, when these time-intervals differ
substantially, depending on the sampling rates, continuous distance measures perform much better
than discrete ones. This is due to the fact that they are inherently independent of the sampling rates:
by interpreting a sequence of measurements as the vertices of a polygonal curve, those induce a
linear interpolation between every two consecutive measurements. We extend this further to the
multivariate case. When synchronized sensors are available, multiple univariate time-series are
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interpreted as a high-dimensional polygonal curve, i.e., the number of dimensions equals the number
of simultaneously measured attributes and the number of vertices equals the number of measurements.

We focus on big data with large number of curves n and specifically on a large number of dimensions,
say d ∈ Ω(n) as well as a high complexity of the curves, i.e., the number of their vertices is bounded
by, saym ∈ Ω(n) each. This setting rules out the possibility of using sum-based continuous similarity
measures like the continuous dynamic time warping distance, cf. Efrat et al. (2007). For this measure
there is only one tractable algorithm, which is strongly related to paths on a two-dimensional manifold.
Unfortunately, it also restricts to polygonal curves in R2. In contrast, the Alt and Godau algorithm
(Alt and Godau (1995)) for computing the Fréchet distance works for any number of dimensions. The
Fréchet distance intuitively measures the maximum distance one must traverse, when continuously
and monotonously walking along two curves under an optimal speed adjustment, which is a suitable
setting for comparing time-series in most cases. The Alt and Godau algorithm has running-time
O(d ·m2 log(m)), so we still end up with a worst-case running-time super-cubic in the number of
input curves, in our setting. Unfortunately, it is impossible to reduce the complexity of the curves
deterministically such that the Fréchet distance is preserved up to any multiplicative, which we
prove in Theorem 14. Also it is not possible to reduce the complexity of the curves probabilistically
such that the Fréchet distance is preserved up to any multiplicative less than

√
2, which we prove in

Theorem 15. We tackle this issue by parallelizing the Alt and Godau algorithm via CUDA-enabled
GPUs and thus preserve the original distance.

The main part of our work focuses on dimension reduction. SVD-based feature-selection approaches
are common in practice, cf. Billsus and Pazzani (1998); Hong (1991). Unfortunately, these work
poorly for polygonal curves, which we assess experimentally. Instead, we focus on Gaussian random
projections via the seminal Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984) which
perform much better. Explicit error-guarantees for discrete dissimilarity measures, like dynamic time
warping or the discrete Fréchet distance, are immediate from the approximation of a finite number
of Euclidean distances. But if we restrict to these measures, we loose the aforementioned linear
interpolation which is not desirable in practice.

We thus study how the error of the Johnson-Lindenstrauss embedding propagates in the continuous
case. In our theoretical analysis we show the first explicit error bound for the continuous Fréchet
distance by extending the Johnson-Lindenstrauss embedding to polygonal curves. We project the
vertices of the curve down from d to O(ε−2log(nm)) dimensions and re-connect their images in the
low-dimensional space in the given order. The error is bounded by an ε-fraction relative to the Fréchet
distance and to the length of the largest edge of the input curves, which we prove in Theorem 8. This
gives a combined multiplicative and additive approximation guarantee, similar to the lightweight
coresets of Bachem et al. (2018). All in all, we reduce the running-time of one Fréchet distance
computation to O(ε−2 m2

#cc log(m) log(nm)), where #cc is the number of CUDA cores available.
We analyze various data sets. Our experiments show promising results concerning the approximation
of the Fréchet distance under the Johnson-Lindenstrauss embedding and a massive improvement in
terms of running-time.

Just as Driemel et al. (2016), we study median clustering. Since the median is a measure of central
tendency that is robust when up to half of the data is arbitrarily corrupted, it is particularly useful
for providing a summary of the massive data set. To the best of our knowledge, there is no tractable
algorithm to compute an exact median polygonal curve. Thus, we restrict the search space of feasible
solutions to the input. This problem, known as the discrete median, has a polynomial-time exhaustive-
search algorithm: calculate the cost of each possible curve by summing over all other input curves. In
our setting, this is prohibitive since it takes O(n2) distance computations. Therefore, we propose and
analyze a sampling-scheme for the discrete 1-median under the Fréchet distance when the number
of input curves is also high. In Theorem 11 we show that a sample of constant size already yields a
(2 +ε)-approximation in the worst case. Under reasonable assumptions on the distribution of the data,
the same algorithm yields a (1 + ε)-approximation, which we prove in Theorem 12. To this end we
introduce a natural parameter that quantifies the fraction of outliers as a function of the input, setting
this approach in the light of beyond worst-case analysis, cf. Roughgarden (2019). The number of
samples needed depends on this parameter and is almost always constant unless the fraction of outliers
tends to 1/2 at a high rate, depending on n. If those assumptions hold, we meet the requirements to
apply Theorem 1.1 from Ackermann et al. (2010) and thus obtain a k-median (1 + ε)-approximation
algorithm for the Fréchet distance that uses n · 2O( k

ε2
+log( k

ε3
)) distance computations.
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Finally, we note that our techniques do not only apply to multivariate time-series, but to high-
dimensional polygonal curves in general and thus may be valuable to the communities of computa-
tional geometry as well as the field of machine learning.

Our contributions We advance the study of clustering high-dimensional polygonal curves under the
Fréchet distance both, in theory and in practice. Specifically,

1) we show an extension of the Gaussian random projections of Johnson-Lindenstrauss to polygonal
curves and provide rigorous bounds on the distortion of their continuous Fréchet distance,

2) we provide sublinear sampling algorithms for the 1-median clustering of time series resp. polygonal
curves under the Fréchet distance that can be extended (under natural assumptions) to a k-median
(1 + ε)-approximation,

3) we prove lower bounds for reducing the curves complexity,

4) we provide a highly efficient CUDA-parallelized implementation of the algorithm by Alt and
Godau (1995) for computing the Fréchet distance,

5) and we evaluate the proposed methods on benchmark and real-world data.

1.1 Related work

Clustering under the Fréchet distance Driemel et al. (2016) developed the first k-center and
k-median clustering algorithms for one-dimensional polygonal curves under the Fréchet distance,
which provably achieve an approximation factor of (1 + ε). The resulting centers are curves from a
discretized family of simplified curves, whose complexity is parameterized by a parameter `. Their
algorithms have near-linear running-time in the input size for constant ε, k and ` but are exponential in
the latter quantities. The first extension of k-center to higher dimensional curves was done in Buchin
et al. (2019a). In that paper, however it was shown that there is no polynomial-time approximation
scheme unless P=NP. In the case of the discrete Fréchet distance on two-dimensional curves, the
hardness of approximation within a factor close to 2.598 was established even for k = 1. Finally,
Gonzalez’ algorithm yields a 3-approximation in any number of dimensions. Even more recently
Buchin et al. (2019b) showed that the k-median problem is also NP-hard for k = 1 and improved upon
the aforementioned (1+ε)-approximations. Open problems thus include dimensionality reduction for
high-dimensional curves and practical algorithms that do not depend exponentially on the parameters.

Algorithm engineering for the Fréchet distance Bringmann et al. (2019) describe an improved
version of one of the best algorithms that was developed by the participants of the GIS Cup 2017.
The goal of the cup was to answer Fréchet queries as fast as possible, i.e., given a set of curves T , a
query curve q and a positive real r, return all curves from T that are within distance r to q. Roughly
speaking, all top algorithms (see also Baldus and Bringmann (2018); Buchin et al. (2017); Dütsch
and Vahrenhold (2017)) utilized heuristics to filter out all τ ∈ T , that are certainly within distance
r to q or certainly not. In the best case, the common algorithm by Alt and Godau only served as a
relapse option when no clear decision could be found in advance. Since the heuristics mostly have
sublinear running-time, the Fréchet distance computation is speed up massively in the average case.
The Alt and Godau algorithm is also improved by simplifying the resulting free-space diagram.

Random projections for problems in computational geometry Random projections have several
applications as embedding techniques in computational geometry. One of the most influential work
was Agarwal et al. (2013) who applied the Johnson-Lindenstrauss embedding, among others, to
surfaces and curves for the sake of tracking moving points. Only recently Driemel and Krivosija
(2018) studied the first probabilistic embeddings of the Fréchet distance by projecting the curves on a
random line. Another work that inspired our dimensionality reduction approach is due to Sheehy
(2014). He noticed that a Johnson-Lindenstrauss embedding of points yields an embedding for their
entire convex hull with additive error. Our results are in line with a recent lower bound of Ω(n) for
sketching, i.e., compressing the strongly related Dynamic Time Warping distance of sequences via
linear embeddings, due to Braverman et al. (2019).

Beyond-worst-case and relaxations A common assumption is that “Clustering is difficult only when
it does not matter” (Daniely et al., 2012). Similarly, it has been noted for many other problems that
while being particularly hard to solve in the worst-case, they are relatively simple to solve for typical
or slightly perturbed inputs. Beyond-worst-case-analysis tries to parametrize the notion of typical
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and to derive better bounds in terms of this parameter assuming its value is small. See Munteanu
et al. (2018) for a recent contribution in machine learning. These assumptions are usually weaker
than the norm in statistical machine learning which is closer to average-case analysis, for example
when data points are modeled as i.i.d. samples from some distribution. See (Roughgarden, 2019) for
an extensive overview and more details. Another complementary recent approach is weakening the
usual multiplicative error guarantees by an additional additive error term in favor of a computational
speedup. Those relaxations still perform competitively well in practice, cf. (Bachem et al., 2018).

2 Dimension Reduction for Polygonal Curves

We begin with the basic definitions, all proofs can be found in Appendix A in the supplement.
Polygonal curves are composed of line segments, which we define as follows.

Definition 1 (line segment). A line segment between two points p1, p2 ∈ Rd, denoted by p1p2, is
the set of points {(1− λ)p1 + λp2 | λ ∈ [0, 1]}. For λ ∈ [0, 1] we denote by lp (p1p2, λ) the point
(1− λ)p1 + λp2, lying on p1p2.

We next define polygonal curves. Thereby we need an exact parametrization of the points on the
individual line segments to express any point on the curve in terms of its segments vertices. This
unusually complicates the definition but simplifies the notation and will later be needed in the context
of Johnson-Lindenstrauss embeddings.

Definition 2 (polygonal curve). A parameterized curve is a continuous mapping τ : [0, 1] → Rd.
Let H be the set of all continuous, injective and non-decreasing functions h : [0, 1] → [0, 1] with
h(0) = 0 and h(1) = 1, which we call reparameterizations.

A curve τ is polygonal, if there exist h ∈ H, v1, . . . , vm ∈ Rd, no three consecutive on a line, called
τ ’s vertices and t1, . . . , tm ∈ [0, 1] with t1 < · · · < tm, t1 = 0 and tm = 1, called τ ’s instants, such
that

τ(h(t)) =


lp
(
v1v2,

h(t)−t1
t2−t1

)
, if h(t) ∈ [0, t2)

...

lp
(
vm−1vm,

h(t)−tm−1

tm−tm−1

)
, if h(t) ∈ [tm−1, 1]

.

In the following we will assume that h is the identity function, because the Fréchet distance, which is
subsequently defined, is invariant under reparameterizations. We only need h to keep our definition
general. Further, we call m the complexity of τ , denoted by |τ |. We are now ready to define the
(continuous) Fréchet distance.

Definition 3 (continuous Fréchet distance). The Fréchet distance between polygonal curves τ and σ
is defined as dF (τ, σ) := infh∈Hmaxt∈[0,1]‖τ(t)− σ(h(t))‖, where ‖·‖ is the Euclidean norm.

We next give a basic defintion of the seminal Johnson-Lindenstrauss embedding result, cf. Johnson
and Lindenstrauss (1984). Specifically, they showed that a properly rescaled Gaussian matrix mapping
from d to d′ ∈ O(ε−2 log n) dimensions satisfies the following definition with positive constant
probability.

Definition 4 ((1± ε)-Johnson-Lindenstrauss embedding). Given a set P ⊂ Rd of points, a function
f : Rd → Rd′ is a (1± ε)-Johnson-Lindenstrauss embedding for P , if it holds that

∀p, q ∈ P : (1− ε)‖p− q‖ ≤ ‖f(p)− f(q)‖ ≤ (1 + ε)‖p− q‖,

with constant probability at least ρ ∈ (0, 1] over the random construction of f .

In Definition 5 we extend the mapping f from Definition 4 to polygonal curves by applying it to the
vertices of the curves and re-connecting their images in the given order.

Definition 5 ((1 ± ε)-Johnson-Lindenstrauss embedding for polygonal curves). Let τ be a polyg-
onal curve, t1, . . . , tm be its instants and v1, . . . , vm be its vertices. Let f be a (1 ± ε)-Johnson-
Lindenstrauss embedding for {v1, . . . , vm}. By F (τ) we define the (1± ε)-Johnson-Lindenstrauss
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embedding of τ as follows:

F (τ)(t) :=


lp
(
f(v1)f(v2), t−t1t2−t1

)
, if t ∈ [0, t2)

...

lp
(
f(vm−1)f(vm), t−tm−1

tm−tm−1

)
, if t ∈ [tm−1, 1]

.

For a set T := {τ1, . . . , τn} of polygonal curves we define F (T ) := {F (τ) | τ ∈ T} and require the
function f to be a (1± ε)-Johnson-Lindenstrauss embedding for the set of all vertices of all τ ∈ T .

We next give an explicit bound on the distortion of the Fréchet distance when the map of Definition 5
is applied to the input curves. Note that the previously mentioned approach by Sheehy (2014) for the
convex hull of points is not directly applicable since two curves might be drawn apart from each other
making the error arbitrary large. Our additive error will depend only on the length of line segments
between consecutive points of a curve, which is usually bounded.

We first express the distance between two points on two distinct line segments using their relative
positions on the respective line segment.
Proposition 6. Let s1 := p1p2 and s2 := q1q2 be line segments between two points
p1 := (p1,1, . . . , p1,d), p2 := (p2,1, . . . , p2,d) ∈ Rd, respective q1 := (q1,1, . . . , q1,d), q2 :=
(q2,1, . . . , q2,d) ∈ Rd. For any λp, λq ∈ [0, 1] and p := lp (p1p2, λp) lying on s1, as well as
q := lp (q1q2, λq) lying on s2, it holds that

‖p− q‖2 = − (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2.

Proposition 6 can be proven using the law of cosines, the geometric and algebraic definition of the
dot product and tedious algebraic manipulations.

Using Proposition 6, our calculation yields an explicit error-bound when applying Definition 5 to
both line-segments. This is formalized in Lemma 7.
Lemma 7. Let P := {p1, . . . , pn} ⊂ Rd be a set of points and f be a (1±ε)-Johnson-Lindenstrauss
embedding for P . Let p1, p2, q1, q2 ∈ P , for arbitrary λp, λq ∈ [0, 1] and p := lp (p1p2, λp),

p′ := lp
(
f(p1)f(p2), λp

)
, as well as q := lp (q1q2, λq), q′ := lp

(
f(q1)f(q2), λq

)
it holds that

(1−ε)2‖p−q‖2−ε(‖p1−p2‖2+‖q1−q2‖2) ≤ ‖p′−q′‖2 ≤ (1+ε)2‖p−q‖2+ε(‖p1−p2‖2+‖q1−q2‖2)

is satisfied with probability at least ρ ∈ (0, 1] over the random construction of f .

This finally yields our main theorem which states the desired error guarantee for the Fréchet distance
of a set of polygonal curves.
Theorem 8. Let T := {τ1, . . . , τn} be a set of polygonal curves and for τ ∈ T let α(τ) denote
the maximum distance of two consecutive vertices of τ . Furher, for τ, σ ∈ T let α(τ, σ) :=
max{α(τ), α(σ)}. Now, let F be a (1± ε)-Johnson-Lindenstrauss embedding for T . With constant
probability at least ρ ∈ (0, 1] it holds for all τ, σ ∈ T that√

(1− ε)2d2
F (τ, σ)− 2εα(τ, σ)2 ≤ dF (F (τ), F (σ)) ≤

√
(1 + ε)2d2

F (τ, σ) + 2εα(τ, σ)2,

where the exact value for ρ stems from the technique used for obtaining f .

Let us first note that these bounds tend to dF (τ, σ) as ε tends to 0. The multiplicative error bounds
are similar to ε-coresets which are popular data reduction techniques in clustering, cf. (Feldman et al.,
2010, 2013; Sohler and Woodruff, 2018). The additional additive error is in line with the relaxation
given by lightweight coresets (Bachem et al., 2018).

We believe that the additive error is necessary. Consider the following two polygonal curves in
Rd, for d ≥ 3. Let α ∈ R>0 be arbitrary. The first curve is p := p1p2 with p1 := (0, . . . , 0) and
p2 := (α, 0, . . . , 0). The second curve q has vertices q1 := (0, 1, 0, . . . , 0), q2 := (α2 , 2, 1, 0, . . . , 0)
and q3 := (α, 1, 0, . . . , 0). It’s edges are q1q2 and q2q3. Clearly, we have ‖p1−p2‖ = α = ‖q1−q3‖,
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Figure 1: Empirical relative er-
ror in terms of the distortion
of the Fréchet distance between
the curves p and q. It can be
observed that the distortion de-
pends on the value α, which de-
termines the curves lengths, but
not their Fréchet distance. Note
that an empirical relative error
above 1 means that not even a
2-approximation of the distance
was achieved. However, this
only happens for line segments
of length larger than 1015.

‖p1 − q1‖ = 1 = ‖p2 − q3‖ and ‖p1 − q2‖ = (α
2

4 + 5)1/2 = ‖p2 − q2‖, as well as ‖q1 − q2‖ =

(α
2

4 + 2)1/2 = ‖q2 − q3‖. Also note that dF (p, q) =
√

5, a constant that does not depend on α. The
pairwise distances among the points will be distorted by at most (1± ε). Now the embedding has its
mass concentrated in the interval (1± ε) but inspecting the concentration inequalities most of this
mass is between (1± ε

c ) and (1± ε) for large c. Thus, with reasonably large probability the error on
q2 will depend on εα

c which is additive since α is unrelated to the original Fréchet distance.

We assess the distortion of the Fréchet distance between p and q experimentally. We use the target
dimension of the proof in (Dasgupta and Gupta, 2003) and all combinations of five choices for ε, as
well as sixteen choices for α, we conduct one experiment with one hundred repetitions. The results
are depicted in Fig. 1.

3 Median Clustering under the Fréchet Distance

We study the k-median problem. As discussed before, we restrict the centers to subsets of the input.
Definition 9 (discrete median clustering). Given a set of T of polygonal curves, the k-median
clustering problem is to find a set C ⊆ T of k centers such that the sum of the distances from the
curves in T to the closest center in C is minimized.

At first, we restrict to k = 1. Instead of exhaustively trying out all curves as possible median, thus
computing all pairwise distances among the input curves, we aim to find a small candidate set of
possible medians and another small witness set which serves as a proxy to sum over. We will use
the following theorem of Indyk (2000) to bound the number of required witnesses, given a set of
candidates of certain size.
Theorem 10. (Indyk, 2000, Theorem 31) Let ε ∈ (0, 1] be a constant and T be a set of
polygonal curves. Further let W be a non-empty uniform sample from T . For τ, σ ∈
T with

∑
τ ′∈T dF (τ, τ ′) > (1 + ε)

∑
τ ′∈T dF (σ, τ ′) it holds that Pr[

∑
τ ′∈W dF (τ, τ ′) ≤∑

τ ′∈W dF (σ, τ ′)] < exp
(
−ε2|W |/64

)
.

Using only this theorem, we still have to cope with all n input curves as candidates. In what follows,
we reduce this to a constant size sample of the input. Without assumptions on the input, by standard
probabilistic arguments and the triangle-inequality, we obtain a (2 + ε)-approximation.
Theorem 11. Given constants ε, δ ∈ (0, 1/2) and a non-empty set T of polygonal curves, we
can use a uniform sample S := {s1, . . . , s`S} of cardinality O (ln(1/δ)/ε) of candidates and a
uniform sample W := {w1, . . . , w`W } of cardinality O

(
ln(`S/δ)/ε

2
)

of witnesses, to obtain a
(2 + ε)-approximate 1-median cS ∈ S with probability at least 1− δ.

Under natural assumptions, setting our analysis in the Beyond-Worst-Case regime (Roughgarden,
2019), we can even get a (1 + ε)-approximation on a subsample of sublinear size. The high-level idea
behind is that the curves are usually not equidistant to an optimal median. Relative to the average
cost, there will be some outliers, some curves at medium distance and also some curves very close to
an optimal median. Now if there are quite a good number of outliers, but also not too many, they
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make up a good share of the total cost. This implies that the number of curves at medium distance is
bounded by a constant fraction of the curves. Finally this implies that the number of curves that are
close to an optimal median, is not too small such that a small sample will include at least one of them
with constant probability.
Theorem 12. Let ε, δ ∈ (0, 1/2) be constants, and T be a non-empty set of polygonal curves with at
least (1− ε)γ(T )n outliers, for 0 < γ(T ) < 1/2. We can use a uniform sample S := {s1, . . . , s`S}
of cardinality `S = O

(
ln(1/δ)

1/2−γ(T )

)
of candidates and a uniform sample W := {w1, . . . , w`W } of

cardinality O
(
ln(`S/δ)/ε

2
)

of witnesses, to obtain a (1 + ε)-approximate 1-median cS ∈ S with
probability at least 1− δ.

Note in particular, that the samples in Theorem 12 still have constant size unless the fraction of
outliers γ(T ) tends arbitrarily close to 1/2 depending on |T | = n. In this case the usual notion of an
outlier is not met for two reasons: first, more than a quarter of the curves would be considered outliers,
and second their distance to an optimal median is not much larger than the medium curves implying
that basically all curves are in a narrow annulus around the average distance. Both observations
make the notion of outliers highly questionable. The details are in the proof and Fig. 5, which can be
found in the supplement. Note that in practice it is neither necessary nor desirable to compute γ(T ).
Instead, one should set γ(T ) = 1/2− 1/c, for a large enough constant c. Now, if our assumptions on
the input hold, dF has the [ε, δ]-sampling property from Ackermann et al. (2010) and we can apply
their Theorem 1.1, yielding the following corollary:
Corollary 13. Under the assumptions of Theorem 12, there exists an algorithm for the discrete k-
median under the Fréchet distance that, given a set of n polygonal curves and ε ∈ (0, 1), returns with
positive constant probability a (1 + ε)-approximation using only n · 2O(k·(|S|+|W |) log( kε ·(|S|+|W |))

distance computations, where S is the candidate sample and W is the witness sample.

4 Complexity Reduction for Polygonal Curves

We study the space complexity of compressing polygonal curves such that their complexity, i.e., their
number of vertices, is reduced while their Fréchet distance is preserved. Recall that m dominates
the running-time of the Alt and Godau algorithm. Now, for reducing this dependence, the goal is to
define a randomized function S together with an estimation procedure E so that for any polygonal
curves τ, σ, we take the compressed representations S(τ) and the estimation procedure satisfies
with constant probability dF (τ, σ) ≤ E(S(τ), σ) ≤ η · d(τ, σ) for some approximation factor η,
cf. Braverman et al. (2019). The challenge is to bound the size of S(τ) depending on the complexity
of τ in order to obtain an approximation factor of η.

We prove that the Fréchet distance can not be approximated up to any factor by reducing the
complexity of the curves deterministically, even in one dimension. We achieve this result by reducing
from the equality test communication problem, which requires a linear number of bits, cf. Wegener
(2005).
Theorem 14. Let τ, σ be polygonal curves in Rd, for d ≥ 1, with m vertices each. Any deterministic
data oblivious sketching function S for which there exists a deterministic estimation function E
satisfying dF (τ, σ) ≤ E(S(τ), σ) ≤ η · dF (τ, σ), for an arbitrary η ∈ [1,∞), uses Ω(m) bits to
represent S(τ).

Also, we prove that the Fréchet distance can not be approximated within any factor less than
√

2
by reducing the complexity of the curves probabilistically. We show this by reducing from the set
disjointness communication problem, which also requires a linear number of bits for any randomized
protocol succeeding with constant probability, cf. Håstad and Wigderson (2007).
Theorem 15. Let τ, σ be polygonal curves in Rd, for d ≥ 2, with m vertices each. Any randomized
data oblivious sketching function S for which there exists a randomized estimation function E
satisfying dF (τ, σ) ≤ E(S(τ), σ) ≤ η · dF (τ, σ), for η ∈ [1,

√
2], uses Ω(m) bits to represent S(τ).

5 Experiments

The main practical motivation for our work is that any application utilizing the Fréchet distance
suffers from its computational cost. In general, there are three parameters on which the running-time
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Figure 2: (a): Distortion under the (1± ε)-Johnson-Lindenstrauss embedding. The lateral axis shows
the values for ε plugged into the embedding (and the corresponding number of dimensions). The
longitutdinal axis shows the empirical relative error. (b): Running-times of the algorithms, where
sequential is an naïve implementation of the Alt and Godau algorithm, parallel is our CUDA-enabled
variant and the suffix “_rp” means that the data was randomly projected before.

(a) Distortion (b) Running-times

depends: the dimension of the ambient space d, the number of curves n and their complexity m.
We tackle the first utilizing our results from Section 2, i.e., the dimension reduction and the second
by utilizing our results from Section 3, i.e., the sampling schemes. For the last, by Section 4 we
would loose a factor of at least

√
2 and can not hope to design a (1 + ε)-approximation algorithm

with subquadratic running-time in m. We thus decide to tackle the dependence of the Alt and Godau
algorithm on m by parallelization.1 We now seek to answer:

Q1 Does the random projection induce a reasonably small distortion on the Fréchet distance?

Q2 What is the impact of our techniques on the running-time of the Fréchet distance computation?

Q3 Do we obtain reasonable results combining the sampling scheme and the random projection?

Q4 Does PCA lead to better results than random projections?

Before we answer these questions based on our experimental results, we describe our data sets, the
modifications we applied to the Alt and Godau algorithm, and our setup. Also, note that we used the
empirical constant of 2 for the experiments in this section, cf. Venkatasubramanian and Wang (2011).
Therefore, we projected from d to d′ = 2ε−2 ln(nm) dimensions.

Data sets Our first data set was taken by monitoring a hydraulic test rig via multiple sensors
(cf. Helwig et al. (2015)), including six pressure sensors PS1, . . . , PS6. In a total of 2205 test-cycles,
each sensor measured 6000 values in each cycle. We chose to build six polygonal curves with 2205
vertices each in the 6000-dimensional Euclidean space. Also, for comparison we generate curves
of equal complexity and ambient dimension by picking their vertices uniformly at random from
a d + 1-simplex scaled by a large number, thus obtaining curves of high intrinsic dimension. For
1-median clustering we use weather simulation data (Lucas et al., 2015) from which we construct
2922 curves with 15 vertices each in 327-dimensional Euclidean space.

Algorithm modifications We decided to parallelize the Alt and Godau algorithm utilizing
CUDA-enabled graphic cards. We improve the worst-case running-time of the algorithm from
O(dm2 log(m)) to O(d m

2

#cc log(m)), where #cc is the number of available CUDA cores.

Setup We ran our experiments on a high perfomance linux cluster, which has twenty GPU nodes
with two Intel Xeon E5-2640v4 CPUs, 64 GB of RAM and two Nvidia K40 GPUs each. This makes
2880 CUDA cores per card. To minimize interference, each experiment was run on an exclusive
core and both GPUs, with 30 GB of RAM guaranteed. Each experiment was run ten times for each
parametrization. Every experiment concerning the curves sampled from the simplex was even run
one hundred times for each parameterization.

1Code available at https://www.dennisrohde.work/rp4frechet-code.
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Figure 3: (a): Running-times and (b): deviations for the Fréchet 1-median sampling scheme. The
lateral axis shows the values for ε plugged into the sampling algorithm. The deviations are with
respect to the optimal objective value. epsilon rp is the value for ε that is plugged into the embedding.

(a) Running-times (b) Deviations

Figure 4: Comparison of Johnson Linden-
strauss embedding vs. embedding via PCA
showing the trade-off between the method’s
running-time and its achieved quality.

Q1 Concerning all data sets we can say that the distortion of the Fréchet distance after applying
the Johnson-Lindenstrauss embedding is reasonably small. In Fig. 2(a) we depict the results of the
Fréchet distance computations vs. the chosen values for ε. It can be observed that even for larger
values of ε, the effective error never exceeds the given margin.

Q2 In Fig. 2(b) we depict the running-times of the Alt and Godau algorithm under our measures. The
results stem from the same experiments that lead to the values depicted in Fig. 2(a). The random
projection and the parallelization speed up the computations by a factor of 10 each independently.
Both together yield a speedup of factor 100. While the naïve implementation of the algorithm took
about roughly three hours, we were able to lower the running-time to about 30 seconds on average.

Q3 We conducted experiments on the weather simulation dataset. Fig. 3 shows that employing
the subsampling schemes yields substantial improvements in terms of running-times while the
approximation error remains robust to the choices of the approximation parameters “epsilon sampling”
and “epsilon rp” plugged into the subsampling scheme and the embedding, respectively. This indicates
that the approximation is indeed dependent on the data paramater γ(T ).

Q4 In Fig. 4 we compare the Johnson-Lindenstrauss embedding for polygonal curves to PCA applied
to the vertices in a similar fashion. Here, we only used the curves whose vertices were sampled from
a d + 1-simplex to emphasize the impact of hard inputs on the distortion. We depict the methods
running-time vs. distortion. It can be observed that for all choices of ε, the Johnson Lindenstrauss
embedding performs much better in terms of distortion as well as running-time.
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A Omitted material

Proof of Proposition 6. We have:

‖p− q‖2 =

d∑
i=1

[(p1,i − λp(p1,i − p2,i))− (q1,i − λq(q1,i − q2,i))]
2 (I)

=

d∑
i=1

[(p1,i − λp(p1,i − p2,i))
2 − 2(p1,i − λp(p1,i − p2,i))(q1,i − λq(q1,i − q2,i))

+ (q1,i − λq(q1,i − q2,i))
2] (II)

=

d∑
i=1

[p2
1,i − 2λpp1,i(p1,i − p2,i) + λ2

p(p1,i − p2,i)
2

− 2(p1,i − λp(p1,i − p2,i))(q1,i − λq(q1,i − q2,i)) + q2
1,i − 2λqq1,i(q1,i − q2,i)

+ λ2
q(q1,i − q2,i)

2] (III)

=

d∑
i=1

[p2
1,i − 2λpp

2
1,i + 2λpp1,ip2,i + λ2

pp
2
1,i − 2λ2

pp1,ip2,i + λ2
pp

2
2,i − 2p1,iq1,i

+ 2λqp1,i(q1,i − q2,i) + 2λpq1,i(p1,i − p2,i)− 2λpλq(p1,i − p2,i)(q1,i − q2,i)

+ q2
1,i − 2λqq

2
1,i + 2λqq1,iq2,i + λ2

qq
2
1,i − 2λ2

qq1,iq2,i + λ2
qq

2
2,i] (IV)

=

d∑
i=1

[(1− 2λp + λ2
p)p

2
1,i + λ2

pp
2
2,i + (1− 2λq + λ2

q)q
2
1,i + λ2

qq
2
2,i

+ 2λp(1− λp)p1,ip2,i − 2p1,iq1,i + 2λqp1,iq1,i − 2λqp1,iq2,i + 2λpp1,iq1,i

− 2λpp2,iq1,i − 2λpλqp1,iq1,i + 2λpλqp2,iq1,i + 2λpλqp1,iq2,i

− 2λpλqp2,iq2,i + 2λq(1− λq)q1,iq2,i] (V)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ 2λp(1− λp)〈p1, p2〉+ 2(λp + λq − λpλq − 1)〈p1, q1〉
+ 2(λpλq − λq)〈p1, q2〉+ 2(λpλq − λp)〈p2, q1〉 − 2λpλq〈p2, q2〉
+ 2λq(1− λq)〈q1, q2〉 (VI)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ 2λp(1− λp)‖p1‖‖p2‖ cos^(p1, p2)

+ 2(λp + λq − λpλq − 1)‖p1‖‖q1‖ cos^(p1, q1)

+ 2(λpλq − λq)‖p1‖‖q2‖ cos^(p1, q2)

+ 2(λpλq − λp)‖p2‖‖q1‖ cos^(p2, q1)

− 2λpλq‖p2‖‖q2‖ cos^(p2, q2) + 2λq(1− λq)‖q1‖‖q2‖ cos^(q1, q2) (VII)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ (λp − λ2
p)(‖p1‖2 + ‖p2‖2 − ‖p1 − p2‖2)

+ (λq − λ2
q)(‖q1‖2 + ‖q2‖2 − ‖q1 − q2‖2)

− (1− λp − λq + λpλq)(‖p1‖2 + ‖q1‖2 − ‖p1 − q1‖2)

− (λq − λpλq)(‖p1‖2 + ‖q2‖2 − ‖p1 − q2‖2)

− (λp − λpλq)(‖p2‖2 + ‖q1‖2 − ‖p2 − q1‖2)

− λpλq(‖p2‖2 + ‖q2‖2 − ‖p2 − q2‖2) (VIII)

= (1− 1− 2λp + λp + λp + λ2
p − λ2

p + λq − λq + λpλq − λpλq︸ ︷︷ ︸
=0

)‖p1‖2

+ (λ2
p − λ2

p + λp − λp + λpλq − λpλq︸ ︷︷ ︸
=0

)‖p2‖2
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+ (1− 1− 2λq + λq + λq + λ2
q − λ2

q + λp − λp + λpλq − λpλq︸ ︷︷ ︸
=0

)‖q1‖2

+ (λ2
q − λ2

q + λq − λq + λpλq − λpλq︸ ︷︷ ︸
=0

)‖q2‖2

− (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2 (IX)

We obtain Eq. (I) to Eq. (V) using only algebraic manipulations, Eq. (VI) is obtained using the
definition of the Euclidean norm and the algebraic definition of the dot product, in Eq. (VII) we use
the geometric definition of the dot product and finally in Eq. (VIII) we apply the law of cosines.
Eq. (IX) follows by algebraic manipulations.

Proof of Lemma 7. First note that the construction of f succeeds with probability ρ ∈ (0, 1] by
Definition 4. We condition the remaining proof on this event.

From Proposition 6 we now know that

‖p− q‖2 = − (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2

and

‖p′ − q′‖2 = − (λp − λ2
p)‖f(p1)− f(p2)‖2 − (λq − λ2

q)‖f(q1)− f(q2)‖2

+ (1− λp − λq + λpλq)‖f(p1)− f(q1)‖2 + (λq − λpλq)‖f(p1)− f(q2)‖2

+ (λp − λpλq)‖f(p2)− f(q1)‖2 + λpλq‖f(p2)− f(q2)‖2.
Because every coefficient is non-negative, it can be observed that this sum is maximized under f
when

‖f(p1)− f(p2)‖2 = (1− ε)2‖p1 − p2‖2,
‖f(q1)− f(q2)‖2 = (1− ε)2‖q1 − q2‖2,
‖f(p1)− f(q1)‖2 = (1 + ε)2‖p1 − q1‖2,
‖f(p1)− f(q2)‖2 = (1 + ε)2‖p1 − q2‖2,
‖f(p2)− f(q1)‖2 = (1 + ε)2‖p2 − q1‖2

and
‖f(p2)− f(q2)‖2 = (1 + ε)2‖p2 − q2‖2.

Using the facts that (1 + ε)2 − (1 − ε)2 = 4ε, (λq − λ2
q) ≤ 1

4 and (λp − λ2
p) ≤ 1

4 , we get
that ‖p′ − q′‖2 ≤ (1 + ε)2‖p − q‖2 + ε(‖p1 − p2‖2 + ‖q1 − q2‖2). The lower bound follows
analogously.

Proof of Theorem 8. First note that the construction of f and thus also F succeeds with probability
ρ ∈ (0, 1] by Definition 4. We condition the remaining proof on this event.

Let τ, σ ∈ T be arbitrary polygonal curves and vτ1 , . . . , v
τ
|τ |, respective vσ1 , . . . , v

σ
|σ| be their vertices,

as well as tτ1 , . . . , t
τ
|τ |, respective tσ1 , . . . , t

σ
|σ| be their instants. Further let

g ∈ arg inf
h∈H

max
t∈[0,1]

‖τ(t)− σ(h(t))‖

and
g′ ∈ arg inf

h∈H
max
t∈[0,1]

‖F (τ)(t)− F (σ)(h(t))‖.

Let t1 ∈ arg maxt∈[0,1]‖F (τ)(t) − F (σ)(g(t))‖, there exists an i ∈ {1, . . . , |τ |} and a j ∈
{1, . . . , |σ|} with tτi ≤ t1 ≤ tτi+1 and tσj ≤ g(t1) ≤ tσj+1, such that we can write

F (τ)(t1) = lp

(
f(vτi )f(vτi+1),

t1 − tτi
tτi+1 − tτi

)
,
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F (σ)(g(t1)) = lp

(
f(vσj )f(vσj+1),

g(t1)− tσj
tσj+1 − tσj

)
,

τ(t1) = lp

(
vτi v

τ
i+1,

t1 − tτi
tτi+1 − tτi

)
,

and

σ(g(t1)) = lp

(
vσj v

σ
j+1,

g(t1)− tσj
tσj+1 − tσj

)
.

For each t′1 ∈ arg maxt∈[0,1]‖F (τ)(t)− F (σ)(g′(t))‖ we obtain:

d2
F (F (τ), F (σ)) = ‖F (τ)(t′1)− F (σ)(g′(t′1))‖2 (I)

≤ ‖F (τ)(t1)− F (σ)(g(t1))‖2 (II)

≤ (1 + ε)2‖τ(t1)− σ(g(t1))‖2 + ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
(III)

≤ (1 + ε)2 max
t∈[0,1]

‖τ(t)− σ(g(t))‖2 + ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
≤ (1 + ε)2d2

F (τ, σ) + 2εα(τ, σ)2

Eq. (I) follows by definition of t′1 and g′, Eq. (II) follows from the fact that g′ is an infimum, Eq. (III)
follows from an application of Lemma 7 and the last inequality follows from Definition 3 and the
definition of α(·, ·).

Let t2 ∈ arg maxt∈[0,1]‖τ(t) − σ(g′(t))‖, again, there exists an i ∈ {1, . . . , |τ |} and a j ∈
{1, . . . , |σ|} with tτi ≤ t2 ≤ tτi+1 and tσj ≤ g′(t2) ≤ tσj+1, such that we can write

F (τ)(t2) = lp

(
f(vτi )f(vτi+1),

t2 − tτi
tτi+1 − tτi

)
,

F (σ)(g′(t2)) = lp

(
f(vσj )f(vσj+1),

g′(t2)− tσj
tσj+1 − tσj

)
,

τ(t2) = lp

(
vτi v

τ
i+1,

t2 − tτi
tτi+1 − tτi

)
,

and

σ(g′(t2)) = lp

(
vσj v

σ
j+1,

g′(t2)− tσj
tσj+1 − tσj

)
.

For each t′1 ∈ arg maxt∈[0,1]‖F (τ)(t)− F (σ)(g′(t))‖ we obtain:

d2
F (F (τ), F (σ)) = ‖F (τ)(t′1)− F (σ)(g′(t′1))‖2 (IV)

≥ ‖F (τ)(t2)− F (σ)(g′(t2))‖2 (V)

≥ (1− ε)2‖τ(t2)− σ(g′(t2))‖2 − ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
(VI)

≥ (1− ε)2 max
t∈[0,1]

‖τ(t)− σ(g(t))‖2 − ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
≥ (1− ε)2d2

F (τ, σ)− 2εα(τ, σ)2

Here Eq. (IV) follows by the definition of g′ and t′1, Eq. (V) follows, because the term is maximized for
t′1, Eq. (VI) follows from an application of Lemma 7 and the last inequality follows from Definition 3
and the definition of α(·, ·).

Proof of Theorem 11. Let c ∈ arg minτ∈T
∑
τ ′∈T dF (τ, τ ′) be an optimal 1-median for T and let

X(τ) := dF (τ, c) be a random variable uniformly distributed over τ ∈ T . By the uniform distribution
and linearity E[X] = 1

|T |
∑
τ∈T dF (τ, c). Now, let

B1+ε :=

{
τ ∈ T | dF (τ, c) ≤ (1 + ε)

|T |
∑
τ ′∈T

dF (τ ′, c)

}
.
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For every τ ∈ B1+ε by the triangle-inequality∑
τ ′∈T

dF (τ, τ ′) ≤
∑
τ ′∈T

(dF (τ ′, c) + dF (c, τ)) ≤ (2 + ε)
∑
τ ′∈T

dF (τ ′, c).

Thus, τ is at least a (2 + ε)-approximate 1-median for T .

For i ∈ {1, . . . , `s}, let FBi the event that si 6∈ B1+ε. By Markov’s inequality we have that
Pr[FBi ] ≤ 1

1+ε < 1.

Further, by independence and choosing `S ≥
⌈

2 ln(2/δ)
ε

⌉
the probability that no sample is contained

in B1+ε is bounded by

Pr[FB1 ∧ · · · ∧ FB`S ] ≤ 1

(1 + ε)`S
≤ 1

exp( ε2`S)
≤ exp(−εln(2/δ)/ε) =

δ

2
.

Let cS ∈ arg minτ∈S
∑
τ ′∈T dF (τ, τ ′). We do not want any bad sample s ∈ S with∑

τ∈T dF (s, τ) > (1 + ε)
∑
τ∈T dF (cS , τ) to have lower cost with respect to W than cS . Us-

ing Theorem 10 and a union bound over the elements of S and `W = 64
ε2 ln(2|S|/δ), the probability

for this event is bounded by∑
s∈S

exp

(
−ε

2`W
64

)
≤ |S| exp

(
−ε

2`W
64

)
≤ |S| exp (− ln (2|S|/δ)) ≤ δ

2
.

Now, if we take the s ∈ S that minimizes
∑
τ ′∈W dF (s, τ ′), by an application of the union bound,

with probability at least 1− δ it holds that∑
τ ′∈T

dF (s, τ ′) ≤ (1+ε)
∑
τ ′∈T

dF (cS , τ
′) ≤ (1+ε)(2+ε)

∑
τ ′∈T

dF (c, τ ′) ≤ (2+4ε)
∑
τ ′∈T

dF (c, τ ′).

The claim follows by rescaling ε by 1
4 .

Proof of Theorem 12. Let c∗ ∈ arg minτ∈T
∑
τ ′∈T dF (τ, τ ′) be an optimal Fréchet 1-median for T .

For any non-empty setA of curves and a curve c let cost(A, c) =
∑
τ∈A dF (τ, c) denote the cost, i.e.,

the sum of Fréchet distances to c. Let ∆ = cost(T, c∗) denote the optimal cost. We define a parameter
0 < γ(T ) := 1

2 − ν(T ) < 1
2 (ν(T ) will be defined subsequently) which specifies the fraction of

outliers as a function of T , which may depend on |T | = n. We choose the radius r1 = ∆
γ(T )n

which parametrizes the distance of the outliers from the optimal median. Similarly, let r2 = 2ε∆
n .

Note that indeed r1 > r2 as desired, since γ(T ), ε < 1
2 . We partition the curves in T according

to their contribution relative to the average distance into disjoint sets T = F ∪̇M ∪̇C where
F = {τ ∈ T | dF (τ, c∗) > r1} are the curves far from c∗ , M = {τ ∈ T | r2 < dF (τ, c∗) ≤ r1}
are the curves with medium distance, and C = {τ ∈ T | dF (τ, c∗) ≤ r2} are the curves that are
close to the optimal median.

Note that if |F | > n · γ(T ) then cost(F, c∗) ≥ |F | · r1 > nγ(T ) · 1
γ(T )

∆
n = ∆. Together with our

assumption this means that we have (1− ε)nγ(T ) ≤ |F | ≤ nγ(T ).

Similarly, cost(F, c∗) > (1− ε)nγ(T ) 1
γ(T )

∆
n = (1− ε)∆, which means that the outliers make up a

constant fraction of the optimal cost.

Now this implies that cost(T \F, c∗) ≤ ∆− (1−ε)∆ = ε∆, which we can leverage in the following
way to bound the number of curves with medium contribution. We have

ε∆ ≥ cost(T \ F, c∗) = cost(M ∪̇C, c∗) ≥ cost(M, c∗) ≥ |M | · r2 = |M | · 2ε∆

n
.

Rearranging yields the desired bound |M | ≤ ε∆
2ε∆ · n = n

2 .

Let A be the event that an element sampled uniformly from T is contained in C. By the disjoint
union, the probability for this event can be bounded by

Pr[A] =
|C|
n

=
|T | − |M | − |F |

n
≥
n− n

2 − nγ(T )

n
=

1

2
− γ(T ) =: ν(T ).
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Figure 5: Distributions of curves (for simplicity represented as points) around their median. The
red circles represent the radii r1, r2 defining the sets of far, medium and close curves (cf. proof of
Theorem 12, best viewed in color). The left plot shows a “typical” distribution where the median
yields a good representative of the data that is robust against outliers. There is a reasonable but not too
large number of outliers, that are far away from the center and many curves are close to the optimal
median. Such distributions typically arise in physical domains. In such a situation, the sampling
algorithm of Theorem 12 yields a (1 + ε)-approximation. In the right plot we see a distribution which
is much more uniform. Most points are in an annulus about the average distance, there are no far
away outliers, and few curves close to the optimal. To find one of the latter, the (1+ε)-approximation
needs too many samples. Note however, that the same algorithm yields a (2 + ε)-approximation via
Theorem 11 that works in general for all inputs.

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Typical distribution with outliers
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Untypical distribution

The probability that all of `S = 1
1/2−γ(T ) ln( 2

δ ) i.i.d. uniform samples from T fail to hit C is thus

bounded by (1− ν(T ))
1

ν(T )
ln( 2

δ ) ≤ e− ln( 2
δ ) = δ

2 .

Thus, with probability at least 1− δ
2 our sample contains at least one c̃ ∈ C such that dF (c̃, c∗) ≤ r2.

Finally, we have by repeated use of the triangle inequality that

cost(T, c̃) ≤ cost(T, c∗) + n · dF (c̃, c∗) ≤ cost(T, c∗) + n · r2

≤ cost(T, c∗) + n · 2εcost(T, c∗)

n
≤ (1 + 2ε) cost(T, c∗).

As previously we sample a logarithmic number of witnesses `W = 64
ε2 ln( 2`S

δ ) such that by Theo-
rem 10 and an application of the union bound the probability that any center that is worse than c̃ by a
factor of more than (1 + ε) has lower cost than c̃ with respect to W is bounded by∑

s∈S
exp

(
−ε

2`W
64

)
≤ |S| · δ

2`S
=
δ

2
.

Thus with probability at least 1− δ we have that both, our sample S contains a (1 + 2ε)-approximate
solution c̃ and any c′ ∈ S that evaluates equal or better than c̃ on the sample W is within (1 + ε) to
the cost of c̃. Thus cost(T, c′) ≤ (1 + ε)(1 + 2ε) cost(T, c∗) ≤ (1 + 4ε) cost(T, c∗).

We conclude the proof by rescaling ε by 1
4 .

Proof of Theorem 14. We reduce from the equality test communication problem on bit-strings of
size m each. The deterministic communication complexity of this problem is Ω(m) (Wegener, 2005,
Theorem 15.2.2).
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In this setting Alice and Bob are given bit-strings A,B : {1, . . . ,m} → {0, 1} and their task is to
decide whether there exists at least one i ∈ {1, . . . ,m} such that A[i] 6= B[i] or not with as little
communication as possible. We give a one-way protocol for this problem, where only one message
from Alice to Bob is allowed.

In a first step, Alice and Bob construct from their bit-strings polygonal curves α, β with 4m vertices
each. Both curves consist of one gadget per bit. These are either straight-line- or zigzag-gadgets,
depending on the value of the respective bit. Specifically, for i ∈ {1, . . . ,m} we define the vertices
of α:

If A[i] = 0 then vα4i−3 := 2i, vα4i−2 := 2i+ 2/3, vα4i−1 := 2i+ 4/3 and vα4i := 2i+ 2.
Else, if A[i] = 1 then vα4i−3 := 2i, vα4i−2 := 2i+ 2, vα4i−1 := 2i and vα4i := 2i+ 2.

The vertices vβ4i−3, . . . , v
β
4i of β are defined analogously.

We claim that

1. ∃i ∈ {1, . . . ,m} : A[i] 6= B[i]⇒ dF (α, β) ≥ 1 and

2. ∀i ∈ {1, . . . ,m} : A[i] = B[i]⇒ dF (α, β) = 0.

To prove the first item, fix an arbitrary i ∈ {1, . . . ,m}. W.l.o.g., assume that A[i] 6= B[i] = 1. We
have the vertices vα4i−3 = 2i, vα4i−2 = 2i+ 2, vα4i−1 = 2i and vα4i = 2i+ 2, as well as, vβ4i−3 = 2i,
vβ4i−2 = 2i + 2/3, vβ4i−1 = 2i + 4/3 and vβ4i = 2i + 2. Let g ∈ arg infh∈Hmaxt∈[0,1]‖α(t) −
β(h(t))‖. Now, assume that dF (α, β) < 1. This means, that g must map vα4i−3 = 2i, vα4i−2 = 2i+ 2

and vα4i−1 = 2i to some points that lie closer than 2i + 1 ∈ vβ4i−2v
β
4i−1. This is a contradiction,

because g is required to be non-decreasing. Thus, in the optimal case vα4i−2 and vα4i−1 must be
mapped to some points infinitesimally close to 2i+ 1.

To prove the second item, observe that by symmetry of the construction, α and β represent the same
curve and therefore dF (α, β) = 0.

Now, suppose there exist oblivious functions S andE not depending on the data such that dF (α, β) ≤
E(S(α), β) ≤ η · dF (α, β), for an arbitrary η ∈ [1,∞).

Alice computes the compressed representation S(α) and communicates S(α) to Bob. Bob evaluates
the estimator E(S(α), β).

If E(S(α), β) = 0 then dF (α, β) ≤ E(S(α), β) = 0.

If E(S(α), β) > 0 then dF (α, β) ≥ E(S(α), β)/η > 0.

Thus, Bob can distinguish the above two cases and therefore solve the equality test problem, which
implies that S(α) consists of Ω(m) bits.

Proof of Theorem 15. We reduce from the set disjointness communication problem on bit strings
of size m each. These represent subsets of a common ground set. The randomized communication
complexity with public coins is Ω(m) (Håstad and Wigderson, 2007, Theorem 1.2).

Now, Alice and Bob are given their bit-strings A,B : {1, . . . ,m} → {0, 1} and their task is to decide
whether there exists at least one i ∈ {1, . . . ,m} such that A[i] = B[i] = 1 or not with as little
communication as possible. We give a one-way protocol for this problem, where only one message
from Alice to Bob is allowed.

In a first step, Alice and Bob construct from their bit-strings polygonal curves α, β with 4m vertices
each. Both curves consist of one gadget per bit. These are either straight-line- or notch-gadgets,
depending on the value of the respective bit. Thus, for i ∈ {1, . . . ,m} we define the vertices of α:

If A[i] = 0 then vα4i−3 := (4i, 0), vα4i−2 := (4i, 0), vα4i−1 := (4i + 4, 0) and vα4i := (4i + 4, 0).
Otherwise vα4i−3 := (4i, 0), vα4i−2 := (4i, 1), vα4i−1 := (4i+ 4, 1) and vα4i := (4i+ 4, 0).

And we define the vertices of β:

If B[i] = 0 then vβ4i−3 := (4i, 0), vβ4i−2 := (4i, 0), vβ4i−1 := (4i + 4, 0) and vβ4i := (4i + 4, 0).
Otherwise vβ4i−3 := (4i, 0), vβ4i−2 := (4i,−1), vβ4i−1 := (4i+ 4,−1) and vβ4i := (4i+ 4, 0).
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We claim that

1. ∃i ∈ {1, . . . ,m} : (A[i] = B[i] = 1)⇒ dF (α, β) ≥ 2 and

2. ∀i ∈ {1, . . . ,m} : (A[i] = 0 ∨B[i] = 0)⇒ dF (α, β) <
√

2.

To prove the first item, fix an arbitrary i ∈ {1, . . . ,m}. If A[i] = B[i] = 1, we have the vertices
vα4i−3 = (4i, 0), vα4i−2 = (4i, 1), vα4i−1 = (4i+4, 1) and vα4i = (4i+4, 0), as well as, vβ4i−3 = (4i, 0),
vβ4i−2 = (4i,−1), vβ4i−1 = (4i+4,−1) and vβ4i = (4i+4, 0). Let g ∈ arg infh∈Hmaxt∈[0,1]‖α(t)−
β(h(t))‖. Now, assume that dF (α, β) < 2. This means, that g must map (4i+ 2, 1) ∈ vα4i−2v

α
4i−1 to

some point that lies closer than (4i+ 2,−1) ∈ vβ4i−2v
β
4i−1. This is a contradiction, because the circle

of radius 2 around (4i+ 2, 1) does only intersect one point of β, namely (4i+ 2,−1). In particular
vβ4i−3 and vβ4i have distance

√
5 > 2.

To prove the second item, assume w.l.o.g. that A[i] 6= B[i] for all i ∈ {1, . . . ,m}. Otherwise α
and β represent the same curve and have distance 0. Let m = 1 and w.l.o.g. assume that B[1] = 1.
Then we have the vertices vα1 = (4, 0), vα2 = (4, 0), vα3 = (4 + 4, 0) and vα4 = (4 + 4, 0), as well as
vβ1 = (4, 0), vβ2 = (4,−1), vβ3 = (4 + 4,−1) and vβ4 = (4 + 4, 0). Let g be a reparameterization that

maps vα1 to vβ1 and vα4 to vβ4 , as well as vβ1 v
β
2 and vβ3 v

β
4 to some infinitesimally small sub-segment of

vα1 v
α
4 each. Since these sub-segments have length less than 1 each, any point of these is mapped to a

point within distance less than
√

2. Now, let g map the remaining segment vβ2 v
β
3 of β linearly to the

remaining middle sub-segment of vα1 v
α
4 of α. Since this remaining sub-segment has length larger

than 2, again any point is mapped to a point within distance less than
√

2. Since we can inductively
apply this argument for any m > 1, i.e., any number of gadgets, we conclude that dF (α, β) <

√
2.

Now, suppose there exist oblivious randomized functions S and E not depending on the data such
that dF (α, β) ≤ E(S(α), β) ≤ η · dF (α, β) with constant probability, for an arbitrary η ∈ [1,

√
2].

Alice computes the compressed representation S(α) using some of the public coins and communicates
S(α) to Bob. Bob evaluates the estimator E(S(α), β).

If E(S(α), β) < 2 then with constant probability dF (α, β) ≤ E(S(α), β) < 2.

If E(S(α), β) ≥ 2 then with constant probability dF (α, β) ≥ E(S(α), β)/
√

2 ≥
√

2.

Thus, Bob can distinguish the above two cases and therefore solve the set disjointness problem with
constant probability, which implies that S(α) consists of Ω(m) bits.

18


	Introduction
	Related work

	Dimension Reduction for Polygonal Curves
	Median Clustering under the Fréchet Distance
	Complexity Reduction for Polygonal Curves
	Experiments
	Omitted material

