Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)
Moritz Wolter, Angela Yao
Complex numbers have long been favoured for digital signal processing, yet complex representations rarely appear in deep learning architectures. RNNs, widely used to process time series and sequence information, could greatly benefit from complex representations. We present a novel complex gated recurrent cell, which is a hybrid cell combining complex-valued and norm-preserving state transitions with a gating mechanism. The resulting RNN exhibits excellent stability and convergence properties and performs competitively on the synthetic memory and adding task, as well as on the real-world tasks of human motion prediction.