The promises and pitfalls of Stochastic Gradient Langevin Dynamics

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental

Authors

Nicolas Brosse, Alain Durmus, Eric Moulines

Abstract

Stochastic Gradient Langevin Dynamics (SGLD) has emerged as a key MCMC algorithm for Bayesian learning from large scale datasets. While SGLD with decreasing step sizes converges weakly to the posterior distribution, the algorithm is often used with a constant step size in practice and has demonstrated spectacular successes in machine learning tasks. The current practice is to set the step size inversely proportional to N where N is the number of training samples. As N becomes large, we show that the SGLD algorithm has an invariant probability measure which significantly departs from the target posterior and behaves like as Stochastic Gradient Descent (SGD). This difference is inherently due to the high variance of the stochastic gradients. Several strategies have been suggested to reduce this effect; among them, SGLD Fixed Point (SGLDFP) uses carefully designed control variates to reduce the variance of the stochastic gradients. We show that SGLDFP gives approximate samples from the posterior distribution, with an accuracy comparable to the Langevin Monte Carlo (LMC) algorithm for a computational cost sublinear in the number of data points. We provide a detailed analysis of the Wasserstein distances between LMC, SGLD, SGLDFP and SGD and explicit expressions of the means and covariance matrices of their invariant distributions. Our findings are supported by limited numerical experiments.