
A Level descriptions and further experimental findings

As described in Section 2.3, for each task in the Suite we construct a small training level, a large training level, a
‘holdout-interpolation’ level and a ‘holdout-extrapolation’ level.

During training the environment uniformly samples from the small and large training levels. The interpolation
level has a scale somewhere in between ‘small’ and ‘large’ while the extrapolation level corresponds to ‘extra-
large’ (Table 1). A summary of the alterations made for each task split is in Table 2. The settings used in each
level per task are described below.

Table 1: Overall structure for scale and stimulus split.

Scale
Stimuli Training set Holdout set

Small Used for training —
Medium — Used for interpolation
Large Used for training —
Extra-large — Used for extrapolation

The dashed (‘—’) settings in Table 1 are not reported nor used, since they lack a clear interpretation in terms of
generalization.

Table 2: Scale and stimulus alterations across task families
Task Scale Stimulus
AVM Number of trials Image
Continuous Recognition Number of trials Image
Change Detection Delay study/test Color
What Then Where Delay study/query Digit image
Spot Diff Basic Corridor delay Color
Spot Diff Passive Corridor delay duration Color
Spot Diff Multi-object Number of objects Color
Spot Diff Motion Corridor delay Motion pattern
All Goal Navigation tasks Arena size Goal spawn
Transitive Inference Length of transitive chain Object color

A.1 PsychLab

Our Memory Tasks Suite has four PsychLab tasks: Arbitrary Visuomotor Mapping (AVM), Continuous Recogni-
tion, Change Detection and What Then Where. The description of each task is found in Figure 8. Videos with
agent play and the https://sites.google.com/view/memory-tasks-suite.

Scale Either number of trials per episode or delay duration.

For Arbitrary Visuomotor Mapping and Continuous Recognition, every episode lasts at most 300 seconds, except
for the Extrapolate level where the cap is set to 450 seconds to accommodate the larger number of trials. In
Change Detection an episode lasts at most 300 seconds, while for What Then Where it is 600 seconds.

Scale
Task AVM and Cont. Recog.:

Trials per episode
Change Detection:

delay (seconds)
What Then Where:

delay (seconds)

Small 50 2, 4, 8 4, 8
Interpolate 40 16, 32 16, 64
Large 50 64, 128 32, 128
Extrapolate 75 130, 150, 200, 250 132, 156, 200, 256

Stimulus Either color set or image set.
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(a) Arbitrary Visuomotor Mapping (AVM) (b) Continuous Recognition

(c) Change Detection (d) What Then Where

Figure 8: All PsychLab tasks have multiple trials within an episode. Each trial consists of a single
image being displayed on the panel. In (a), when the agent sees an image for the first time, the
associated direction is indicated on the screen (green box on the left). By executing the indicated
pattern, the agent receives a reward. When the agent is presented with an image it has already seen
during the episode, the associated direction is no longer indicated (middle), and the agent must
remember it from its previous experience in order to get a reward (right). In (b), the agent is shown a
pattern (left), and after a delay (middle), a second pattern is shown (right). The agent has to indicate
if there was a change between the two patterns or not by looking right or left, respectively. The delay
period separating the two patterns varies in length. In (c), the agent indicates if it has seen the image
in the current episode by looking left or right, respectively. In (d), in the ‘what’ study phase, an
MNIST digit is displayed (left). In the ‘where’ study period, four distinct MNIST digits are displayed
including the one from the ‘what’ period (middle). In the test phase (right), the agent must remember
what digit was displayed in the ‘what’ period, see where it is located during the study where period,
and then respond by looking to that location. In this example it has to look left.

Task AVM and Cont. Recog Change Detection What Then Where
Stimulus Different images Color set MNIST digits
Training Images with even ID Amethyst, Caramel, 0, 1, 2, 3, 4

Honeydew, Jade, Mallow
Holdout Images with odd ID Yellow, Lime, Pink, Sky, Violet 5, 6, 7, 8, 9

A.1.1 PsychLab: main experimental findings

AVM: in this task, the agent must remember associations between images and specific movement patterns
(Figure 8 (a)).

The most useful component turned out to be MEM. This is in line with earlier findings that an external episodic
memory is a prerequisite for solving AVM (Wayne et al., 2018). Adding an auxiliary loss helped when the
controller was FF but made no difference for an LSTM. Also, choosing between CPC or REC for auxiliary
unsupervised loss did not make a major difference for either controller.

Continuous Recognition: in this task, the agent must remember if it has seen a particular image before by
looking left or right (Figure 8 (b)).

MEM was the most useful component when added to an LSTM, but made no difference when added alone to an
FF controller. However, adding a stack of MEM plus either CPC or REC provided a substantial performance
boost for both FF and LSTM.
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Change Detection: in this task, agent sees two images separated by a delay and has to correctly indicate if
the two images are different (Figure 8 (c)).

CPC brought the largest benefit. Interestingly the addition of MEM to the FF baseline actually hurt performance
slightly, and made no difference for LSTM.

What Then Where: this task consists of a ‘what’ and ‘where’ study phase, followed by a test phase where
the agent must remember what image was displayed and where it was located (Figure 8 (d)).

This was the trickiest task in the Psychlab family. This task was an outlier in the sense that unlike any other task
in the suite, the LSTM baseline beat all other models. The worst additional component was REC which dragged
down performance to below random.

A.2 Spot the Difference (SD)

The tasks were built in Unity, and each episode lasts 120 seconds except for Spot the Difference: Motion which
has a 240-second timeout.

Scale Either corridor delay duration or number of objects in room.

In Spot the Difference Multi-Object, Room 2 has the exact same number of objects as Room 1.

Scale
Task SD Basic, Passive and Motion:

Corridor delay (seconds)
SD Multi-Object:

Number of objects in Room 1

Small 0 2 or 3
Interpolate 5 4
Large 10 5 or 6
Extrapolate 15 7

Stimulus Either color set or motion pattern set.

Task SD Basic, Passive and Motion SD Multi-Object
Stimulus Color Set Motion Pattern Set
Training Red, Green, Blue, Circle, Square, Five-point star, Hexagon

White, Slate Linear along X-axis, Linear along Y = X diagonal
Holdout Yellow, Brown, Pink, No motion, Triangle, Pentagon, Figure-eight

Orange, Purple Linear along Y-axis, Linear along Y = -X diagonal

A.2.1 Spot the Diff: main experimental findings

Every task in this family consists of two rooms connected by a short corridor. There is a set of gates in the
middle of the corridor that can trap the agent there for a configurable delay duration.

Basic In the basic Spot the Difference task, where the agent is not forced to see any of the blocks in Room 1
before it goes to the next room, adding MEM alone to the controller had minimal effect, and using REC with
MEM also did not make much difference. Adding CPC to an LSTM helped performance but it turned out that
using the combination of MEM + CPC provided the biggest gain and was synergistic.

Passive In this task the agent is guaranteed to see the two blocks in the first room before it enters the second
room. Adding MEM alone to the controller made the biggest positive difference, which makes sense since that
hypothetically would make it possible for the agent to solve the task by remembering a single snapshot. CPC
helped when added to FF together with MEM, but hurt when added to LSTM alone. REC helped performance
when added to FF + MEM, but not as much as CPC did in that case, and actually hurt performance when added
to LSTM + MEM.

Motion Nothing did well on train or holdout sets, and curves took longer to take off in general. This is likely
due to the highly challenging nature of the task, which requires the agent to memorize 3D motion patterns traced
out over some time period by multiple objects and then compare motion patterns against each other. Results
would potentially be improved by hyperparameter tuning or further improvements to agent architecture.
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Multi-object This was the hardest task in the family, and nothing did well here either. This could be due to
there being a variable number of objects in each room, rather than always exactly two objects per room. When
added by itself to a controller MEM either had no effect or hurt performance. The combined synergistic stack of
MEM + CPC was the most useful addition on this task when the working memory was LSTM. That said, no
models fared well on Holdout-Interpolate and Holdout-Extrapolate for this task.

A.3 Navigate to Goal

These tasks are in Unity and have an episode timeout of 200 seconds, except Visible Goal Procedural Maze

which is a modification of DMLab’s Explore Goal Locations task and has episodes lasting 120 seconds each.

Scale Size of square arena, in terms of in-game metric units.

Scale
Task Visible Goal Procedural Maze:

Arena Size
All but Visible Goal Procedural Maze:

Arena Size

Small 11 ⇥ 11 10 ⇥ 10
Interpolate 15 ⇥ 15 15 ⇥ 15
Large 21 ⇥ 21 20 ⇥ 20
Extrapolate 27 ⇥ 27 25 ⇥ 25

Stimulus Goal spawn region.

Stimulus
Task Visible Goal Procedural Maze:

Goal spawn region
All but Visible Goal Procedural Maze:

Goal spawn region

Training North half Northwest and southeast quadrants
Holdout South half The other two quadrants

A.3.1 Navigate to Goal: main experimental findings

Using an auxiliary unsupervised reconstruction loss to learn high-quality representations turned out to be the
most useful component for this task family.

We also observed that in successful models such as LSTM + MEM + CPC, which is the MRA architecture, the
agent is able to do better than simply memorizing a route to the invisible goal. Rather, it learns the location of
the goal, and the time it takes to reach the goal location grows shorter every time it respawns within an episode
(see example trajectory in Fig 9(a) and time-to-goal plot in Fig 9(b)).

Visible Goal Procedural Maze Using REC with LSTM + MEM performed the best here, and FF + MEM
+ REC was the next best. The MEM + CPC stack was a distant runner-up compared with the MEM + REC stack
for both controllers.

Visible Goal With Buildings Like in the other Visible Goal task, LSTM + MEM + REC was the most
successful model. MEM was slightly more helpful than CPC when used in conjunction with an LSTM (we did
not have bandwidth to run the FF + CPC ablation). MEM + CPC also had a synergistic effect when stacked with
an LSTM.

Invisible Goal With Buildings Adding MEM + REC was the most useful, for both FF and LSTM.

Invisible Goal Empty Arena This task can be expected to be the most difficult in the family due to the
relative sparsity of visual spatial cues. Adding MEM alone to a controller always helped slightly. REC helped
more than CPC did when used with an FF controller but for an LSTM controller CPC had a slight edge.
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(a) Routes taken by MRA agent in one episode

(b) Timesteps taken to reach goal

Figure 9: Trajectories and time-to-goal for Invisible Goal with Buildings. In (a), our MRA (LSTM +
MEM + CPC) agent learns to take increasingly shorter routes to the goal. Note: The end-points of
each trial trajectory appear to be in slightly different locations. This is because the goal is on a map
tile rather than a single coordinate, and also due to manual adjustments we made to account for the
agent avatar in Unity continuing to move for a small number of frames immediately after reaching
the goal but before it is respawned. In (b), the number of time-steps taken per trial is plotted for Train,
Holdout-Interpolate, Holdout-Extrapolate, along with standard error bars. Note: Some points at the
rightmost end of each curve will have no error bar if there was only one data point.
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A.4 Transitive Inference

The task was built in Unity and has an episode timeout of 200 seconds.

Scale: Number of objects in transitive chain. Stimulus: Color set.

Scale Transitive chain length
Small 5
Interpolate 6
Large 7
Extrapolate 8

Stimulus Color set
Training Red, Green, Blue, White, Black,

Pink, Orange, Purple, Grey, Tan
Holdout Slate, Yellow, Brown, Lime, Magenta

Mint, Navy, Olive, Teal, Turquoise

A.4.1 Transitive Inference: main experimental findings

Transitive inference is a form of reasoning where one infers a relation between items that have not been explicitly
directly compared to each other. In humans, performance on probe pairs and anchor pairs with symbolic distance
of greater than one excluding anchor objects tends to correlate with awareness of the implied hierarchy (Smith
and Squire, 2005).

As an illustrative example: Given a ‘transitive chain’ of five objects A, B, C, D, E where we assume A is the
lowest-valued object and E the highest, we begin with a demonstration phase in which we present the agent with
pairs of adjacent objects <A, B>, <B, C>, <C, D>, <D, E> .

In this demo phase we scramble the order in which the pairs are presented and also scramble the objects in the
pair such that an agent may see <D, C> followed by <A, B>, etc. The pairs are presented one at a time, and the
agent needs to correctly identify the higher-valued object in the current pair in order to proceed to seeing the
next pair.

Once the demo phase is completed, we show the agent a single, possibly-scrambled challenge pair. This
challenge pair always consists of the object second from the left and the object second from the right in the
transitive chain, in this case <B, D>. The agent’s task is again to go to the higher-valued object.

In our results, we found that stacking MEM with auxiliary loss was crucial. For an FF controller CPC was more
useful than REC, but for LSTM it was the other way round. Also, although both LSTM + MEM + CPC and
LSTM + MEM + REC achieved normalized scores that were not too far apart, REC was more data-efficient
and took off earlier than the former. We observed a synergistic effect when combining MEM with CPC for an
LSTM, but that was still outdone by using MEM + REC.

A.5 Jumpy Backpropagation (JB) ablation

We studied the impact of having Jumpy Backpropagation (JB) as described in Section 3. In Fig 10, we can
see the set of tasks where adding the JB yields improvements on performance both at training time and on the
holdout test levels. Figures 11 and 12 show the performance on the remaining levels from the Memory Task
Suite, where having the JB feature did not hurt performance. We conclude that JB is an important component of
the MRA architecture.
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Figure 10: Comparison between MRA (LSTM + MEM +CPC) and its version without the jumpy
backpropagation feature on MEM: LSTM + MEM (no JB) + CPC. Here we show the tasks where JB
yields improvements on performance both at training time and on the holdout test levels. The dotted
lines indicate human baseline scores for each task.
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Figure 11: [1/2] Comparison between MRA and its version without the jumpy backpropagation (JB)
feature. Here we show the tasks where JB makes little difference on performance. The dotted lines
indicate human baseline scores for each task.
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Figure 12: [2/2] Comparison between MRA and its version without the jumpy backpropagation (JB)
feature. Here we show the tasks where JB makes little difference on performance. The dotted lines
indicate human baseline scores for each task.

A.6 Agent Performance Curves

In this session we show training and test curves for all models in all tasks. The dotted lines indicate human
baseline scores for each task.
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Figure 13: Training and test curves for all models in all tasks. Dotted lines indicate human baseline
scores for each task.
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Figure 14: Heatmap of ablations per task including standard errors. Tasks are sorted by normalized
score across models during training, such that the task with the highest mean scores in training is in
the leftmost column, and the model that had the highest mean scores in training is at the top row.
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B Human-Normalized Scores and Episode Rewards

We used one action set across all PsychLab tasks, and another across the 3D tasks.

In PsychLab we used a set of five actions: look left, look right, look up, look down, do nothing.

For the rest, we used a set of eight actions: move forward, move backward, strafe left, strafe right, look left, look
right, look left while moving forward, look right while moving forward.

In Figure 13 we show the training and test curves for each of our ablation models on all tasks. The curves in
bold correspond to the median score across three random seeds, and the corresponding confidence intervals are
shown in lighter shades.

B.1 Human-Normalized Score Computation

We computed the Human-Normalized Scores used in our heatmap via the following procedure. In our reported
results we used three seeds, and took a rolling average as described below.

1. For each seed, apply smoothing in the form of exponential weighted moving average3.
2. For each seed, take a further rolling average of the episode reward, over a window of 10.
3. Among these rolling reward windows, find the highest window value over the course of training. The

mean over the seeds corresponds to RLevel=Train.
4. For each seed, find the time-step that corresponds to RLevel=Train, to use as a snapshot point for

comparison against the holdout levels.
5. At this snapshot point, record the seed-averaged rolling episode reward for the two holdout levels,

RLevel=Holdout�Interpolate and RLevel=Holdout�Extrapolate.
6. Obtain the episode reward of a random agent RRandom and the episode reward achieved by a human,

RHuman.
7. For Train, Holdout-Interpolate, and Holdout-Extrapolate, with corresponding standard error:

HumanNormalizedScore =
RLevel=· �RRandom

RHuman �RRandom

⇤ 100 (6)

Results are shown ranked (best at top) in Figure 3.

Table 3: Ranking of ablation models, sorted by overall task-averaged human-normalized score.
Average Human-Normalized Score (percentage points)

Model Train Holdout-Interpolate Holdout-Extrapolate
MRA: LSTM + MEM + CPC 92.9 ± 3.9 56.2 ± 5.8 52.6 ± 6.5
LSTM + MEM + REC 82.2 ± 5.2 54.2 ± 2.3 51.4 ± 4.9
LSTM + MEM 78.7 ± 5.8 50.0 ± 3.1 45.8 ± 4.5
LSTM + CPC 77.6 ± 4.6 42.7 ± 2.8 37.7 ± 5.3
FF + MEM + REC 63.1 ± 9.6 45.4 ± 3.7 45.4 ± 14.2
FF + MEM + CPC 62.6 ± 5.9 45.4 ± 7.3 41.3 ± 4.0
LSTM 73.0 ± 6.9 40.2 ± 4.3 35.6 ± 5.9
FF + MEM 42.3 ± 5.8 27.8 ±6.7 27.0 ± 6.6
FF 33.9 ± 3.3 23.0 ± 3.5 19.7 ± 4.2

B.2 Episode Rewards

Absolute episode rewards per task per level, obtained by trained agent as well as RRandom and RHuman, with
standard error4 bars. See Tables 4 to 16.

3For PsychLab tasks and Visible Goal Procedural Maze, alpha = 0.05. For the rest, alpha = 0.001.
4Computed over three seeds for trained agent and for random agent. For human scores, all levels had five

trials each except the following: 10 for Visible Goal with Buildings and Invisible Goal Empty Arena, 19 for the
Train level of Invisible Goal with Buildings and 20 for the other two levels. The difference was due to time
constraints.
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C Model

C.1 Importance Weighted Actor-Learner Architecture

We use the Importance Weighted Actor-Learner Architecture (IMPALA) (Espeholt et al., 2018) in our work.
IMPALA uses an off-policy actor-critic approach where decoupled actors communicate experience to a learner.
The actor-to-learner relationship is many-to-one. Each actor generates a batched trajectory, or episode, of
experience and sends the state-action-reward traces (s0, a0, r0, ..., sT , aT , rT ) to its respective learner. The
learner gathers trajectories from each actor and computes gradients to update the model parameters continuously.
As actors finish processing a trajectory they receive parameter updates from the learner then continue to generate
trajectories.

Under this scheme the actors and learner policies fall out of sync between parameter updates. The actor’s
behaviour policy, µ, is said to have policy lag with respect to the target policy of the learner, ⇡. To correct for
this effect importance weighting with V-trace targets are computed for each step:

vs
d

= V (xs) +
s+T�1X

t=s

�
t�s(⇡t�1

i=s ci)⇢t(rt + �V (xt+1)� V (xt)) (7)

where � 2 [0, 1) is a discount factor, xt and rt are the state reward at time-step t, ⇢t = min(⇢̄, ⇡(at|xt)
µ(at|xt)

) and

ci = min(c̄, ⇡(ai|xi)
µ(ai|xi)

) are truncated importance sampling weights. These V-trace targets are used to compute
gradients for the policy approximation in the learner. This enables observations and parameters to each flow
in a single direction, allowing for high data efficiency and resource allocation in comparison to other other
approaches, such as asynchronous advantageous actor critic (A3C) (Mnih et al., 2016).

C.2 Residual Network Architecture

To process the pixel input, the Memory Recall Agent and the other baselines reported in this work use a residual
network (He et al., 2015) with a similar architecture found in (Espeholt et al., 2018). This consists of three
convolutional blocks with feature map counts of size 16, 32, and 32; each block has a convolutional layer with
kernel size 3x3 followed max pooling with kernel size 3x3 and stride 2x2, followed by two residual subblocks.
The output from the top residual block is followed by a 256-unit MLP to generate latent representations xt to be
passed to the working memory and query network fk.

C.3 Contrastive Predictive Coding

We use the encoder already present in the agent’s architecture, the convolution neural network that takes the
input frame (it) and converts it to the embedded visual input xt. The auto-regressive component is the working
memory itself, which takes xt as input and outputs ht which can be used to predict future steps in latent space:
xt+1, . . . , xt+N , where N said to be the number of CPC steps. Figure 4(b) illustrates the CPC approach (van den
Oord et al. (2018)).

To introduce a noise-contrastive loss the mutual information (Eq. 8) between the target encoded representations
xt, and the contexts (ct) – which in our case are the memory states ht. For each sample, a positive real score
is then generated via fk, a log-bilinear density function (Eq. 9) by taking the current output from the working
memory ht and the latent vector of the k

th step, xt+k.

I(x, c) =
X

x,c

p(x, c) log
p(x|c)
p(x)

(8)

fk(xt+k, ht) = exp
⇣
x
T

t+kWkht

⌘
(9)

Given a sample trajectory of length T and a fixed number of maximum CPC steps N  T � 1, predictions
are computed for each of the k-step predictive models (1  k  N ). For timestep t (1  t  T � k) and
predictive model k let �t,k denote a set of samples from which a contrastive noise estimate is derived. Each set
�t,k may be split into two subsets, a single positive sample and T � k � 1 negative samples: �+

t,k
= {xt+k},

��
t,k

= {xk+1, ..., xt+k�1, xt+k+1, ..., xT�k} such that �t,k = �+
t,k

+ ��
t,k

(|�t,k| = T � k). The noise
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contrastive loss is then determined by computing the categorical cross-entropy over the (t, k)-trajectory sample
set 8(t, k). Details can be seen in Eq. 10.

LCPC(�t,k) = E
�+
t,k

"
log

fk(xt+k, ht)P
ij✏�t,k

fk(xj , ht)

#
+ E

��
t,k

"
log

 
1� fk(xt+k, ht)P

ij✏�t,k
fk(xj , ht)

!#
(10)

C.4 Reconstruction

Action and reward reconstructions are linear projections fr(rt) = rtWr + br and fa(at) = atWa + ba while
reconstructions of the image input it are generated via the transpose residual network f

T

RN . Sum of squared
error losses are used for prior step reward and prior step actions while sigmoid cross-entropy is used for the
image reconstruction. The losses are summed and scaled by a cost hyper-parameter for each to produce a
full reconstruction loss for the model, LREC. See equations 11 to 14 below for more details (� is the sigmoid
function).

Lreward =

P
T

i=1 (rt�1,i � f(rt�1,i))
2

2
(11)

Laction =

P
T

i=1 (at�1,i � f(at�1,i))
2

2
(12)

Limage = �it log(�(f
T

RN (ht)))� (1� it) log
⇣
1� �(fT

RN (ht))
⌘

(13)

LREC = cimageLimage + cactionLaction + crewardLreward (14)

In our experiments we set cimage=caction=creward=1.0 for all tasks, except in AVM, Continuous Recognition and
Change Detection, where cimage = 30, 1.5, and 3, respectively. We did not tune for this hyper-parameter, we
used first guess or previous work (such as (Wayne et al., 2018)) for choosing it.

D Hyper-parameter Tuning

All experiments used three seeds, with identical hyper-parameters each. Given the scope of the experiments
undertaken, all hyper-parameter tuning was preliminary and not exhaustive.

Initial hyper-parameters were either inherited from the IMPALA paper or given an arbitrary first-guess value
that seemed reasonable. Whatever tuning that was done was performed in a relatively systematic way: Hyper-
parameters were shared across all model variations, and tuned with the objective of getting as many model
variations as possible to achieve adequate performance on the training tasks.

The PsychLab tasks were the ones with the most tuning. For PsychLab, we performed a manual sweep over
arbitrary reasonable-seeming values when train performance wasn’t getting off the floor or was too noisy. We
had a preference for hypers that fared well across all models (e.g. choosing a bigger hidden size of 1024 rather
than 512 for the controller so that FF models would have capacity).

For the other tasks, very minimal tuning occurred and hyper-parameters were first-guess. With Spot the
Difference, we tried two different discount rates and went with the better one. For Goal Navigation and
Transitive Inference tasks, we stuck to a standardized discount rate of 0.99.

We did not perform any tuning for REC throughout.

Fixed hyper-parameters (See Table 17) For optimizers, whenever we used Adam we standardized the
discount rate to 0.98, and whenever we used RMSProp the discount rate was mostly 0.99 except in certain
cases where we were able to also try 0.999 and found that it did better. Whenever we used an external episodic
memory module (‘MEM’) we used the fixed hyper-parameters in Table 17.

For individual task hyper-parameter configurations see Table 18.
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Table 4: Episode reward: PsychLab - AVM
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 25.90 ± 0.32 19.37 ± 0.43 35.74 ± 0.37
FF + MEM 43.14 ± 6.12 33.34 ± 5.92 60.16 ± 13.56
FF + MEM + CPC 49.98 ± 0.00 38.86 ± 0.32 73.66 ± 0.63
FF + MEM + REC 50.00 ± 0.00 39.76 ± 0.14 73.17 ± 0.46
LSTM 33.35 ± 0.24 27.20 ± 0.25 32.34 ± 1.20
LSTM + CPC 30.75 ± 0.21 25.64 ± 0.26 35.50 ± 1.09
LSTM + MEM 50.00 ± 0.00 39.99 ± 0.01 72.32 ± 0.98
LSTM + MEM + REC 50.00 ± 0.00 39.63 ± 0.36 73.91 ± 0.28
MRA: LSTM+MEM+CPC 50.00 ± 0.00 39.99 ± 0.00 74.32 ± 0.13
Random 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00
Human 50.00 ± 0.00 40.00 ± 0.00 75.00 ± 0.00

Table 5: Episode reward: PsychLab - Continuous Recognition
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 26.90 ± 0.28 20.62 ± 0.28 38.45 ± 0.34
FF + MEM 26.51 ± 0.06 20.54 ± 0.49 37.96 ± 0.51
FF + MEM + CPC 49.60 ± 0.01 39.51 ± 0.15 71.40 ± 0.15
FF + MEM + REC 49.78 ± 0.08 39.90 ± 0.03 65.57 ± 0.56
LSTM 27.11 ± 0.29 20.92 ± 0.11 37.28 ± 0.18
LSTM + CPC 26.25 ± 0.26 20.11 ± 0.55 37.46 ± 0.36
LSTM + MEM 42.18 ± 6.93 39.68 ± 0.06 56.59 ± 9.84
LSTM + MEM + REC 49.78 ± 0.08 39.90 ± 0.03 65.57 ± 0.56
MRA: LSTM+MEM+CPC 49.92 ± 0.03 39.83 ± 0.00 72.52 ± 0.25
Random 0.04 ± 0.00 0.05 ± 0.00 0.05 ± 0.00
Human 49.40 ± 0.24 39.40 ± 0.40 74.20 ± 0.58

Table 6: Episode reward: PsychLab - Change Detection
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 26.40 ± 0.08 24.17 ± 0.10 24.73 ± 0.48
FF + MEM 25.76 ± 0.16 24.95 ± 0.12 24.97 ± 0.36
FF + MEM + CPC 44.76 ± 0.05 36.07 ± 0.46 36.95 ± 0.40
FF + MEM + REC 25.82 ± 0.22 23.99 ± 0.29 24.89 ± 0.23
LSTM 26.39 ± 0.21 25.24 ± 0.43 25.37 ± 0.22
LSTM + CPC 48.37 ± 0.39 41.43 ± 0.12 42.72 ± 0.11
LSTM + MEM 26.21 ± 0.10 24.77 ± 0.28 24.63 ± 0.52
LSTM + MEM + REC 39.12 ± 5.88 42.12 ± 1.97 37.31 ± 6.38
MRA: LSTM+MEM+CPC 49.14 ± 0.24 42.24 ± 0.07 43.00 ± 0.39
Random 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Human 47.60 ± 0.40 48.80 ± 0.58 46.80 ± 1.07

Table 7: Episode reward: PsychLab - What Then Where
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 12.71 ± 0.06 12.19 ± 0.06 8.39 ± 0.16
FF + MEM 12.11 ± 0.14 12.05 ± 0.12 8.34 ± 0.11
FF + MEM + CPC 12.92 ± 0.32 12.21 ± 0.20 7.73 ± 0.29
FF + MEM + REC 6.54 ± 0.50 6.10 ± 0.35 6.30 ± 0.10
LSTM 37.18 ± 0.14 25.06 ± 0.34 17.51 ± 0.38
LSTM + CPC 24.21 ± 6.04 20.68 ± 3.89 12.99 ± 2.79
LSTM + MEM 26.19 ± 6.23 23.74 ± 2.65 14.72 ± 1.22
LSTM + MEM + REC 2.96 ± 0.04 1.71 ± 0.27 2.34 ± 0.22
MRA: LSTM+MEM+CPC 24.22 ± 5.45 23.10 ± 1.82 15.54 ± 1.39
Random 0.02 ± 0.00 0.03 ± 0.00 0.01 ± 0.00
Human 50.00 ± 0.00 50.00 ± 0.00 49.60 ± 0.24
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Table 8: Episode reward: Spot Diff Basic
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 0.46 ± 0.00 0.43 ± 0.00 0.43 ± 0.01
FF + MEM 0.46 ± 0.01 0.45 ± 0.01 0.44 ± 0.00
FF + MEM + CPC 0.93 ± 0.02 0.71 ± 0.04 0.69 ± 0.05
FF + MEM + REC 0.44 ± 0.01 0.45 ± 0.02 0.45 ± 0.00
LSTM 0.46 ± 0.01 0.45 ± 0.01 0.46 ± 0.01
LSTM + CPC 0.54 ± 0.03 0.48 ± 0.03 0.49 ± 0.01
LSTM + MEM 0.47 ± 0.00 0.45 ± 0.01 0.45 ± 0.00
LSTM + MEM + REC 0.46 ± 0.01 0.44 ± 0.01 0.45 ± 0.00
MRA: LSTM+MEM+CPC 0.90 ± 0.07 0.81 ± 0.00 0.78 ± 0.00
Random 0.05 ± 0.00 0.04 ± 0.00 0.04 ± 0.00
Human 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 9: Episode reward: Spot Diff Passive
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 0.22 ± 0.09 0.23 ± 0.00 0.14 ± 0.11
FF + MEM 0.54 ± 0.05 0.46 ± 0.00 0.49 ± 0.04
FF + MEM + CPC 0.80 ± 0.01 0.66 ± 0.03 0.68 ± 0.01
FF + MEM + REC 0.45 ± 0.00 0.45 ± 0.00 0.45 ± 0.01
LSTM 0.95 ± 0.00 0.85 ± 0.01 0.84 ± 0.00
LSTM + CPC 0.91 ± 0.01 0.77 ± 0.00 0.75 ± 0.00
LSTM + MEM 0.97 ± 0.01 0.78 ± 0.04 0.83 ± 0.03
LSTM + MEM + REC 0.74 ± 0.12 0.54 ± 0.06 0.52 ± 0.09
MRA: LSTM+MEM+CPC 0.96 ± 0.01 0.82 ± 0.01 0.78 ± 0.01
Random 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.00
Human 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 10: Episode reward: Spot Diff Multi-Object
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 0.02 ± 0.01 0.01 ± 0.00 0.00 ± 0.00
FF + MEM 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
FF + MEM + CPC 0.12 ± 0.08 0.11 ± 0.06 0.04 ± 0.02
FF + MEM + REC 0.18 ± 0.02 0.17 ± 0.01 0.01 ± 0.01
LSTM 0.52 ± 0.20 0.14 ± 0.07 0.05 ± 0.02
LSTM + CPC 0.58 ± 0.03 0.24 ± 0.01 0.09 ± 0.00
LSTM + MEM 0.39 ± 0.05 0.14 ± 0.07 0.05 ± 0.03
LSTM + MEM + REC 0.18 ± 0.04 0.15 ± 0.02 0.07 ± 0.00
MRA: LSTM+MEM+CPC 0.69 ± 0.02 0.27 ± 0.00 0.10 ± 0.00
Random 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
Human 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 11: Episode reward: Spot Diff Motion
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 0.12 ± 0.04 0.00 ± 0.01 0.00 ± 0.00
FF + MEM 0.08 ± 0.05 0.07 ± 0.05 0.08 ± 0.06
FF + MEM + CPC 0.13 ± 0.09 0.24 ± 0.10 0.23 ± 0.11
FF + MEM + REC 0.46 ± 0.01 0.42 ± 0.01 0.43 ± 0.00
LSTM 0.45 ± 0.00 0.44 ± 0.01 0.43 ± 0.01
LSTM + CPC 0.46 ± 0.00 0.43 ± 0.00 0.44 ± 0.01
LSTM + MEM 0.45 ± 0.01 0.46 ± 0.00 0.45 ± 0.00
LSTM + MEM + REC 0.44 ± 0.02 0.44 ± 0.01 0.42 ± 0.01
MRA: LSTM+MEM+CPC 0.47 ± 0.01 0.45 ± 0.00 0.46 ± 0.01
Random 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
Human 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
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Table 12: Episode reward: Visible Goal With Buildings
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 12.27 ± 0.83 3.74 ± 1.70 0.14 ± 0.14
FF + MEM 13.58 ± 1.45 1.52 ± 0.28 0.47 ± 0.02
FF + MEM + CPC 31.87 ± 0.25 22.99 ± 0.70 9.83 ± 0.40
FF + MEM + REC 31.01 ± 0.77 23.42 ± 0.33 9.84 ± 1.09
LSTM 28.72 ± 0.34 11.37 ± 0.00 2.66 ± 0.00
LSTM + CPC 29.46 ± 0.23 11.52 ± 0.08 2.52 ± 0.02
LSTM + MEM 30.92 ± 0.28 11.74 ± 0.22 3.29 ± 0.10
LSTM + MEM + REC 35.95 ± 0.28 25.16 ± 0.05 12.54 ± 0.34
MRA: LSTM+MEM+CPC 32.45 ± 0.39 12.66 ± 0.06 3.38 ± 0.05
Random 1.08 ± 0.02 0.58 ± 0.01 0.22 ± 0.01
Human 23.60 ± 1.69 23.50 ± 0.75 14.30 ± 0.60

Table 13: Episode reward: Invisible Goal With Buildings
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 9.30 ± 0.33 1.80 ± 0.01 0.28 ± 0.02
FF + MEM 9.95 ± 0.65 1.54 ± 0.02 0.48 ± 0.00
FF + MEM + CPC 10.65 ± 0.28 1.52 ± 0.10 0.31 ± 0.01
FF + MEM + REC 12.29 ± 0.24 0.70 ± 0.05 0.20 ± 0.00
LSTM 27.22 ± 0.48 2.01 ± 0.19 0.79 ± 0.01
LSTM + CPC 28.46 ± 0.63 2.25 ± 0.01 0.86 ± 0.01
LSTM + MEM 30.15 ± 0.04 3.10 ± 0.08 1.17 ± 0.08
LSTM + MEM + REC 32.10 ± 0.05 2.75 ± 0.24 1.17 ± 0.09
MRA: LSTM+MEM+CPC 30.51 ± 0.21 2.39 ± 0.09 1.09 ± 0.03
Random 0.95 ± 0.02 0.53 ± 0.01 0.20 ± 0.01
Human 17.37 ± 1.91 12.40 ± 1.45 4.90 ± 0.71

Table 14: Episode reward: Invisible Goal Empty Arena
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 1.78 ± 0.11 0.38 ± 0.04 0.05 ± 0.00
FF + MEM 2.21 ± 0.05 0.28 ± 0.02 0.07 ± 0.01
FF + MEM + CPC 2.37 ± 0.07 0.22 ± 0.02 0.05 ± 0.00
FF + MEM + REC 3.25 ± 0.25 0.27 ± 0.02 0.06 ± 0.01
LSTM 7.60 ± 0.14 0.14 ± 0.01 0.05 ± 0.01
LSTM + CPC 10.48 ± 0.35 0.12 ± 0.02 0.03 ± 0.01
LSTM + MEM 10.32 ± 0.12 0.19 ± 0.02 0.03 ± 0.01
LSTM + MEM + REC 12.40 ± 0.08 0.08 ± 0.01 0.04 ± 0.00
MRA: LSTM+MEM+CPC 13.04 ± 0.60 0.23 ± 0.04 0.07 ± 0.01
Random 0.15 ± 0.01 0.15 ± 0.01 0.03 ± 0.00
Human 4.90 ± 1.32 1.70 ± 0.67 0.30 ± 0.30
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Table 15: Episode reward: Visible Goal Procedural Maze
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 174.63 ± 4.27 43.55 ± 3.08 11.93 ± 2.17
FF + MEM 224.53 ± 11.31 37.80 ± 2.28 8.52 ± 0.87
FF + MEM + CPC 272.99 ± 5.31 33.38 ± 1.51 9.99 ± 1.10
FF + MEM + REC 607.48 ± 36.98 59.64 ± 9.41 43.07 ± 19.35
LSTM 463.43 ± 12.84 27.09 ± 1.69 6.52 ± 1.86
LSTM + CPC 473.42 ± 3.84 19.72 ± 0.98 4.90 ± 0.36
LSTM + MEM 523.14 ± 10.52 22.39 ± 3.65 7.83 ± 1.25
LSTM + MEM + REC 655.10 ± 11.65 49.53 ± 24.78 57.21 ± 23.92
MRA: LSTM+MEM+CPC 546.08 ± 2.26 40.64 ± 0.00 14.21 ± 0.00
Random Small: 7.79 ± 0.14 3.89 ± 0.10 1.19 ± 0.05

Large: 1.97 ± 0.06
Human Small: 364.00 ± 43.20 198.00 ± 24.98 86.00 ± 20.15

Large: 104.00 ± 23.58

Table 16: Episode reward: Transitive Inference
Model Train Holdout-Interpolate Holdout-Extrapolate
FF 3.71 ± 0.07 3.52 ± 0.06 3.73 ± 0.04
FF + MEM 4.34 ± 0.51 4.09 ± 0.48 5.76 ± 0.18
FF + MEM + CPC 4.64 ± 0.76 5.16 ± 0.01 5.62 ± 0.41
FF + MEM + REC 0.47 ± 0.22 0.30 ± 0.01 0.69 ± 0.12
LSTM 8.67 ± 0.55 5.31 ± 0.10 7.32 ± 0.38
LSTM + CPC 9.65 ± 0.53 5.59 ± 0.02 7.77 ± 0.08
LSTM + MEM 8.98 ± 0.42 6.76 ± 0.75 8.84 ± 0.41
LSTM + MEM + REC 10.86 ± 0.02 8.88 ± 0.11 9.80 ± 0.16
MRA: LSTM+MEM+CPC 10.34 ± 0.10 7.21 ± 0.19 9.81 ± 0.09
Random Small: 1.44 ± 0.02 1.42 ± 0.02 1.43 ± 0.02

Large: 1.44 ± 0.02
Human Small: 5.40 ± 2.20 6.00 ± 2.45 7.20 ± 2.94

Large: 6.60 ± 2.69

Table 17: Fixed hyper-parameters
Optimizer
Adam:
Beta1 0.9
Beta2 0.999
Epsilon 1e-4
RMSProp:
Epsilon 0.1
Momentum (Inherited from IMPALA paper) 0.0
Decay 0.99
MEM
Number of k-nearest neighbors to retrieve from MEM 10
MEM key size (and accordingly, query size) 128
Capacity (max number of timesteps storable) 2048 for Unity levels, else 1024
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