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Appendices

The appendices are organized as follows. In Appendix [A] we introduce the basic notations and
problem reductions that are used throughout the main draft and the appendix. In Appendix [B] we
describe and prove the main geometric properties of the optimization landscape for Huber loss. In
Appendix [C] we provide global convergence analysis for the propose Riemannian gradient descent
methods for optimizing the Huber loss, and the subgradient methods for solving LP rounding. We
list the basic technical tools and results in Appendix [D} All the technical geometric analysis are
postponed to Appendix [El Appendix [F] Appendix [G] and Appendix [H] Finally, in Appendix [[| we
describe the proposed optimization algorithms in full details for all ¢!, Huber, and ¢* losses.

A Basic Notations and Problem Reductions

A.1 Notations

Throughout this paper, all vectors/matrices are written in bold font a/A; indexed values are written
as a;, A;;. We use v_; to denote a subvector of v without the i-th entry. Zeros or ones vectors are
defined as 0,,, or 1,,, with m denoting its length, and ¢-th canonical basis vector defined as e;. We
use S”! to denote an n-dimensional unit sphere in the Euclidean space R”. We use z(*) to denote
an optimization variable z at k-th iteration. We let [m] = {1,2,--- ,m}. Let F,, € C"*" denote a
unnormalized n x n Fourier matrix, with | F,|| = v/n, and F; ! = n= ' F*.

We define sign(-) as

. z/lz|, z%0
sign(z) = {O/| | zi()

. . v
Some basic operators. We use ¢,,_,,, to denote the zero-padding operator ¢,,_,,,, v = [O ]
n—m
which zero-pads a length n vector v € R" to length m (n < m). Correspondingly, its adjoint operator
v¥_ ., denotes the restriction of a vector to its first n coordinate (and ¢ _,, = t,,,—,,). Similarly,

given a subset Z € [m] and a vector v € RIZI, we use LT o - RIZI +— R™ to denote an operator that
maps v to a zero-padded vector whose entries in Z corresponding to those of v.

We use P, and P, to denote projections onto v and its orthogonal complement, respectively. We let
Psn—1 to be the £2-normalization operator. To sum up, we have

UUT UUT v

Poiu=u— ——5v, Pyu=—5u, Pgna1v=-—.
? T T o]

Circular convolution and circulant matrices. The convolution operator ® is circular with
-1 . . .
modulo-m: (a® x), = Z;‘n:() a;x;—j, and we use [# to specify the circular convolution in 2D. For

a vector v € R™, let sy[v] denote the cyclic shift of v with length ¢. Thus, we can introduce the
circulant matrix C,, € R"*" generated through v € R™,

(%% Um e U3 V2
V2 U1 Um U3
C, = Vo v .| = [so[v] si[v] -+ smo1[v]]. (16)
Um—1 . ’ Um
Um Un—-1 - U2 U1

Now the circulant convolution can also be written in a simpler matrix-vector product form. For
instance, for any w € R” and v € R” (n < m),

Uu®v=0Cy tnsmv=C,, ., u.

In addition, the correlation between w and v can be also written in a similar form of convolution
operator which reverses one vector before convolution. Let ¥ denote a cyclic reversal of v € R™,
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. - T . . ~
ie., ¥ = [U1,Vm,VUm—1," -, V2] , and define two correlation matrices C}ie; = s;[v] and Cype; =
s_;[v]. The two operators satisfy

~
% o~
Cl,nﬂmvu =v @ u, Cl—nﬂmv

u=v®u.

Notation for several distributions. We use i.i.d. to denote identically and independently dis-
tributed random variables:

o we use N (u, 0?) to denote Gaussian distribution with mean 1 and variance o'2;

e we use U(S" 1) to denote the uniform distribution over the sphere S*~!;

e we use 5(6) to denote the Bernoulli distribution with parameter ¢ controling the nonzero
probability;

e we use BG(0) to denote Bernoulli-Gaussian distribution, i.e., if u ~ BG(6),thenu =b - g
with b ~ B(6) and g ~ N(0,1);

e we use BR(6) to denote Bernoulli-Rademacher distribution, i.e., if u ~ BR(f), then
u="b-r with b ~ B(6) and r follows Rademacher distribution.

A.2 Problem Reduction

In the following sections of the appendices, we study the optimization of

. 1 e
min ¢n(q) = — > Hy(Cy Pg), st qeS"

where

L —1/2
P =— I )
(971}7;0%0%)

We simplify the problem by a change of variable § = Qq, which rotates the space by the orthogonal
matrix Q in (7). Since the rotation @ does not change the optimization landscape, by an abuse of
notation of g and g, we can rewrite the problem (B)) as

min f(q) = —ZH (C2.;RQ7'q), st g =1, (17)

=1
where

—1/2
1 & -
R = C, (WZC;C%> ., Q = C.(C,C,) 1/2,

i=1

and

1 & e 1/2
RQ™' = C, (an > C;Cyi) (cic,) " ct
i=1

For the reduction from the original problem to (I7), we used the fact that Cy, P = Cy, R in (7).
Moreover, since R ~ Q is near orthogonal, by assuming RQ~! = I we can further reduce to

mmf H, st. gl = 1. (18)
np 121 |

The objective (I0) is simpler and much easier for analysis. By a similar analysis as [22}[32], it can be

shown that asymptotically the landscape is highly symmetric and the standard basis vectors {iei}?zl

are the only global minimizers.

For the following sections of the appendices, without loss of generaltiy, we study the optimization
landscape of f(q) over the sphere, and proving global convergence of vanilla Riemannian gradient
descent methods. We will show that RQ~! ~ I, so that we can study the landscape of f(q) via

studying the landscape of fN (q) followed by a perturbation analysis.

12
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B Geometry: Main Results

In this part of appendix, we study the optimization landscape of f(q) over regions

St = {qes"‘ll ol 1+§7Qi20}a § €[0,00).

lg—illos

We will show that the function f(q) over each one of Sgi has benign first-order geometric structure,
which enables efficient optimization via vanilla Riemannian gradient descent methods.

Proposition B.1 (Regularity condition) Suppose 6 > 1 and i < co min {0, ﬁ} There exists

some numerical constant v € (0, 1), when the sample complexity

8
p>C’max{ o :2 log4n}£_20_2n4log <9n)’
1

mm

with probability at least 1 — n=" — conp~= "0 over the randomness of {z;}t_,, we have

(grad f(q), qiqg — €i) > cab(1—0)gillg—eil , \/1—qf €[ 7], (19)

_ . s 5 n—1
(grad f(q),qiq —ei) = ca0(1 —0)qin™ " |g—ei|, /1—¢’€ [% \ 1 (20)

holds for any q € Sg“ and each index i € [n]. Here, ¢y, ¢1, ¢a, c3, ¢4, and C are positive numerical
constants.

Proof Without loss of generality, it is enough to consider the case ¢ = n. For all g € Sg’*, we have

(grad f(q), 4nq — €n)
= (grad f(g) — grad f(g) + grad f(g) - grad E | f(q) +gradE[f( )| ama—en)
> (gradE | J(a)| . aua — en ) — [(grad f(a) ~ grad J(a), auq — en )|

- Kgrad J(a) ~ gradE [ F(a) | qua - en>( -

n

From Proposition [E.1, when § > L and ;1 < ¢ymin {9, ﬁ}, we know that in the worst case
scenario,

(radE [ J(@)] .40q = €0 ) = c10(1 = 0)en™* g

holds for all g € Sg”r. On the other hand, by Corollary , when p > C1072¢672n% log (97”) , We
have

’<gradf(q)—gradE[~(Q)],qnq—en>‘ < ngadf( ) — gradE[ ]H lgng — e
< G001 = 0)6n™ 0,9 e,

holds for all ¢ € S¢™ with probability at least 1 — np~“2%" — nexp (—czn?). Moreover, from
Proposition we know that when p > C' 293872 log? nlog ( )

mm

[{grad f(a) — grad f(0), a1a — e )| < aua — en] - [grad f(a) - grad f(q)|
< GO0 -0 0,0 — e
holds for all g € Sg”r with probability at least 1 — c4p= "0 — n=% — ne=¢79"P_ By combining all

the bounds above, we obtain the desired result. |
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Proposition B.2 (Negative curvature on the gradient) Suppose 0 > % and p < <=. For any

B

index i € [n], when the sample
8 0
p= C’max{ 2/{ 5 log4n} €720 2n* log (n) ,
9 Inln /'l/
with probability at least 1 — n=" — conp~= "0 over the randomness of {z;}t_,, we have
1 1 0(1—-0) ¢
rad ,—€i— —€ ) = g——————, (21)
(wadfia) Te; = ey > 0L
holds for all q € S§+ and any q; such that j # i and qu > %qf Here, cy, c1, ca, c3, ¢4, and C are

positive numerical constants.

Proof Without loss of generality, it is enough to consider the case ¢ = n. For all g € Sg““, we have

1 1
rad q,e'—en>
(@) e~

- <grad f(q) — grad f(q) + grad f(q) — grad E [N@] +gradlt [N(q)] ’ quej - qlne">

> <gradE |7(@)]. iej - qle> - Kgrad f(a) = grad f(q), &ej - qle>‘

J J
| Fla) - g [Fa)] Les - e ).

From Proposition E when 6 > % and p < we know that

\/7’
~ 0(1—0
<gradE[f(q)]7;€j—qlnen> > @Tn) if

holds for all q € 82’ * and any g; such that q?- % . On the other hand, by Corollary when
p = C107262nb log (%"), we have

(raa fla) ~ wrad [F(@]. s~ e )| < Jemea ) - a5 [ )] Les - e
61-0) ¢
To12n 14¢

holds for all g € Sg” with probability at least 1 — np~°2" — n exp (fc;),nQ). For the last inequality,
we used the fact that

1 1
—e; — —e,
q; qn

11
=[5+ < 2vn

q qa

/

Moreover, from Proposition , we know that when p > 029372 log* nlog (I—")

Kgrad f(q) — grad f(q), gnq — en>’ < |grad f(g) — grad f(q)H - quej - e
_0a=-0 ¢
12n 1+¢

holds for all g € S¢ with probability at least 1 — c4p~ "% —n=% — ne~°7"?. By combining all
the bounds above, we obtain the desired result. [ |
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Proposition B.3 (Bounded gradient) Suppose 6 > L and ;1 < % For any index i € [n], when

n
the sample

8 0
D= Cmax{ O f 5 log4n} 6~ 2nlog (n) ,
mln /"L

with probability at least 1 — n=" — conp~ 3" over the randomness of{xi}le, we have
[(grad f(q),e:)| < 2, (22)
lgrad f(@)|l < 2vén. (23)

holds for all q € S"~ and any index i € [n]. Here, cy, c1, c2, c3 and C are positive numerical
constants.

Proof For any index i € [n], we have

<gradf el>‘ + sup

sup  |(grad f(q).e)| < sup (grad f(q) — grad f(q). e )|

qesn—1 qesn—1 geSnt
< sSup1 <grad flq ez>‘ ‘gradf — grad f(q)” .
qes™

By Corollary|G.3| when p > Cinlog ( ) we have

> 3
sup <grad f(a), ei>‘ < -
gesn 2
holds for any index ¢ € [n] with probability at least 1 —np=4%" — nexp (—cap). On the other hand,

Proposmonlmphes that, when p > Cs 2 log nlog ( ) ,, we have

m in

1

ngadf(Q)—gradf(q)H < 5

holds with probability at least 1 — c3p~ %™ — n = — ne~"P Combining the bounds above gives
(22)). The bound (23] can be proved in a similar fashion. [

C Convergence Analysis

In this section, we show linear convergence of vanilla gradient descent to target solutions. Firstly,
for Huber loss, we prove that the gradient descent method converges to an approximate solution in
polynomial steps. Second, we show linear convergence of subgradient method to the target solution,
which solves phase-2 LP rounding problem.

Our analysis is based on based on the geometric properties of the optimization landscape showed in
Appendix [B] Namely, our following proofs are based on the results in Proposition [B.1] Proposition

and Proposition [B.3] (i.e., the equations (I9), 20), 22), and 23)) holding for the rest of this

section.

C.1 Proof of linear convergence for [Algorithm 1|

First, assuming the geometric properties in Appendix |B|hold, we show that starting from a random
initialization, the gradient descent method optimizing

1 p
min - — Y H,(C.,RQ 'q), st. geS"! 24
in f(q) np;u(qu) q (24)
recovers an approximate solution in polynomial steps.
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Theorem C.1 (Linear convergence of Given an initialization ¢©) ~ U(S" ) uni-

form random drawn from the sphere, choose a stepsize

. 1 pu
T = len{n5/2,n},

then the vanilla gradient descent method for ) produces a solution
e <

for some i € [n], whenever

Proof [Proof of

Initialization and iterate stays within the region. First, from Lemma[C.3] we know that when
¢ = ﬁ, with probability at least 1/2, our random initialization q(*) falls into one of the sets

{Sé*, 851*, . 78g+,SgL } Without loss of generality, we assume that ¢(©) € 8"+

Once g% initialized within the region S”+ from Lemma | whenever the stepsize 7 < ¢o/y/1,

we know that our gradient descent stays W1th1n the region Sg” when the stepsize 7 < ¢1/4/n for
some ¢; > (. Based on this, to complete the proof, we now proceed by proving the following results.

Linear convergence until reaching g — e,| < p. From Proposition there exists some
numerical constant -y € (p, 1), such that the regularity condition

_ n—1
(grad f(q), anq — €n) = c20(1—0)n" %2 g —e,|, /1—¢q2e [%\/ n ] 2
(N

(grad f(q), qnq —en) = 0(1 =0)-|g—en|, +/1—q2€[u,], (26)
-~

holds w.h.p. for all g € Sg”. As ag > «y, the regularity condition holds for all g with o = ;.
Select a stepsize 7 such that 7 < V3 fe . By Lemrna and the regularity condition (23)), we have

2 2
—7] <2(1—ra1)*,

2 2
o e -5

< (1—rar)t [q(o) 5

where the last inequality utilizes the fact that Hq(o) — en”2 < 2. This further implies that

k 2 2 i
1—q, < Hq()—enH < ?-1-2(1—7'0[1) <2,
when
2 log (v2/4
2(1—7041)k<l = k;;}g;M_
2 log (1 —Tay)

This implies that /1 — ¢2 < yforV k > K 1 Thus, from (26), we know that the regularity condition
holds with o = ap. Choose stepsize 7 < 5 fe , apply Lemmaagaln with @ = g, forall k > 1,

we have

2

- %2 < (1- TOZQ)k <‘q(0) - enH2 - l;) < (’72 - Hz) (1- TOZ2)k .

2
(K1+k) —e,

4

This further implies that

2

2 2
I N G LT
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528
529

530

531

533
534

535

whenever

log (1?/ (27* — 1?)) '

log (1 — Tas)

2 2
<72'u2>(17'a2)k < % = k>=Ky:=

Therefore, combining the results above, by using the fact that a1 = cp0(1 — 6)n=3/2 and ay =
ch0(1 — ), we have Hq(k) — en|| < p whenever

. Yo P! . 1w
< 3 = o
T mm{2\/§9n 2\/5071} Cm1n{n5/2 n}
and k > K := K; + K5 with
log (4/7%) log ((29* — #*) /1?)
log ((1 —Taq)™1) log ((1 — Ta)~1)

. 1 nb/2 1
< =h + o log () < & max {n47 }log ( >
T TQg I 0 I I

where we used the fact that log™" ((1 — 2)~!) < 2/z for small z.

No jump away from an approximate solution e,,. Finally, we show that once our iterate reaches
the region
— {qes" " |[q - ea] <24},

it will stay within the region S, such that our final iterates will always stay close to an approximate
solution en Towards this end, suppose q'*) € S. Therefore two possibilities: (i) 1 < Hq - e"H <
2 (i1) H — enH w. If the case (i) holds, then our argument above implies that Hq k+1) _ e, H <

Hq(’“) - enH 24. Otherw1se Hq(k — enH , for which we have

(k+1)

Hq enH < Hq(’“) — rgrad f(q) — e,

< Hq(’“)—en + 7llgrad f(q@)| < p+27VvOn < 2y,

where we used the fact that 7 < \/ZTL' Thus, by induction, we have q(k/) € S for all future iterates
k' =k+1,k+2,---. This completes the proof. [ ]

Lemma C.2 Forany q € Sg”', we have
2
l—qp < lg—enf” < 2(1-4q3) < 2
Proof We have
1—-q2
1+¢2

as desired. ]

< 2(1-¢qp)

1_q?L < Hq_en”2 = Hq—n‘|2+(1_%z)2 HenH2 = 2(1_Qn) =2

Lemma C.3 (Random initialization falls into good region) Ler q(¥) ~ U(S" 1) be uniformly
random generated from the unit sphere S*~'. When & = @, then with probability at least
1/2, ¢\9) belongs to one of the 2n sets {Sg*,Séf, e ,Sg*,ng}. The set q(9) belongs to is

uniformly at random.

Proof We refer the readers to Lemma 3.9 of [23]] and Theorem 1 of [22]] for detailed proofs. |
Lemma C.4 (Stay within the region S;'") Suppose q° € S¢T with € < 1. There exists some
constant ¢ > 0, such that when the stepszze satisfies T < ﬁ our Riemannian gradient iterate

q®) = Pgns ( (=1 _ 7. grad f(q* )) satisfies q*) e Sg” forallk =1
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Proof We prove this by induction. For any k > 1, suppose ¢'*) € 82*. For convenience, let
g®) = grad f(q®). Then, for any j + k, we have

(qék“))Q _ <Qr(7,k) - T%@)z
qj(k-i—l) qj(k:) . Tg](k:)

We proceed by considering the following two cases.

%k)/q](-k)‘ > +/3. In this case, we have

2 2 2
A W Rt 7L S W R Gk B . (1—27\/ﬁ>2 > 2
LD qj(_k) — ng(k) qj(» ) jgth) _ ngm/q(k) 1/v/3+21y/n

J

where the second inequality utilizes (22)) and the fact ¢ > T and the last inequality follows when

V32 1
TS 30613 Vi

q7(lk) /qék) ‘ </3. Proposition and Proposition implies that

(k) (k) (k)

9, 9; gn
w0 m w2 @7
4; q; n
By noting that ‘ ‘ ‘qn )‘ /v/3 = 1/4/3n and ‘g( )‘ < 2, we have
(k) (k)
1 qj 9;

J

Thus, we have
2 k), (k k), (k)\ 2
(qgﬁ—l)) _ <Q7(zk)> <1+7—.g( )/qj( ) ( )/q( ))
q§k+1) j(k) ng /q(k)

(k) 2
() (o (o)) = () (oot
q§’“) qjqfe) 7" q](m in  1+€

The first im@rlity follows from (27) and (28)), and the second inequality directly follows from

Proposition Therefore, when ¢ < 1, this implies that ¢(*+1) e Sg”r. By induction, this holds for
allk > 1. ]

In the following, we show that the iterates get closer to e,,.
Lemma C.5 (Iterate contraction) For any q € Sg”, assuming the following regularity condition

(grad f(q),qiq — en) = alq— e, (29)

holds for a parameter o > 0. Then if ¢*) € Sg”’ and the stepsize T < cy-, the iterate gk =
Psn—1 (g — 7 - grad f(q)) satisfies
2 (270n)\>
" .

2 2
e = (222 < [ e

o
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Proof First, note that

(k+1) 2 2
Ja+ —e|

= ||Pgn—1 (q(k) — 7 - grad f(q(k))) — Pgn—1(ey)

2
q®) — 7 grad f(q®) — enH

N

= g™ — enH2 — 27 - <grad f(q(k)), q® — en> + 72 ngad f(q(]’c))H2

2
< g™ — enH — 27« ”q(k) — enH + 4726,

where the first inequality utilizes the fact that Pgn-1(-) is 1-Lipschitz continuous, and the last line
follows from (29) and (23) in Proposition We now subtract both sides by (—2T£”')2,

2 (275n>2 g Hq(k) e 2 <270?n>2 o <q(k) el 27571)

[1 — 27 (‘q(k) —e, H + 279") ] “q(k) _e, z (27911)2]
«

aovo o e (2],

where the last inequality follows because

Hq (k1) _ g

N

2
e < o

N
-
|
Sk
N
e

such that

lg —en| + < 2
«

This completes the proof. [ ]

C.2 Exact solution via LP rounding

To obtain exact solutions, we use the approximate solution g, from phase-1 gradient descent method
as a warm start 7 = q., and consider solving a convex phase-2 LP rounding problem,

mqm ((q) = —ZHC’%RQ qu, st. {r,gy =1

In the following, we show the function is sharp around the target solution, so that projected subgradient
descent methods converge linearly to the truth.

C.2.1 Sharpness of the objective function.
Proposition C.6 Suppose 0 € (%, %) and r satisfies

[r—nl _ 1
< —. 30
n 20 (30)
Wheneverp > Co—5+ (C log n, with probability at least 1 — p~™0 —n= the function ((q)

is sharp in a sense that

C(q) - C((RQ ol li:) > 50\/> ’ (RQ )2

for any feasible q with {r,q) = 1. Here, 7 = (RQ™") T

€2y
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Proof Let us denote § = RQ~'q. Then we can rewrite our original problem as

mqln C — Z ICzal, st (F,q)=1,

which is reduced to the orthogonal problem in @) of Lemma|[C.7] To utilize the result in Lemma[C.7]
we first prove that 7 satisfies (33)) if = satisfies (30). Towards that end, note that

= (RQT) Tr = v (RQTY) T -

By Lemma we know that, for any 6 € (0, 1), whenever p > C %227(0) 10g3 n,
ST
(@) " —1)r| < |[(RQ™) ™~ 1] Ir| < 25|
holds with probability at least 1 — p~“1¢ — =2 This further implies that
Pn = 1y =26|r|, |7_n]| < [r—n| +26]r].

Therefore, by choose § sufficiently small, we have

2
[7onl _ ol +26 0] |7 —nll /ro + 264/ 1+ ([r—nll /rn) _ 1

¥, T — 26 |7 1= 200/1+ (|r—nl /rn)? 10

where the last inequality follows from (30). Therefore, by Lemmal|C.7] we obtain
1€, ~ ~(en
c@-c((re) 2 -l -(2)

1 /2 e
> o[ =0]a— <~
20V m n
2 n
- WHR@ ( way )|
i
> 020 0w (RQ7Y) - |q - (RQ™) T &
25 ™ rn
By Lemma we know that H (RQfl)ilH < 1+ 24, so that
o (RQ ) = (R )72 7
min = 1 + 25
Thus, this further implies that
1€, 1 /2 40 _1\—1€n
= A= -lq — ol (I
N e e e LA
as desired. |
Lemma C.7 (Sharpness for the orthogonal case) Consider the following problem
mqm(j = — Z [Cx,ql, st {(r,q)=1, (32)
with r € S*~! satisfying
7l _ 1
<—, 1, >0. 33
Tn 10 'n = (33)

Whenever p > e%nlog (%) with probability at least 1 — c;np 6 — czne_c392p, the function E(q) is

sharp in a sense that
~ ~(e 1 /2
_ —_n > /20 _n
S =¢ (rn) 25\5 Hq

Sor any feasible q with {r,q) = 1.
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Proof Observing that (r,q) =1, q_p + g, = 1, we have

1 1
ol lgen] > TTagen = T (—qn) > 1 (—|qn|).
n n

This further implies that
1 el

_|n‘\

lg—nl - (34)

lr’l'L

1 2 ) Ir—n)\2
= — —(4n + Hq—nH < 1+ (—— Hq—nH 5
Tn Tn
o2\
r_, e,
(1+( ) ) \q— < lanl- (35)
T"I’L r'ﬂ

We now proceed by considering the following two cases.

Second, we have

which implies that

Casei: |q,| > In this case, we have

12 e N2\
~ ~ (e, T_n €n
—C(=2) = ZA/Z0|qin] = /20 |1+ (=l —
¢(q) C(Tn> 6\/;9“(1 I 6\/}( +< o )) ‘q o
5 2
> 2./ 20q-&
33\5 ‘q

where the first inequality follows by (36), the second inequality follows by (33), and the last inequality
follows because Hi’i"” < %

1
Tn '

Case ii: |¢,| < In this case, we have

e
Tn

S0 -8(2) = b 2otant - 20 (L 1)

2 ((—\f ”'>| - )
y ((_\[|>( <|rnn)>/ Hq‘

where the first inequality follows by (36)), the second inequality follows from (34)), the third inequality
follows from (33)), and the last one follows because ”TT =l ¢ L

10

Combining the results in both cases, we obtain the desired result. [ ]
Lemma C.8 Suppose 6 € (%, %) Whenever p > g%nlog (%) we have

L Ly/26laal, if1gal = % > 0,

a)-C (=) = {9V (36)

r 1 /2p1m _5. /2 1 . 1
. LV20ll - 3/20 (2~ lanl), iflanl - £ <0,

holds with probability at least 1 — cynp=% — cznef%ezp.

21



597
598

599

600

601

602
603

604

605

606

607

608
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Proof For each j € [n], let us define an index set Z; := {i € [p] : (s; [#;]), # 0}, and let us define
events

n—1
=& &= {|L»|<29p}, (0<j<n-1).
=0

By Hoeffding’s inequality and a union bound, we know that

2 - nexp( p92/2) .

Based on this, we have

ni_chwiqnl—;qu zil,
LSS s q>|—ffZH

np; =1 5=0
1 1Y) < - . .
> — (lgnl = — ) D laill, + Z D sy [#D) —ns @)l = D K(sj [#])—n g0l
np /i3 J=0 \i€Zf i€Z;
_ L |gn] x iu | +LE(HTMJ' HTMj )
= p Adn ) & Ty np = q_, < q_, i, )
where we denote M7 = [(s; [#1])—n (s [®2])—n -+ (sj[#p])—n], and M7 denote a subma-

trix of M7 with columns indexed by Z. Conditioned on the event £, by Lemma D.5} - and a union
bound, whenever p > 92 nlog ( ) we have

2
> p\[G lg-nl, ¥Vg-neR" (0<j<n-—1)
1 6Vm
with probability at least 1 — cnp~°. On the other hand, by Gaussian concentration inequality, we have

1 & 5\F 02p
Pl— iy ==4/20) < —— .
(np;”w h 4V 7 ) exp( 647r>

Therefore, combining all the results above, we have

o -¢ () = by/ 2009l i Jga] ~ 1= 0.
Q-¢(—) = .
o %\/ge gl — g\/ge(%n - |qn|>, if Jgal — - <0,

as desired. |

T J
qunM < -
711

.
qunM;er

‘ [

C.3 Linear convergence for projection subgradient descent in

Now based on the sharpness condition, we are ready to show that the projected subgradient descent
method

p
g ) = g®) —rRp gk gk Z C—r sign <C RQ 4 )

on ((q) converges linearly to the target solution up to a scaling factor. For convenience, let us first
define the distance between the iterate and the target solution
k. Hs(m H , s®) = ¢ —(RQ7Y) ! En

n
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613

614

615
616

617

618

619

620

621
622

623

624

625
626

and several parameters

1 /2
=% ;0, B := 36log(np).

We show the following result.

Proposition C.9 Suppose 0 € (L, 1) and v satisfies

lr—n| _ 1
rn 20’

rn >0, |r|=1. (37

Let ¢'¥) be the sequence generated by the projected subgradient method (cf. with
initialization ¢°) = r and geometrically decreasing step size

16 « a?
k k__(0 0
T =t 0 = g T <<t 9

Whenever p = C log® n, with probability at least 1 — p="0 — n=c2 the sequence

{q(k)}kzo satisfies

25 (Ca.)

min

en| _ 2
b PP (39)

]

Tn

for all iteration k = 0,1,2, - -

Proof Given the initialization ¢¥) = 7, we have

40 — “1én _&n

~(re) T 5 < (R

- en’

Tn

1/2
< O+ (7 ANE
x L ° T-_n Tn — = 9

9 Tn

where the last inequality we used Lemma[H:4] From the argument in Proposition [C.6] we know that
(37) implies |7_,,| /7, < 1/10. By the fact that |7|| < 10/9, we have

<t ot < B2 <t o g0 <2 (40)
9 Tn 9 8 4 5

On the other hand, notice that

, 2
(a®0)" = Ja® — 9P, g® — (RQ™T) 1?

_ (d(k>>2 _ 9 (k) <S(k)"prLg(’f)> N (T<k)>2 H’prl g<k>H2

By Lemma|C.10} we know that whenp > C

Wlog n,forany k =1,2,---,

Preg®] < 86108 (np) = 5

holds with probability at least 1 — p~°1™¢ — n=°2_ On the other hand, by the sharpness property of
the function in Proposition[C.€] for any k = 1,2, - - -,

(s = (940 = (a) - (n@) ")
> e - w7

23
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627
628
629

630
631
632

633

634

635

636

637

638

639

640
641

642

643

644

645

646

647

where the first equality follows from the fact that {r, s")) = 0 so that P,.. s} = s(*), the first
inequality follows from the fact that {(q) is convex, and the second inequality utilizes the sharpness
of the function in Proposition [C.6] given the condition (37). Thus, we have

(d<k+1>)2 < (d(k)>2 a0 k) 4 g2 <T<k>)2

Now we proceed to prove (39) by induction. It is clear that (39) holds for q?). Suppose g\*) satisfies
B9, i.e., d®) < nFd© for some k > 1. The quadratic term of d*) on the right hand side of the
1nequahty above will obtain its maximum at £ 2k due to the definition of 7(°) and d© 5 as shown
in (@0). This, together with 7)) = =1 it gives

2 4 4 2
(d(k+1)) < 2577 5a ) n2kT(0) 4 B2 (7’(0)>

4 25 2 2
_ %n% . [1 501 & ZB2 (T(o)> ] < Pkt (d(o))

where the last inequality follows from (38), where
2
1 5a7r® 52( ) <1—a7(0)<1—;—62<772<1.

This completes the proof. [ ]

Lemma C.10 Suppose 0 € (%, 1). Wheneverp > 0%2”78(0) log® n, we have

min

p = sup — < 6+/log(np) 41

qqTr=1"T

P
Z C’T srgn(C RQ™ q)

holds with probability at least 1 — pfclne —n~,

Proof We have

o< Lirg lz(wm o s (€. RQ" q>)

i=1
Since the sign(-) function is bounded by 1, we have

1 3 p
p < |RQ (X IFail, ) - va
np i=1
where we used the fact that |Cy, | = |Fx;| . As x; ~;..4. BG(0), let z; = b; ©g; with b; ~ B(0)
and g; ~ N'(0, I). Then we have
|C; | = [ Fzill,, = gjagn!(fj Ob)*gil.

By Gaussian concentration inequality in Lemma[D.4]and a union bound, we have

t2
il = < .
P (112?2(;7 |Fzi| = t) < (np) - exp ( 2’[1) '

Choose t = 44/nlog (np), then we have

max ||Fa;|| < nlog (np),
1<i<p

with probability at least 1 — (np)~7. On the other hand, by Lemma we know that whenever

p = C%%(C) log® n, we have
3

RQ™'| < <

RQ| < 3
holds with probability at least 1-— p‘clna — n~ . Combining all the results above, we obtain

p < '3 (4p«/nlog np ) log(np),
nP

as desired. [ ]

24



648

650

651
652

653

654

655

656

657
658

659

660
661

662
663

664

665

666
667

D Basics

Lemma D.1 (Moments of the Gaussian Random Variable) If X ~ N (O, a§), then it holds for
all integer m > 1 that

m 2
E[|X|™] = o (m — 1)l l\ﬁnmgw + nm%] <o (m -1, k= |m/2).

Lemma D.2 (sub-Gaussian Random Variables) Let X be a centered 0? sub-Gaussian random
variable, such that

t2
P(X|>t) <2exp|—=z= |,
202

then for any integer p = 1, we have
2
E[X] < (20%)" pT(p/2).
In particular, we have
1 e
X1, = @[XPDY” <oelyp, p>2,

and E[|X|] < o/2m.

Lemma D.3 (Moment-Control Bernstein’s Inequality for Random Variables [42]) Let

X1,---, XN be iid. real-valued random variables. Suppose that there exist some positive
numbers R and o% such that

!
E[|Xk"] < %UE(R”%Q, for all integers m > 2.

Let S = & Zivzl Xy, then for all t > 0, it holds that

PlIS —E[S]| > f] < 2exp (-
ZHS SO T2 1 oRe )

Lemma D.4 (Gaussian Concentration Inequality) Ler g € R™ be a standard Gaussian random
variable g ~ N'(0,I), and let f : R™ — R denote an L-Lipschitz function. Then for all t > 0,

2
P(1f(e) ~ L)l > ) < 2000 (57 ).

Lemma D.5 (Lemma VIL1, [34]) Let M € R™*" with M ~ BG(0) and 6 € (0,1/3). For a
given set T < [no] with |Z| < 360ns, whenever ny > a%nl log (%), it holds

T n2 2
o a], > "2y o

for all v € R™, with probability at least 1 — cn56.

HUTMIC

Lemma D.6 (Derivates of 1, (2)) The first two derivatives of h,, (z) are

_ [sign(z) |z] = p 2 I (U
CEE R RR AT “2)

Whenever necessary, we define V*h, (1) = 0, and write the “second derivative” as V?h,, (1)
instead. Moreover for all z, 2,

Vh, () — Vi, ()] < %|z . 43)
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ees LemmaD.7 Let X ~ N(0,03) and Y ~ N(0,02) and Z ~ N (0,02) be independent random

669 variables. Then we have

E[X1xyvsul =

x H
N (> , (44)
V2myJo2 + o2 2(03 + 03)

E[XY1ixsvieu] = -

o
2 >
E [|X‘ ]]‘IX‘>/L] = \/;O—:L’ eXp _W> ’ (46)
x

(45)

E[XYL1x v+ 72u] = —\/ 2exp (— L > o M, 47
™ 2 (02 + 02 +02) (02+02+J§)3/2
E[X*1x)<,] = \/Eaxuex < ) + P X] < pl, (48)
IE[XQJl‘X_H/K ] =- 2uiexp< u2> + 2P| X + Y| < .
' ™ (02 +02)" 2(02+03)) 7
(49)
670 Proof Direct calculations. ]

671 Lemma D.8 (Calculus for Function of Matrices, Chapter X of [43]]) Let S™*" be the set of sym-
672 metric matrices of size n x n. We define a map f : S"*" — S™*" as

fA) =UfAU*

673 where A € S"™*" has the eigen-decomposition A = UAU?*. The map f is called (Fréchet)
674 differentiable at A if there exists a linear transformation on 8™ such that for all A

If(A+A)—f(A) =DfA)[A]] =o([A]).

675 The linear operator Df(A) is called the derivative of f at A, and D f(A)[A] is the directional
676 derivative of f along A. If f is differentiable at A, then

d
Df(A)[A] = 5 F(A+1A)
t=0
677 We denote the operator norm of the derivative D f(A) as

IDf(A)] = bl IDfF(AA]]-

678 Lemma D.9 (Mean Value Theorem for Function of Matrices) Let f be a differentiable map from
679 a convex subset U of a Banach space X into the Banach space Y. Let A, B € U, and let L be the
680 line segment joining them. Then

|£(B) = f(A)] < [ B — A sup [DFU)] -

681 Lemma D.10 (Theorem VIL.2.3 of [43]]) Let A and B be operators whose spectra are contained
682 in the open right half-plane and open left half-plane, respectively. Then the solution of the equation
683 AX — X B =Y can be expressed as

o0
X = J e tAY et Bt
0

e8¢ LemmaD.11 Ler f(A) = A~'/2, defined the set of all n x n positive definite matrices SU", then
685 we have

1
IDf(A)] < o2 (A)’

686 where omin(A) is the smallest singular value of A.
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Proof To bound the operator norm ||D f(A)||, we introduce an auxiliary function
g(A) = A2, f(A) =g} (A),

such that f and g are the inverse function to each other. Whenever g o f(A) # 0 (which is true for
our case A > 0), this gives

Df(4) = [D(go NA)] " = [Da(a=)] . (50)
This suggests that we can estimate D f(A) via estimating Dg(A) of its inverse function g. Let

g = how(A), h(A) = A™', w(A)= A2
such that their directional derivatives have simple form

Dh(A)[A] = —A'AA™!Y, Dw(A)[A] = AA + AA.
By using chain rule, simple calculation gives
Dg(A)[A] = Dh(w(A)) [Dw(A)[A]],
= —(A72AA7'+AT'AAT?).
Now by (50), the directional derivative
Z =Df(A)[A]
satisfies
AZAY? + AVPZA = -A.
Since A > 0, we write the eigell decomposition as A = UAU*, with U orthogonal and A > 0
diagonal. Let Z = U*ZU and A = U*AU , then the equation above gives
AV2Z _ 7 <_A1/2) _ _A71/2&A71/2’

which is the Sylvester equation []. Since A'/2 and —A'/? do not have common eigenvalues, Lemma
[D.10] gives
Df(A)[A] = U UOO oA (—A*W&A*lﬂ) €A1/2Td7'] U*.
Thus, by Lemma[D.8] we know that i
IDf(A) sup |[Df(A)[A]]

A=t

JOO HB—AWT (—A_l/QﬁA_l/Q) NPT
0

N

dr

_
o2 (A)

min

N

a0
HA*W&A*/QHJ eI <
0

Lemma D.12 (Matrix Perturbation Bound) Suppose A > 0. Then for any symmetric perturba-
tion matrix A with |A| < 20in(A), it holds that

4lA]
Toin(A)’

min

H(A LA A*I/QH <
where omin (A) denotes the minimum singular value of A.

Proof Let us denote f(A) = A~'/2. Given a symmetric perturbation matrix A, by mean value
theorem, we have

H(A +A)T A—1/2H - Ll Df(A + tA)[A]dtH

< < sup lDf(A+tA)II> Al

te[0,1
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716

717

718

719

720

721

722
723

Thus, by Lemma and by using the fact that [A| < omin(A), we have

- _ 1 4A]
A+ A2 A2 < S— Ny gl
H( t4) H tsgﬁ] o2 (A+tA) Al o2 (A)

min

E Regularity Condition in Population

Proposition E.1 For every i € [n], define a set

qesSit = {qeR” | qi>o,qi>«/1+5}.

la-il, ~
n’

(E|grad f(@)] aia —e:) = eab(1 = O)ailail. 41— g7 € [ucl (51)

(E|grad f(a) |, aia — e1) > 260(1 = O)ain™"q-il . «/1—qfelcg7«/”;1], (52)

hold for any q € S§+ and each i € [n].

Whenever 0 € (1 co) and pi < ¢; min {97 ﬁ} we have

Remarks. For proving this result, we first introduce some basic notations. We use Z to denote the
generic support set of g € S*~1 of i.i.d. B(#) law. Since the landscape is symmetric for each i € [n],
without loss of generality, it is enough to consider the case when i = n. We reparameterize q € S™ !
by

w

where w € R" ! with |w] < /2. We write

_ wg
az = [inneI] ’

where we use 7 to denote the support set of w of i.i.d. B(6) law.

Proof We denote

g(w) = hu <wTw—n + /1 — |w2> 54

Note that if e,, is a local minimizer of E [f(q)], then EE [g(w)] has a corresponding local minimum

at 0. Since ¢(-) satisfies chain rule when computing its gradient, we have

(E[Vg(w)],w-0)= <[In—1 \/1:1)7] VE [f(q)] ,w>
= <E [Vf(q)] ,q — qlnen> = $<E [grad ]?(q)] ,qnq — en>,

(E [grad f(a)| ,ana — en ) = 4 (B [Vg(w)] , w). (55)

Thus, the above relationship implies that we can work on the “unconstrained" function g(w) and
establish the following: for any g(w) € Sg* with £ > 0, or equivalently,

which gives

2 2
Jw[™ + (1 + &) |wly, <1,
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725

726

727
728

729

730

731

732

734

735

736
737

738

the following holds
(VE[g(w)],w —0) 2 |w].
When |w)|| € [cop, ¢1], LemmaE.4]implies that
w' VE [g(w)] = c20(1 — 0) |w] .

By Lemma we know that when ¢; < |w[ < /21,

w! VZE[g(w)]w < —es6(1 —0) |w|?,

which implies concavity of g(w) along the w direction. Let us denote v = w/ |w||, then the
directional concavity implies that

tv'VE [g(tv)] = (t'v)"VE[g(t'v)] + caf(1—0) (¢ — 1),

for any ¢,t' € [cl, A/ ”T’l] Choose t' = % and t = ||w], by Lemma we know that
w w o

w VE[g(w)] > (1 6) ] | ———— 1
|w|” + |wl,

The function

to]

1
—— o] = ——— -t
Vel + ol 1+l

is obviously monotonically decreasing w.r.t. t. Since q € Sg”, we have
1

1+ (146 o2

holt) =

o> + A+ &) Jtv]>, < 1 = t<

Therefore, we can uniformly lower bound h, (t) by

1 1
hy(t) = -
Vit y1ra+o il

Therefore, we have

2 —
> €|l = en!

w'VE [g(w)] > ca€8(1—0)n"" ],

when |w|| € [cl, ”T’l] Combining the bounds above, we obtain the desired results. [ |

Lemma E.2 Suppose g € N'(0, I,), we have

w VE[g(w)] = ~Ez [ (Jazl® = Lez) P (laa| < 1) |. (56)

Proof In particular, exchange of gradient and expectation operator can again be justified. By simple
calculation, we obtain that

qu ( Tn ) T
, TE(xon — Jrw), ¢z < p
Vo(w) = 1 (") (o - D) = § 7 : 7
In sign (" x) (:c_n — f’fw) . laT®| > p
Thus, we obtain
w ' VE [g(w)]
-
. :177'7, q T I'Il
=E [SIgn (¢"z) <uﬁm_n 0 'w2) ]1|qu|2#] +E [M <uﬁm_n . w2) 11|qu|<#]
; T T Tn 1 T T Tn
= E [sign (q x) q x—q— Lgma=pu +;E (q .73) q w—? Ligma|<u| s
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739 where we used the fact that

2 2
w|” +
wlx_, — HwH —w'x_, + GnTn — T |w]| dn

x
:ngg— n
qn

dn dn

740 LetZ =X +Y, with

X=w'a_, ~ N, |ws|*), Y = guzn ~ N0, 1per), Z ~N(0,|qz]?). (58

741 This gives

1 .
w'VE [g(w)] = E Uqu’ ]]-|qu|2;1,] - q—E [51gn (qu) xn1|qu|>p]

2 1 1
+ 2B [(@70) ararsn] = B[ (070 0) Lgraiey] = (B[22 Lgmeic]

n

1 . 1
= E[|Z|1125.] - ?E [sign (X + Y)Y xsy|sp] + ;E [Z°1)21<,]

1 1
- Tq%E [XYLxivi<u] - N?E (Y21 x 1 vi<u] -

n

742 Now by Lemma|D.7] we have

E[|Z|1|Z|2u] _ \/7]EI l|q1| exp( 2lar )]
qn\/gE ]lneIe

lazl 7\ 2 qun

2 _ 12 , .

E[Z%1z<u] = \/7]}31 [QIH eXp< gﬂ +Ez [quH P(|g7g| < M)]
2 gzl
2 1, w 2 2

E[XYLxtvicu] = ,U'qzl\/;EI ld'gj'exp ( £ 2)1

lgz| 2|lqz||

2 1, 2
R R b= e = | R E )
A

2| qz|

E [sign (X + Y)Y 1jxiv|spu]

743 Putting the above calculations together and simplify, we obtain the desired result in (56)
744

745 Lemma E.3 When for any w € R"! satisfies |w|? + HwHio < 1, we have

w' VE [g(w)] = 0.
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746

747

748
749

750

751

752

753

754
755

Proof From LemmalE.2] we know that
p-w' VE[g(w)]
= Ez | (lazl - Luez) P (lafg| < n)]
(1-

=]Ej[

“ 1= 0wyl £ 4 Jwge|? —t?
=Ey; f exp | — 3 exXp 2
n ( Vor |wg] 2 |ws| V21— w2 2=2]wge|
1-6 J

0) lwg|*P (g7 ws| < ) — 0w P (197w + gugn| < 11)]

J - 2
vam 5 )= \/w?IlieJ + |lwa 20ilies + 2 [wa i

|
-

n

Ju E w?lig 7 p( 2 )
7 _
—H \/1 — W; ]]-1¢J ij e\{s }H 2- 2wi2]]‘i¢~7 -2 ijc\{i} H2

(1—6)0 "‘1F w? 2
= — E exp | —
v2r ; AN 2\ 2wt 2w

w} + [wa gy

@\%
3

Il
it

%

(-0 w% 2
Vo ; Ju o V1= ol + [ o (2 —2w|* +2 !le\{i}V)
= (1—9)97:1%-2EJ [P (1Zia] < p) = P(|Zi2| < p)], (59
where
Zin~ N (0,02 + [wry|*) . Zia~ N (0,1 Jwl® + |wagy|*) . ©0)

Since we have 1 — |w]|* > Hngo > w2, the variance of Z? is larger than that of Z}. Therefore, we
have P (| Z;1] < p) = P (| Zi2| < p) foreachi =1,--- ,n — 1. Hence, we obtain

W VE[g(w)] = 61 -6) 3, Py [P(Zul < 10) - P(Zal < 0] >0

Lemma E.4 For any w with copu < |w| < ¢1, we have
w' VE[g(w)] > cf(1 - 0) [w]

Proof Recall from (39), we have

n—1

w' VE [g(w)] = Z wiBg [P (|Za| < p) = P(|Zi2] < )],
where Z;1 and Z;5 are defined the same as (60). Let us denote
Z~N (o, HwHQ) L Za~ N (01— |wf?).

Since we have |w]|” > w? + |wa ] ?_ the variance of Z; is larger than that of Z;;. Therefore,
we have P (| Z;1] < ) P(|Z1| < p) foreachi = 1,--- ,n — 1. By a similar argument, we have

31



756 P (|Zi2] < p) <P (|Z2] < p)foreachi =1,---  n— 1. Thus, we obtain
P(1Zi| < p) =P (|Zia| < )
(|Z1|< ) P(1Z2] < p)

t2
dt
HwH 0 ( 2w> \f 1~ Jw)? J ( 2 — 2|w>

2
SN PR P—:

w |l ST 1= Jwl?
2 1<ﬂ_1 i >_ p

7 | |wl 6HwH2 lwaHQ

2 (1 1 po1
Zu\f EPE S 61)
ol 2 o) 2van el

|w]|

757 where we used the fact that 11/+/3 < |w|| < 1/4/17 for the last two inequalities. Plugging (6T) back
758 into (39) gives

w' VE [g(w)] = Z Wiy [P(|Zia| < p) =P (| Zi2| < )]
(1-0)0 " 1
> —— 71 c = ——(1-0)0 ,
iTel 5 = gy Ol
759 as desired. ]

760 Lemma E.5 When 1 < cg min {ﬁ, 0} and 0 € (f cl) we have
w! V’E [g(w)]w < —c26(1 = 6) |w]?
761 for all w with c3 < |w| < 4/ "T_l Here, ¢y, c1, ca, and cs are some numerical constants.

762 Proof Since the expectation and derivative are exchangeable, we have
w'VZE [g(w)]w = w'E [V?g(w)] w.
763 From (57), we obtain

Ll(qTz) - x) — L (x], w ], Tx| <
O V() — H(q ) i @e) g L), el <
- |w|” sign (q z), lg x| = p
764 Thus, we have

2
||w||

E [wTVQg(w)w]l‘quP#] = E [gnzy sign (q ) Lg7 > p]

HwH Loer 12
exp| ————>;
lgz| 2 lqz|

765 and
E [wTV2g(w)w1|qrm|<u]

1 1 n 1 n

= L) arera] B 7 e | < B | 0 L0) B
1 (s 1 ) 1/1 1

= [2°121<0] = ke (Y2 vi<n] = AR [XYLix 412,



766 where X, Y and Z = X + Y are defined the same as (38). Similar to Lemma [E.2] by using
767 Lemma[D.7] we obtain

E [wTVQQ(w)w]lmrmKu]

2 2 1
- _ \/7EI laz| exp —“72 +—FE [(“qu2 . ]]-nGI) P (‘q}g’ < M)]
T 2| qz| 1
2 aln 2 2 1 wa|® 1, 2
+\/7EI [qn %IeXp<_u2>1+ <1+2>E1[jgezexp<— K 2)1
& HQIH 2 HqIH ™ q? HQIH 9 HQIH

768 Combining the results above and using integral by parts, we obtain

w' V°E [g(w)] w

2 1, 2 2 1, 2
= — \/7]EI 613 exp | — K 5 + 2\/71[*31 = exp - 5
T | ezl 2 ||qu ™ | lezl 2| qz|

1
2k, QI”eXp( T )1+#E[(||qz2—1%1)1%”(|q;g|<u)]
- 2
1 2
E, “’J”Bnefexp(_ ! 2)]
| llazll 2 qz|
2 1, 2 M/I\qu
+\/7EI T [ exp [ — H . QI|J t2/2) dt
™ | gzl 2 gz
9 M2 laz]| w/lazll )
— ) 2Bz | lgz] {exp (- - f exp (—12/2) dt
\/; l 2 qz|? #Jo ( )
2 neT 112 1 /2 wlal ,
=/ =Ez ||wge H 3€Xp | — _\/7EI 1 IJ t*exp (—t“/2) dt
\/; l H qz’ 2 qz|” py "o ( )
1 [2 #/llaz|
+ \[]EI [%IFJ t* exp (—t/2) dt
BN 0
\/7 eZ t2
Er |fwge)? - 5 eXp \[J | |at
gz’ 2qull ”‘IIH 2|qz|”
760 First, when y/ =1 > |lw| = ¢, we have

2 ]]-nel' ﬂ2
7 | |wge| gexp | — 3
lgz| 2| qz|

(\}

3

3o

N

1 12
exp| ——F—<
3/2 2
(2 + s ) 2 (a2 + lwg]?)

2
"
> 0B | |wge | exp (—zﬂ
, 22 + 2 |wy]

2
> 0B [ e |? exp (—2")] > e10(1 - 0) Juw]?.

2
=0Es | |wge|

770 Second, notice that the function

t2

h(z) = 2~ exp (_21:2) , xel0,1]
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771 reaches the maximum when x = ¢t. Thus, we have

1 /2 M 1 2 1 /2 (* 1 1

\/>J t?Er | — exp ——— | |dt < \/>f texp <—) dt < 671/2[1,.
p N Jo laz] 2| qz| p N Jo 2 V2m

1

772 Therefore, when u < = < 0, we have

w V2E [g(w)]w < —c20(1 — 6) |Jw]?

773 forany 4 /2=L > |w| = co.

774 |

775 F Negative Curvature on Gradient in Population
776 Proposition F.1 Suppose 6 > % Given any index i € [n], when p < \/%, we have

~ 1 1 6(1—-46

777 holds for all q € Sé*' and any q; such that j + i and qu > %q?

776 Proof Without loss of generality, let us consider the case ¢« = n. For any j #+ n, we have

<gradE [Fl@)]. e - qle>

J

1 1 \T .
=|—ej——e,| PpuE[z- b, (z q)]
q; dn
-
1 1
= (ej - en) Elz-h,(z"q)].
q; dn

779 Let
Z=71+ 2, Zy = qwi ~N(0,(b:g:1)?), Z» = gL,z ~ N(0,|q_; ©b_;[?).
780 Notice that for every i € [n], we have
1
EeiTE EZ h;(qu)]

11 11 1 .
= ?;E [212]]-|21+Z2\<u] + quﬁE [Z1Z2]]-\Z1+Z2|SM] + quE [Zl sign (Zl + Z2) I]-\Z1+Zz|>u] .

% 7

781 By Lemma|D.7] we have

2 P p
2 i 1€
N e % aal® & <_2|QI|2

+E ¢} 1iezP (1Z] < )],

2 [ @lier l(a-i) ) %
e R o’ P\ 2aP

. 2 qz‘zliel /1“2
E [Z1 sign (Z1 + Za) 1|Z1+Zz\>u] = ;EI Izl exp —m .

782 Combining the results above, we obtain

1 1
—e/E[z-n,(z"q)] = JE[ierP (2] < ).

7
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783

784

785

786

787

788

789

7!

©

0

Therefore, we have

~ 1 1
<grad1E[f(q)] o Qnen>
- (B [LerP (2] < )] ~ E[LezP (2] < )

7 2
- 9\/51[52 %j exp <_2t2> gt
e @ + || ° @ + | ary|

m 2
_ 9\/§]Ez %f exp (_t2> gt
gy 2+ |apn]” 70 a3 + gz
- 2
N e U )
T ¢+ ar g | ¢ +|ar |

o(1 - 0)

m 2
\FEI I ( e ) "
T @2 + |an gy 70 @+ |az g
o(1

= J]EI erf = S |~ erf £ 2
z ¢ + largm @+ langnl

where erf(z) is the Gaussian error function

erf(x ex t22 dt = Jex 22 z = 0.
%Lp 2) dt =[5 [ exp (-2/2)

When p < W such that m <lforqe Sgﬂ by Taylor approximation we have
erf a =|—e a =
¢ + lanjm| g + lazim|
a
g ! _ - ! | = % J ! .
2
V& +langal®  Va + langm] &

3/2
f e+ langm)

Therefore, we have

<gradE |7(0)] %ej - qle>

7 n
_ a,
. 9(14 G)J 1 2 3/2dt
@ (2 + Janga?)
0(1—-0 0(1—-96 0(1—-46
> 00 (2 ojgaz) > MO S s M0
4 4 § dn  14+¢
This gives the desired result. |

G Gradient Concentration

In this section, we uniformly bound the deviation between the empirical process grad f(q) and its
mean E [grad j? (q)] over the sphere. Namely, we show the following
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Proposition G.1 For every i € [n] and any 6 € (0,1), when

p = Co *nlog <9n> , (62)
o

(s 2o ] )| <

holds with probability at least 1 — np~" — nexp (—02p52),f0r any e;. Here, c1, co, and C are
some universal positive numerical constants.

we have

sup
gesSn—1

Remarks. Here, our bound is loose by roughly a factor of n because of the looseness in handling
the probabilistic dependency due to the convolution measurement. We believe this bound can be
improved by an order of O(n) using more advanced probability tools, such as decoupling and
chaining [44-46].

Proof First, note that

~ 1 & ~ 1 2 ,
fla) = — ) H,(Cy.q), gradf(q) = n—quLZc;hu (Ce.q) - (63)

np i=1 i=1

Thus, we have

<gradf [grad f(q )] >

- = Z Z [<7D 1s;[&:], enyhl, (s] Z;] ) —E[(e,Pyx) h, (gch)]] }

nplle

This is a summation of dependent random variables, which is very difficult to show measurement
concentration in general. We alleviate this difficulty by only considering a partial summation of
independent random variables, namely,

L(q) =

T L Pam et (ala) < E[(elPyes) 1, ()]

pH

where x; ~;;q4 BG(#). Note that the bound of £(qg) automatically gives an upper bound of
<grad j?(q) —E [grad f(q)] , en> in distribution. To uniformly control £(q) over the sphere, we

first consider controlling £(q) for a fixed g € S*~!. Foreach £ = 1,2, - - -, we have the moments

E|[(Pyeaienyty, (2q)| | < EllefPeail’] = E|iZI],

where conditioned on the Bernoulli distribution, we have Z; ~ N <0, (7? Len JH ) . By Lemma

[D.1] we have
¢ ¢ £
E[|(Pys e, (2] )] < Es [(4_1)!!“(7>¢en)j\ ] <Zipel’

where we used the fact that ’h;(z)’ < 1 for any z. Thus, we are controlling the concentration of
summation of sub-Gaussian r.v., for which we have

P(IL(g)| > t) < exp (-opf).

Next, we turn this point-wise concentration into a uniform bound for all g € S"1 via a standard
covering argument. Let A (g) be an e-net of the sphere, whose cardinality can be controlled by

V()| < (3)“.

e
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g13 Thus, we have

3 n—1 pt2
P sup |[L(g)] = t] < () exp (— ) .
<q6/\/(5) | ( )| ) 15 2+ 2t

s14  For any point g € S"~1, it can written as ¢ = g’ + e, where ¢’ € N/ (¢) and | e| < . Now we control
s15 the all points over the sphere through the Lipschitz property of L.

sup |L£(q)|
qES"71

= sup L(q' +e)|
qEN(e) el <e

< s L(q")| + 3 El(e, Pigieriz— el Pgrix) b, (x"q
S L@+ | s (B[ (enPlarse: @)-) b, (= )]

L1

+ sup  [E[(e;Pgre ) (h (27 (d +€)) — b (27q))]
aeN(e) el <

Lo

Ly y T 1T
+ sup — €, Pare)t i — e, Pignrxi| b, (x; q')
q'eN(e),le|<e p;[ (@'+e) (¢)-%i] iz

[ury

L3

1=

1
+ sup —
a'eN(e) el<e |P ;

(enPigre) i) [h, (x] (¢ +€)) — b, (:ch’)]‘ )

Il
_

Ly
s16 By Lipschitz continuity and the fact that h/,(z) < 1 for any z, we obtain

Li < s VO[(Pgier —Piayr) en| < 3V0e
TN (o), el <e

Lo < sup lIE [lz] [z e|] < H—HE.
qEN(e),e] <e M 1

817 For each x;, we know that ¢; = g; ® b; with g; ~ N(0,I) and b; ~; ;4 B(#). By Gaussian
818 concentration inequality, we know that for each x;,

t2 t2
P (Ja] VA0 > 1) < B (] - Efla]] > 1) < exp (—M) < exp (—2) .
oo

s19 Therefore, by a union bound, we have

max |@;]| < 5+/60nlogp

1<i<p

g20 holds with probability at least 1 — p~89™_ Therefore, w.h.p we have

L3 < (max wi) sup Piarrert — Pl < 154/0nlogpe,
s il ) sup [ Paver = Pl

1 Onlo
Ly <~ (max |a:i|2> sup  Je| < 2578P,
Ho\1sisp a'eN(e),]e] <e
g21  Combining the bounds above, choose € = ﬁ, we have
g P
Onl
sup |L(g)l < sup |L(q)] + 2P <ot
qeSn—1 q’eN (g) 1%

s22 holds with probability at least



823

824

825

826

827
828

830
831

832

833

834

835
836

837

838

839

Thus, applying a union bound, we obtain the desired result holding for every i € [n]. [ ]

Similarly, we also show the following result.

Corollary G.2 Forany ¢ € (0, 1), when

p=C6 *n?log <9n) , (64)
1o
we have
sup grad f( ) — [gradf ]H
qeSn—1
sw V@) ~E[Vi@]| <9
qu"*l

hold with probability at least 1 — p~°1" — nexp (—02p62). Here, c1, co, and C are some universal
positive numerical constants.

Proof From Proposition|G.1, we know that when p > Cye~2nlog (ue ),

sup s o)~ s e
< 33 s (o o)~ B[t @] )| <

holds with probability at least 1 — p~1%" — nexp (—copd?). Therefore, by letting § = y/ne, w.h.p.
we have

sup
geSn—1

grad f(q) — E [grad f (q)] H <3,

on

whenever p > Cd2n?log ( 5) By a similar argument, we can also provide the same bound for

vt £ [v 70| .

Supqesn—l

Corollary G.3 For eachi € [n] and any § € (0,1), when p > C5~2nlog ( ) we have

sup
qES"71

<gradf el>‘ 1496,

hold with probability at least 1 —np~ %" —n exp (—02p62). Here, c1, co, and C are some universal
positive numerical constants.

Proof For any g € S"~! and every i € [n], we have
E[|(grad fla),e:)|| = E[|(e]Pyra) - (2T a)| | < E[|e] Pyr]] <1
Thus, we have

sup

S, <gradf( [gradf ] ez>‘

> s ([(emna Fla).eo)| B [|erad Fla). )|

> sup <grad f(g ez>‘ — sup E H<grad flg >H
qeSn—1 qesSn—1
Therefore, by using the result in Proposition[G.I] we obtain the desired result. [ ]
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Corollary G.4 Forany 6 € (0, 1), when p satisfies (64), we have

sup
qesn—1

grad f(q)” < Von + 9,

hold with probability at least 1 — p~°19" — nexp (—C2p62). Here, c1, co, and C are some universal
positive numerical constants.

Proof For any q € S"~!, we have

|

grad f(q)H] =E [HPquh;L(qu)H] <E[|z|] < Von.

Note that
sup grad f(q) ~ E [grad flg)|| = sup (|erad flg)| —E [|grad f(a)]])
geSn—1 geSn—1
> wup i f)| — sup 5 st o)
qesSn—1 gesSn—1
Thus, by using the result in Corollary we obtain the desired result. [ ]

H Preconditioning

~

In this section, given the Riemannian gradient of f(q) and its preconditioned variant

~

1 P
grad f(q) = nfpmizc;h; (Ce.q),
i=1

p
grad f(q) = niqul Z (RQ_l)T C..h, (Ca, (RQ7Y) q),
i=1

we prove the following result.

Proposition H.1 Suppose 6 > % Forany ¢ € (0,1), whenever
K®n 4 on
we have
sup |grad J(q) — grad f(q)| < ¢
qeSn—1

holds with probability at least 1 — clp_@”e —n~s —ne P Here k and oy, denote the
condition number and minimum singular value of Cgq, and ¢y, ca, c3 ,cq4 and C are some positive
numerical constants.

Proof Notice that
» —1/2
1 T T —1/2
R = Ca|-—)>.C,Cy, , Q= C,(ClCy,)

i=1

so that

» -1/2
RQ' = C, (1 3 C;Cyi) (clc.)? ozt
Onp o
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Thus, we have

grad f(q) — grad f(q) H

sup
qun— 1

1

~ np

Py (I— (RQY))T i cln, (c

ICATACR AT <RQ1>q>]H

< |1-rRQ||Vila)| +|RQ|

L SiL e (e (17 )

< |1-rQ7||Vit)| + - |RQ” 1||(ma<x | ||sz|oo) l1-RrQ7. 65

Here, by Lemma for any given ¢ € (0,1), whenp > C 3 log® n, we have

KS
|IRQ™—1I| <& |RQ' < 1+¢, (66)

holding with probability at least 1 — p~¢1"% — n =2 On the other hand, by Gaussian concentration
inequality and a union bound, we have

max |@;|| < nlog p, 1n<1?<xp |F;,, < 4@, (67)

1<i<p

hold with probability at least 1 — p~¢3". By Corollary|G.4, when p > C»0~'nlog (7") we have

sup
qu'n,— 1

gradf(q)H < 2von (68)

holds with probability at least 1 — p~¢19" — ne=¢s7P_ Plugging the bounds in (66)) and (67) into

(63), we obtain

~ 164/n 1
sup |\grad f(q) — grad f(q)H < e [2\/071 + 16ynlogp 1+ 5)] .
geSn—1 H
By a change of variable, we obtain the desired result. [ ]

Lemma H.2 When 6 > 1/n,

—I| <t (69)

1 & 4

holds with probability at least 1 — p~“"? — nexp (702 min {%, % }) for some numerical

constants c1,co > 0.

Proof
Notice that

C] C,, = F* diag (|F:ci|®2> F

e e R

1 i o2
— |Fa;|®% —
Onp i=1

Then

(70)

0
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g0 Letx; = b; © g; with b; ~; ;4. B(0) and g; ~ N'(0, I), and let us define events

Eij= {Hbi@fjH? < 5n«/910gp}, 1<i<g<p 1<j<n.

st Weuse & = (/_, & ;. For each individual ¢ and j, by the Hoeffding’s inequality, we have

P (Efj) < exp (—8nflogp)

g72 Foreach j = 1,--- ,n, by conditional probability and union bound, we have

p< >t><ﬁ»@%>+p<

P . 1 p . 9
P (&) +P ran\fj | -1
= i=1

>t|5j>
2t|&>

>t|Q>. (71)

Liv*mf_l Li”‘*mf—l
anizl 7 anizl 7

<

i=1

< p€78n910gp +P (

1 & 2
Onn Z ‘fa*ml‘ -1
Onp i=1
873 For the second term, since x; ~ BG(6), we have

fie = Z fiibikgin ~ N (O, HbinjHQ)

k=1
g7+ forall £ > 1, by Lemma|[D.I] we have

6] = gt u[lbo s 6]

E[(6n) il |

|
< %10494/2 logz/2 p.

s75  Thus, by Bernstein inequality in Lemma[D.3] we have
]P <

876 Plugging into (71)), we obtain

pt?
>t| & | < -
| J) P < 200logp + 20\/logpt>

< exp [ —min Pt ; Pt . (72)
4000 log p’ 40+/01og p

o Sl -1
Onp ~ g

1 & 2
LS a1l <
Onp =
877 holds with high probability for each j = 1,--- ,n. We apply a union bound to control the ¢,,-norm
s78  in (70), and hence get the desired result. ]

79 Lemma H.3 Forany e € (0,1), when p = CH~*c2log® n, we have

1 & 4 5
— < @
gnp 23 Cu.Cu| < (1+2)1Cal
—1/2
1 & T T —1/2 4K%e
(o deion)  —teren™| <

880 holds with probability at least 1 — p~©"™0 — n=¢2_ Here, k is the condition number of Cg, and
881 Omin(Cq) is the smallest singular value of C.
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sz Proof Forany ¢ € (0,1), from Lemma|H.2] when p > C~'c~2log® n we know that the event

E(e) = { Se}

ssa  holds with probability at least 1 — p~°1"? — p=¢2_ Conditioned on the event &(¢), let us denote

A=2Clc, >0,

1 p
Y.ClCo T

Onp i=1

gs+ and let oyax (A), Omin (A) be the largest and smallest singular values of A, respectively. Then we
885 observe,

13 T T T 1 S T
%chicyi =clc,+c] %Zc@c@—[ Ca,
i=1 i=1
A
— A+ A, |A| < £ omax(A).

ss6 Therefore, we have

< Al +]A] < (1 +e)|Cal®.

J
%chicyi

i=1

887 3 [12[@ vhenever
A 710' 1 Omin A 1
H H < 9 min(A) — e < A -

sss we know that

» —1/2
( 1 ZC;Cyi) —(C;rca)—l/z _ H(A—FA)_W—A_WH

% i=1
4 HA” < 450n1ax(A) o 4/‘%26
h JI%lin(A) h Urznin(A) a U?nin(ca) .
889 -

sso Lemma H.4 Let 6 € (1/n,1/3), and given a § € (0,1). Whenever

K8

p = leogg n,
891 we have
IRQ™ I <5 |RQ™| < 1+4
H(RQ*l)‘l—IH < 26, H(RQ’l)_IH <1426

g0z hold with probability at least 1 — p~°1"? — n =2,

893 Proof First, by Lemma for a given ¢ € (0,1), when p > C10~'e~2log® n, we have

» —1/2
|RQ™' - 1| 1—ca< 91 Ec;cy) (clc.) eyt

—1/2
) —(clc,)

€ 4Ke
< ;
Ca,) Omin (Ca)

N
£
5
o
>
S| -
7=
3
gQ

N
=z
£
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Table 2: Gradient for each different loss function

Loss function V(q) for 1D problem (73) V(Z) for 2D problem”*] (74)
'-loss nip P Y, ®sign (7; ®q) % P 7i sign (Y; 2 Z)
Huber-loss an LY@, (7,®q) Z hy, (YiE Z)
~ — 3
(*1oss —nip P LY ® (T ®q)° nlp Y (Y E Z)
and
IRQ™| < 1+|I-RQ™| < 14—
Umin(Ca)
hold with probability at least 1 — p~1"? — n=¢2_ Similarly, by Lemma
1/2
l1-(r@™")| = |1-ca(cica) ”2( Z ) c,!
—1/2
1 & P T T —1/2
s H 97 Z an 121 Cyi C?h) o (Ca Ca)
4K%e 8rte
< — . (1 1/2 ol < ———
: U?}nin(CG) ( " 6) ”C H O-min(cfa,>7
and
(@) < 1+|1- (R <1+ e
Umin<Ca)
Thus, replace § = "‘(4 é y> We obtain the desired result. [ ]

I Algorithms and Implementation Details

In this section, we provide detailed descriptions of our algorithms. First, we introduce the details
Riemannian (sub)gradient descent method for 1D problem. Second, we discuss about subgradient
methods for solving the LP rounding problem. Finally, we provide more details about how to solve
problems in 2D.

For the purpose of implementation efficiency, we describe the problem and algorithms based on
circulant convolution, which is slightly different from the main sections. Because our gradient descent
method works for any sparse promoting loss function (other than Huber loss), in the following we
describe the problem and the algorithm in a more general form. However, it should be noted that our
analysis is only specified for Huber loss in the following sections.

I.1 Riemannian (sub)gradient descent methods

Here, we consider (sub)gradient descent for optimizing a more general problem

min ¢(q — Y ¥(Cy,Pq), st |q| =1,
in ) = o2 310(C, q

Here, for 2D problem, Z denotes a flip operator that flips a matrix Z € R™ *"2 both vertically and
horizontally, i.e., Z; j = Zpn, —it1,n5—j+1-
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Algorithm 1 Riemannian (sub)gradient descent algorithm

Input:  observation {y;}.~,
Output: the vector q,,
. _ . 2\ ©—1/2
Precondition the data by g, = y; ® v, with v = (ﬁ Py ‘@ ) .
Initialize the iterate ¢(°) and stepsize 7(%).
while not converged do

Update the iterate by
g* Y = Py (q(k) — 7 grad gp(q(k))) .

Choose a new stepsize 7D andsetk «— k + 1.
end while

where ¢(z) can be ¢!-loss (1)(z) = [z|,), Huber-loss (1)(z) = H,(z)), and ¢*-loss (1(z) =
- Hij). The preconditioning matrix P can be written as

o-1/2
—1 ]- & ~ @2
P:va v=F %E‘yz‘ 5

where y; = Fy;, so that
Cy P =0CyCy=Cygv = Cyi’ Yi=yi®v.

Therefore, our problem can be rewritten as

H Pp— 1 p 21 J—
min (q) = n—p;w(yq-,@q), st. g = 1. (73)

Starting from an initialization, we solve the problem via Riemannian (sub)gradient descent,
g* ™ = Py (q(’“) — 7. grad @(q(’“))) :
where 7(¥) is the stepsize, and the Riemannian (sub)gradient is

gradp(q) = PqrVe(q),

which is defined on the tangent spacd™| TaS"~* at a point ¢ € S"~L. [Table 2] lists the calcu-
lation of (sub)gradients V(q) for different loss functions. For each iteration, the projection
operator Psn—1(2) = z/||z| retracts the iterate back to the sphere. Let © denotes entry-wise

power/multiplication, the overall algorithm is summarized in

Initialization. In our theory, we showed that starting from a random initialization drawn uniformly
over the sphere,
q(O) =d, d~ U(Snil)a

for Huber-loss, Riemannian gradient descent method provably recovers the target solution. On the
other hand, we could also cook up a data-driven initialization by choosing a row of Cy,,

q9 = Py (C% ej)
for some randomly chosen 1 < 7 < pand 1 < j < n. By observing
Cy, ~ CaiCa(C1C) ", 49 ~ o ((CTCa) 7 Clsy [5)).
we have
Cyjq(o) ~ aCy,Ca(ClCo)7'Cl 5[] = aCy;s¢[Ei] .

This suggests that our particular initialization q(%) is acting like s, [€;] in the rotated domain. It is
sparse and possesses several large spiky entries more biased towards the target solutions. Empirically,
we find this data-driven initialization often works better than random initializations.

14 We refer the readers to Chapter 3 of [47] for more details.

44



930
931
932
933

934

935
936
937
938

939
940
94
942

943

944

945
946

947

948
949
950

951

952
953

Choice of stepsizes. For Huber and ¢4 losses, we can choose a fixed stepsize 7(*) for all iterates to
guarantee linear convergence. For subgradient descent of £!-loss, it often achieves linear convergence
when we choose a geometrically decreasing sequence of stepsize 7(*) [48]. Empirically, we find that
the algorithm converges much faster when Riemannian linesearch is deployed (see[Algorithm 2)).

Algorithm 2 Riemannian linesearch for stepsize 7

Input: a,x, 9, n€ (0.5,1), € (0,1),
Output: 7, RM (—7Pr,,Viiz(a))
Initialize 7 < 79,
Set § = Pgn—1 (g — 7 grad ¢(q)) ,
while ©(q) > ¢(q) — 771 |gradp(q)|” do
T <« BT,
Update ¢ = Pgn—1 (g — 7 grad ¢(q)).
end while

1.2 LP rounding

Due to preconditioning or smoothing effects of our choice of loss functions, the Riemannian
(sub)gradient descent methods can only produce an approximate solution. To obtain the exact
solution, we use the solution » = g, produced by gradient methods as a warm start, and solve another
phase-two LP rounding problem,

1 P
i = — Y, s.t. ,q) = 1.
min ¢(q) = ; I9; ®4ql, (r,q)

Since the feasible set (r, q) = 1 is essentially the tangent space of the sphere S"~! at q,, whenever g,
is close enough to one of the target solutions, one should expect that the optimizer g, of LP rounding
exactly recovers the inverse of the kernel a up to a scaled-shift. To address this computational issue,
we utilize a projected subgradient method for solving the LP rounding problem. Namely, we take

g™t = 4 (T—rrT) <q<k> _ T<k>g<k>)
— g® —7p g

where g(*) is the subgradient at q'® with
k 1 k
g = — >y, ®sign (@Z-@q( )) :
P
By choosing a geometrically shrinking stepsizes

k) = gk ge (0,1).
we show that the subgradient descent linearly converges to the target solution. The overall method is

summarized in [lgorithm 3

LI.3 Solving problems in 2D

Finally, we briefly discuss about technical details about solving the MCS-BD problem in 2D, which
appears broadly in imaging applications such as image deblurring [[13H15]] and microscopy imaging
(316,17

Problem formulation. Given the measurements
Y, = ABX;, 1<i<p,

where [#] denotes 2D convolution, A € R™*™ is a 2D kernel, and X; € R"*" is a sparse activation
map, we want to recover A and {X;}?_, simultaneously. We first precondition the data via

o-1/2
— 1 p
Y, = Y®HV, V = f_l (MZU:(K)@?) 7
i=1
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Algorithm 3 Projected subgradient method for solving the LP rounding problem

Input:  observation {y;}.—,, vector r, stepsize T, and 3 € (0, 1).
Output: the solution g,

Precondition the data by ¥y, = y; ® v, with v = (i Py

o2 O—-1/2
Onp Z‘ :
0)

Initialize ¢(© = r, 7(9) = 7,
while not converged do
Update the iterate

g* D — q®) _Bp | gk,

Set 7+t = B7(%) and k « k + 1.
end while

where F(-) denote the 2D DFT operator. By using the preconditioned data, we solve the following
optimization problem

: Ly
min ¢(2) = n—%;wnzx st Z]p =1, (74)

where ¢(+) is the loss function (e.g., /!, Huber, ¢-loss), and ||| denotes the Frobenius norm. If the
problem can be solved to the target solution Z,, then we can recover the kernel and the sparse
activation map up to a signed-shift by

A, = FH(FVvEZ)T), X - VMEV)EZ, 1<i<p

Riemannian (sub)gradient descent. Similar to the 1D case, we can optimize the problem via
Riemannian (sub)gradient descent,

Zk+) — pp (Z(’“) _ (B .gradw(z(m)) ,
where the Riemannian (sub)gradient
gradp(Z) = Pz.Vp(Z).

The gradient Vp(Z) for different loss functions are recorded in For any W € R™"*", the
normalization operator P (-) and projection operator P (-) are defined as

-2
Pe(W) = W/|W|p, Pzi(W) := W —|Z|;°(Z,W)Z.
The initialization and stepsize 7(*) can be chosen similarly as the 1D case.

LP rounding. Similar to 1D case, we solve a phase-two linear program to obtain exact solution. By
using the solution Z, produced by Riemannian gradient descent as a warm start U = Z,, we solve

1
min %;HnZul, st. (U,Zy = 1.

We optimize the LP rounding problem via subgradient descent,
z*+) = z(®) _ ) p, g,

where we choose a geometrically decreasing stepsize 7(*) and set the subgradient

1 P~ —
G* = niQp 2 Y ; [ sign (Yi Z(k)) .
i=1
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